
CISC 220
Final Review

Prof. Christopher Rasmussen

http://nameless.cis.udel.edu/class_wiki/index.php/CISC220_F2014

University of Delaware
Fall, 2014

http://nameless.cis.udel.edu/class_wiki/index.php/CISC220_F2010
http://nameless.cis.udel.edu/class_wiki/index.php/CISC220_F2010

Midterm Details
● Monday, December 8, 3:30-5:30 pm for both section 010

and 011
○ Smith 130

● Covers all lectures from Tuesday, Oct. 21 through Tuesday,
Dec. 2

● Closed book, no notes, no calculators, cell phones, etc.
● Worth 20% of your grade (same as midterm)
● Question types (see posted 2010 final & midterm)

○ Data structure ADTs, application examples
○ Definitions, compare/contrast approaches, etc.
○ Write C++ code for some small functions

■ No questions about file I/O or inheritance
○ Carry out operations and show steps (graph search, probing in

hash tables, etc.)

Topics Covered

●Priority queues, heaps (Drozdek, 4.3, 4.6, 6.9)
●Disjoint sets / union-find (Drozdek, 8.4.1; UW

slides (first 5 pages))
●Compression (Drozdek, 11-11.2 (skip 11.2.1))
●Hashing (Drozdek, 10-10.2.2, 10.3; cryptographic

hashes page)
●Graphs (Drozdek, 8-8.1, 8.5 (Kruskal’s only), 8.2,

8.3 (stop after Dijkstra’s))
●Sorting (Drozdek, 9-9.1.2, 9.3.2-9.3.4)

http://courses.cs.washington.edu/courses/cse332/12su/slides/lecture15-mst-dsuf-handout.pdf
http://courses.cs.washington.edu/courses/cse332/12su/slides/lecture15-mst-dsuf-handout.pdf
http://courses.cs.washington.edu/courses/cse332/12su/slides/lecture15-mst-dsuf-handout.pdf
http://unixwiz.net/techtips/iguide-crypto-hashes.html
http://unixwiz.net/techtips/iguide-crypto-hashes.html
http://unixwiz.net/techtips/iguide-crypto-hashes.html

Priority Queues

• In some circumstances, the normal FIFO operation of a
queue may need to be overridden

• This may occur due to priorities that are associated the
elements of the queue that affect the order of processing

• In cases such as these, a priority queue is used, where the
elements are removed based on priority and position

• The difficulty in implementing such a structure is trying to
accommodate the priorities while still maintaining efficient
enqueuing and dequeuing

• Elements typically arrive randomly, so their order typically
reflects no specific priority

 Data Structures and Algorithms in C++, Fourth Edition

Priority Queues (continued)

• The situation is further complicated because there are
numerous priority scenarios that could be applied

• There are several ways to represent priority queues

• With linked lists, one arrangement maintains the items in
entry order, and another inserts them based on priority

• Another variation, attributed to Blackstone (Blackstone et. al.
1981) uses a short ordered list and larger unordered list

• Items are placed in the shorter list based on a calculated
threshold priority

• On some occasions, the shorter list could be emptied,
requiring the threshold to be dynamically recalculated

 Data Structures and Algorithms in C++, Fourth Edition

Heaps

• A heap is a special type of binary tree with the following
properties:
– The value of each node is greater than or equal to the values stored in

its children
– The tree is perfectly balanced, and the leaves in the last level are

leftmost in the tree

• This actually defines a max heap; if “greater than” is replaced
by “less than” in the first property, we have a min heap

• Thus the root of a max heap is the largest element, and the
root of a min heap the smallest

• If each nonleaf of a tree exhibits the first property, the tree
exhibits the heap property

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Figure 6.51 exhibits some examples; those in Figure 6.51a are
heaps, while those in Figure 6.51b violate the first property
and those in Figure 6.51c violate the second

Fig. 6.51 Examples of (a) heaps and (b–c) nonheaps

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Heaps can be implemented as arrays

• As an example, consider the array data=[2 8 6 1 10 15 3
12 11] represented as a nonheap tree in Figure 6.52

Fig. 6.52 The array [2 8 6 1 10 15 3 12 11]
seen as a tree

• The arrangement of the elements reflects the tree from top-to-
bottom and left-to-right

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• We can define a heap as an array heap of length n where

heap[i] > heap[2i + 1], for 0 < i < (n – 1)/2

and
heap[i] > heap[2i + 2], for 0 < i < (n – 2)/2

• Elements in a heap are not ordered; we only know the root is
the largest and the descendants are less than or equal to it

• The relationship between siblings or between elements in
adjacent subtrees is undetermined

• All we are aware of is that there is a linear relationship along
the lines of descent, but lateral lines are ignored

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• This is why, although all the trees in Figure 6.53 are heaps,
Figure 6.53b is ordered the best

Fig. 6.53 Different heaps constructed with the same elements

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Heaps as Priority Queues
– Heaps are ideal for implementing priority queues

– We saw linked lists used to do this in section 4.3, but for large amounts
of data, they can become inefficient

– Because heaps are perfectly balanced trees, the inherent efficiency of
searching such structures makes them more useful

– We will need a couple of routines to enqueue and dequeue elements
on the priority queue, though

– To enqueue, the node is added at the end of the heap as the last leaf

– If the heap needs to be restructured to preserve the heap property, it
can be done by moving the node from last leaf towards the root

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Heaps as Priority Queues (continued)
– The enqueuing algorithm is as follows:

heapEnqueue(el)
 put el at the end of the heap;

 while el is not in the root and el > parent(el)
 swap el with its parent;

– This is illustrated in Figure 6.54a, where the node 15 is added to the
heap

– Because this destroys the heap property, 15 is moved up the tree until
it is either the root or finds a parent greater than or equal to 15

– This is reflected in Figure 6.54b-d

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Heaps as Priority Queues (continued)

Fig. 6.54 Enqueuing an element to a heap

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Heaps as Priority Queues (continued)
– Dequeuing an element from a heap simply removes the root (since it is

the largest value) and replacing it by the last leaf

– Since this will most likely violate the heap property, the node is moved
down the tree to the appropriate location

– The algorithm for this looks like:

heapDequeue()
 extract the element from the root;
 put the element from the last leaf in its place;
 remove the last leaf;
// both subtrees of the root are heaps
 p = the root;
 while p is not a leaf and p < any of its children
 swap p with the larger child;

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)
• Heaps as Priority Queues (continued)

– This is shown in Figure 6.55; 20 is dequeued and 6 put in its place

– This is then swapped with 15 (the larger child) and again with 14

Fig. 6.55 Dequeuing an element from a heap

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Heaps as Priority Queues (continued)
– The last three lines of this dequeuing algorithm can be used as a stand-

alone routine to restore the heap property if it is violated by the root
by moving it down the tree; a coded form is shown below:

Fig. 6.56 Implementation of an algorithm to move the root element down a tree

Data Structures and Algorithms in C++, Fourth Edition

Heaps (continued)

• Organizing Arrays as Heaps
– As we’ve seen, heaps can be implemented as arrays, but not all arrays

are heaps

– In some circumstances, though, we need to organize the contents of an
array as a heap, such as in the heap sort

– One of the simpler ways to accomplish this is attributed to John
Williams; we start with an empty heap and sequentially add elements

– This is a top-down technique that extends the heap by enqueuing new
elements in the heap

– This process is described on page 273 and illustrated in Figure 6.57

Data Structures and Algorithms in C++, Fourth Edition

CSE 332 Data Abstractions:
Disjoint Set Union-Find

and
Minimum Spanning Trees

Kate Deibel
Summer 2012

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Making Connections
You have a set of nodes (numbered 1-9) on a
network. You are given a sequence of
pairwise connections between them:

3-5 4-2 1-6 5-7 4-8 3-7

Q: Are nodes 2 and 4 connected?
Indirectly?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections
redundant due to indirect connections?
Q: How many sub-networks do you have?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Making Connections

Start:
3-5

4-2

1-6

5-7

4-8

3-7

{1} {2} {3} {4} {5} {6} {7} {8} {9}
{1} {2} {3, 5} {4} {6} {7} {8} {9}

{1} {2, 4} {3, 5} {6} {7} {8} {9}

{1, 6} {2, 4} {3, 5} {7} {8} {9}

{1, 6} {2, 4} {3, 5, 7} {8} {9}

{1, 6} {2, 4, 8} {3, 5, 7} {9}

no change

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Answering these questions is much easier if we
create disjoint sets of nodes that are connected:

Making Connections
Let's ask the questions again.

3-5 4-2 1-6 5-7 4-8 3-7
⇓

{1, 6} {2, 4, 8} {3, 5, 7} {9}

Q: Are nodes 2 and 4 connected?
Indirectly?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections
redundant due to indirect connections?
Q: How many sub-networks do you have?
August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Disjoint Set Union-Find ADT
Separate elements into disjoint sets
▪ If set x ≠ y then x ⋂ y = ∅ (i.e. no shared elements)

Each set has a name (usually an element in the set)

union(x,y): take the union of the sets x and y (x ⋃ y)
▪ Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
▪ union(5,1) → {3,5,7,1,6}, {4,2,8}, {9},

find(x): return the name of the set containing x.
▪ Given sets: {3,5,7,1,6}, {4,2,8}, {9},
▪ find(1) returns 5
▪ find(4) returns 8

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Disjoint Set Union-Find Performance
Believe it or not:
▪ We can do Union in constant time.
▪ We can get Find to be amortized

constant time with worst case O(log n)
for an individual Find operation

Let's see how…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

What Makes a Good Maze?
▪ We can get from any room to any other

room (connected)
▪ There is just one simple path between

any two rooms (no loops)
▪ The maze is not a simple pattern

(random)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Making a Maze
A high-level algorithm for a random maze is easy:
▪ Start with a grid
▪ Pick Start and Finish
▪ Randomly erase edges

START

FINISH

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

The Middle of the Algorithm
So far, we've knocked down
several walls while others
still remain.
Consider the walls between A
and B and C and D
▪ Which walls can we knock

down and maintain both
our connectedness and
our no cycles properties?

How do we do this efficiently?

A

B

D

C

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Maze Algorithm: Number the Cells
Number each cell and treat as disjoint sets:
▪ S ={ {1}, {2}, {3}, {4},… {36} }
Create a set of all edges between cells:
▪ W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total.

1 2 3 4 5 6

7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

START

FINISH

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Maze Algorithm: Building with DSUF
Algorithm sketch:
▪ Choose a wall at random.
▪ Erase wall if the neighbors are in disjoint

sets (this avoids creating cycles)
▪ Take union of those cell's sets
▪ Repeat until there is only one set

▪ Every cell is thus reachable from every
other cell

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

The Secret To Why This Works
Notice that a connected, acyclic maze is
actually a Hidden Tree

This suggests how we should implement the
Disjoint Set Union-Find ADT

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

START

FINISH

Up Trees for Disjoint Set Union-
Find
Up trees
▪ Notes point to parent, not children
▪ Thus only one pointer per node

In a DSUF
▪ Each disjoint set is its own up tree
▪ The root of the tree is the name for the disjoint

set
1 2 3 4 5 6 7Initial State

1

4

3After Unions

25

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Find Operation
find(x): follow x to the root and return the
root (the name of the disjoint set)

find(1) = 1
find(3) = 3
find(4) = 1
find(6) = 7

1

4

3

5

7

2

6

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Find Operation
union(i,j): assuming i and j are roots, point
root i to root j

What if i or j is not a root?
▪ Run a find on i and j first and use the

returned values for the joining

Why do we join roots and not just the nodes?

union(1,7)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

1

4

3

5

7

2

6

1

4

3

5

7

2

6

Simple Implementation
Once again, it is better to implement a tree
using an array than with node objects
▪ Leave up[0] empty (or # of disjoint sets)
▪ up[x] = i means node x's parent is node i
▪ up[x] = 0 means x is a root

1

4

3

25

6

7

0 7 0 1 7 2 0u
p

1 2 3 4 5 6 7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Performance
Using array-based up trees, what is the cost for
▪ union(i,j)?
▪ find(x)?

union(i,j) is O(1) if i and j are roots
▪ Otherwise depends on cost of find

find(x) is O(n) in worst-case
▪ What does the worst-case look like?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

1

4

2

6

5

3

7

Performance – Doing Better
The problem is that up trees get too tall

In order to make DSUF perform as we
promised, we need to improve both our
union and find algorithms:
▪ Weighted Union
▪ Path Compression

Only with BOTH of these will we get find to
average-case O(log n) and amortized O(1)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Weighted Union
Instead of arbitrarily joining two roots, always point
the smaller tree to the root of the larger tree
▪ Each up tree has a weight (number of nodes)
▪ The idea is to limit the height of each up tree
▪ Trees with more nodes tend to be deeper
Union by rank or height are similar ideas but more
complicated to implement

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

union(1,7)

1

4

3

5

7

2

6

3

1

4

5

7

2

6

2 1 4 1 6

Weighted Union Implementation
We can just use an additional array to store
weights of the roots…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

1

4

3

5

7

2

6

2 1 4

0 7 0 1 7 2 0u
p

1 2 3 4 5 6 7

2 1 4weight

Weighted Union Implementation
… or we use negative numbers to represent
roots and their weights

But generally, saving O(n) space is not critical

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

1

4

3

5

7

2

6

2 1 4

-2 7 -1 1 7 2 -4u
p

1 2 3 4 5 6 7

Weighted Union Performance
Weighted union gives us guaranteed worst-
case O(log n) for find
▪ The union rule prevents linear up trees
▪ Convince yourself that it will produce at

worst a fairly balanced binary tree

However, we promised ourselves O(1)
amortized time for find
▪ Weighted union does not give us enough
▪ Average-case is still O(log n)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Motivating Path Compression
Recall splay trees
▪ To speed up later finds, we moved searched for

nodes to the root
▪ Also improved performance for finding other nodes
▪ Can we do something similar here?

Yes, but we cannot move the node to the root
▪ Roots are the names of the disjoint set
▪ Plus, we want to move associated nodes up at the

same time
▪ Why not move all nodes touched in a find to point

directly to the root?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Path Compression
On a find operation point all the nodes on the
search path directly to the root
▪ Keep a stack/queue as you traverse up
▪ Then empty to the stack/queue to repoint

each stored node to the root

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

find(3)

8

7

2

6

43

9 5

1

8

7

2 6

4

9 5

1

3

Conditions for Data Compression

• The choice of data representation dictates how fast the data
can be transmitted

• Careful choice of representation can improve the throughput
of a given transmission channel without changing the
channel

• A number of methods of data compression exist that reduce
the size of the way the data is represented

• This is done without impacting the information itself

Data Structures and Algorithms in C++, Fourth Edition

Huffman Coding

• David Huffman developed the construction for an optimal
code in 1952, utilizing a binary tree for binary code

• The algorithm is shown on page 592; the tree that results
from this has a probability of 1 in its root

• This algorithm is not deterministic in the sense that a unique
tree is produced

• This is due to the fact that for trees with equal probability in
their roots, the algorithm does not set their positions with
respect to each other at the beginning or during execution

• Consequently, different trees can be obtained depending on
where trees with equal probability are placed with respect to
each other

Data Structures and Algorithms in C++, Fourth Edition

Huffman Coding (continued)

• Regardless of the shape of the tree, however, the length of
the codeword remains the same

• To assess the efficiency of the Huffman algorithm’s
compression, we will use weighted path length

• The L(m
i
) terms represents the number of 0s and 1s in the

codeword assign to m
i
 by the algorithm

• Figure 11.1 illustrates an example for the five letters A, B, C,
D, and E with probabilities 0.39, 0.21, 0.19, 0.12, and 0.09,
respectively

• The trees in Figure 11.1a-b differ in the way the two nodes
with probability 0.21 are combined with a tree of 0.19

Data Structures and Algorithms in C++, Fourth Edition

Huffman Coding (continued)

Data Structures and Algorithms in C++, Fourth Edition

Fig. 11.1 Two Huffman trees created for five letters A, B, C, D, and E with probabilities .39, .21, .19, .12, and .09

Huffman Coding (continued)

• No matter which way is chosen, the codeword lengths for
the five letters are the same – 2, 2, 2, 3, and 3 – respectively

• The codewords assigned to them are slightly different,
however, as can be seen in Figures 11.1c-d

• Those present abbreviated and more commonly used
versions of the way the trees in Figures 11.1a-b were created

• For these latter two trees, their average length is
L

Huf
 = .39 · 2 + .21 · 2 + .19 · 2 + .12 · 3 + .09 · 3 = 2.21

• The average length computed by the entropy equation is
L

ave
 = .39 · 1.238 + .21 · 2.252 + .19 · 2.396 + .12 · 3.059 + .09 · 3.474 = 2.09

• So these two are very close (within 5 percent)

Data Structures and Algorithms in C++, Fourth Edition

Huffman Coding (continued)

• Codewords of the same length have been assigned to the
corresponding letters in Figures 11.1a-b

• As we’ve seen, the average length for both trees is the same

• However, each way of building the Huffman tree should
result in the same average length, regardless of the shape of
the tree, if they start from the same data

• Huffman trees for letters P, Q, R, S, and T with probabilities
0.1, 0.1, 0.1, 0.2, and 0.5 respectively are shown in Figure
11.2

• Different codewords with different lengths may be assigned
to these letters depending on how the lowest probabilities
are chosen

• The average length remains the same, however, and is 2.0
Data Structures and Algorithms in C++, Fourth Edition

Huffman Coding (continued)

Fig. 11.2 Two Huffman trees generated for letters P, Q, R, S, and T with probabilities .1, .1, .1, .2, and .5

• There are a number of ways to implement the Huffman
algorithm, but one of the more natural ways is to use a
priority queue

• This is because it requires removing the two smallest
probabilities and inserting the largest one

•

Data Structures and Algorithms in C++, Fourth Edition

Chapter 10: Hashing

Introduction

• In earlier chapters, the main process used by the searching
techniques was comparing keys

• In sequential search for instance, the table storing the
elements is searched in order, using key comparisons to
determine a match

• In binary searching, we successively divide the table into
halves to determine which cell to check, and again use key
comparison to determine a match

• In binary search trees, the direction to take in the tree is
determined by comparing keys in the nodes

• A different way to search can be based on calculating the
position of the key in the table, based on the key’s value

 Data Structures and Algorithms in C++, Fourth Edition

Introduction (continued)

• Since the value of the key is the only indication of position, if
the key is known, we can access the table directly

• This reduces the search time from O(n) or O(lg n) to 1 or at
least O(1)

• No matter how many elements there are, the run time is the
same

• Unfortunately, this is just an ideal; in real applications we can
only approximate this

• The task is to develop a function, h, that can transform a key,
K, into an index for a table used to store items of the same
type as K

• The function h is called a hash function

 Data Structures and Algorithms in C++, Fourth Edition

Introduction (continued)

• If h is able to transform different key values into different
hash values, it is called a perfect hash function

• For the hash function to be perfect, the table must have as
many positions as there are items to be hashed

• However, it is not always possible to know how many
elements will be hashed in advance, so some estimating is
needed

• Consider a symbol table for a compiler, to store all the
variable names

• Given the nature of the variable names typically used, a table
with 1000 positions may be more than adequate

• However, even if we wanted to handle all possible variable
names, we still need to design an appropriate h

 Data Structures and Algorithms in C++, Fourth Edition

Introduction (continued)

• For example, we could define h to be the sum of the ASCII
values of the letters in the variable name

• If we restrict variables to 31 letters, we will need 3782
positions, since a variable with of 31 characters all “z” would
sum to 31 · 122 (the ASCII code for “z”) = 3782

• Even then, the function will not produce unique values, for h
(“abc”) = 97 + 98 + 99 = 294, and h(“acb”) = 97 + 99 + 98 =
294

• This is called a collision, and is a measure of the usefulness of
a hash function

• Avoiding collisions can be achieved by making h more
complex, but complexity and speed must be balanced

 Data Structures and Algorithms in C++, Fourth Edition

Hash Functions

•

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions (continued)

• Division
– Hash functions must guarantee that the value they produce is a valid

index to the table

– A fairly easy way to ensure this is to use modular division, and divide
the keys by the size of the table, so h(K) = K mod TSize where TSize =
sizeof(table)

– This works best if the table size is a prime number, but if not, we can
use h(K) = (K mod p) mod TSize for a prime p > TSize

– However, nonprimes work well for the divisor provided they do not
have any prime factors less than 20

– The division method is frequently used when little is known about the
keys

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions (continued)

• Folding
– In folding, the keys are divided into parts which are then combined (or

“folded”) together and often transformed into the address

– Two types of folding are used, shift folding and boundary folding
– In shift folding, the parts are placed underneath each other and then

processed (for example, by adding)
– Using a Social Security number, say 123-45-6789, we can divide it into

three parts - 123, 456, and 789 – and add them to get 1368
– This can then be divided modulo TSize to get the address
– With boundary folding, the key is visualized as being written on a piece

of paper and folded on the boundaries between the parts

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions (continued)

• Folding (continued)
– The result is that alternating parts of the key are reversed, so the Social

Security number part would be 123, 654, 789, totaling 1566
– As can be seen, in both versions, the key is divided into even length

parts of some fixed size, plus any leftover digits
– Then these are added together and the result is divided modulo the

table size
– Consequently this is very fast and efficient, especially if bit strings are

used instead of numbers
– With character strings, one approach is to exclusively-or the individual

character together and use the result
– In this way, h(“abcd”) = “a” ⋁ “b” ⋁ “c” ⋁ “d”

Data Structures and Algorithms in C++, Fourth Edition

Hash Functions (continued)

• Mid-Square Function
– In the mid-square approach, the numeric value of the key is squared

and the middle part is extracted to serve as the address
– If the key is non-numeric, some type of preprocessing needs to be done

to create a numeric value, such as folding
– Since the entire key participates in generating the address, there is a

better chance of generating different addresses for different keys
– So if the key is 3121, 31212 = 9,740,641, and if the table has 1000

locations, h(3121) = 406, which is the middle part of 31212

– In application, powers of two are more efficient for the table size and
the middle of the bit string of the square of the key is used

– Assuming a table size of 1024, 31212 is represented by the bit string
1001010 0101000010 1100001, and the key, 322, is in italics

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution

• The hashing we’ve looked at so far does have problems with
multiple keys hashing to the same location in the table

• For example, consider a function that places names in a table
based on hashing the ASCII code of the first letter of the
name

• Using this function, all names beginning with the same letter
would hash to the same position

• If we attempt to improve the function by hashing the first
two letters, we achieve better results, but still have problems

• In fact, even if we used all the letters in the name, there is
still a possibility of collisions

• Also, while using all the letters of the name gives a better
distribution, if the table only has 26 positions there is no
improvement in using the other versions

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• So in addition to using more efficient functions, we also need
to consider the size of the table being hashed into

• Even then, we cannot guarantee to eliminate collisions; we
have to consider approaches that assure a solution

• A number of methods have been developed; we will consider
a few in the following slides

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing
– In open addressing, collisions are resolved by finding an available table

position other than the one to which the key hashed
– If the position h(K) is already occupied, positions are tried in the

probing sequence

norm(h(K) + p(1)), norm(h(K) + p(2)), . . . , norm(h(K) + p(i)), . . .

until an open location is found, the same positions are tried again, or the
table is full

– The function p is called a probing function, i is the probe, and norm is a
normalization function, often division modulo the table size

– The simplest realization of this is linear probing, where the search
proceeds sequentially from the point of the collision

– If the end of the table is reached before finding an empty cell, it
continued from the beginning of the table

– If it reaches the cell before the one causing the collision, it then stops

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing (continued)
– The drawback to linear probing is that clusters of displaced keys tend

to form
– This is illustrated in Figure 10.1, where keys K

i
 are hashed to locations i

– In Figure 10.1a, three keys have been hashed to their locations
– In Figure 10.1b, the key B

5
 arrives, but since A

5
 is stored there, it is

moved to the next location
– Then A

9
 is stored OK, but when B

2
 arrives, it has to be placed in

location 4, and a large cluster is forming (Figure 10.1b)
– When B

9
 arrives, it has to be placed from the beginning of the table,

and finally, when C
2
 shows up, it is placed five locations away from its

home address

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

Fig. 10.1 Resolving collisions with the linear probing method. Subscripts indicate the home positions of the keys being hashed

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing (continued)
– As can be seen from the figure, empty cells immediately following

clusters tend to be filled more quickly than other locations

– So if a cluster is created, it tends to grow, and as it grows, it increases
the likelihood of growing even larger

– This behavior significantly reduces the efficiency of the hash table for
processing data

– So to avoid cluster creation and buildup, a better choice of the probing
function, p, needs to be found

– One possibility is to use a quadratic function producing the formula

p(i) = h(K) + (–1)i–1((i + 1)/2)2 for i = 1, 2, . . . , TSize – 1

– Expressed as a sequence of probes, this is

h(K) + i2, h(K) – i2 for i = 1, 2, . . . , (TSize – 1)/2

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing (continued)
– Starting with the first hash, this produces the sequence

h(K), h(K) + 1, h(K) – 1, h(K) + 4, h(K) – 4, . . . , h(K) + (TSize – 1)2/4,

h(K) – (TSize – 1)2/4

– Each of these values is divided modulo TSize
– Because the value of h(K) tries only the even or odd positions in the

table, the size of the table should not be an even number
– The ideal value for the table size is a prime of the form 4j + 3, which j is

an integer
– This will guarantee that all the table locations will be checked in the

probing process
– Applying this to the example of Figure 10.1 yields the configuration in

Figure 10.2; B
2
 still takes two probes, but C

2
 only takes four

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

Fig. 10.2 Using quadratic probing for collision resolution

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing (continued)
– Notice that though we obtain better results with this approach, we

don’t avoid clustering entirely
– This is because the same probe sequence is used for any collision,

creating secondary clusters
– These are less of a problem than primary clusters, however
– Another variation is to have p be a random number generator (RNG)
– This eliminates the need to have special conditions on the table size,

and does prevent secondary cluster formation
– However, it does have an issue with repeating the same probing

sequence for the same keys

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing (continued)
– The best approach to secondary clustering is through the technique of

double hashing
– This utilizes two hashing functions, one for the primary hash and the

other to resolve collisions
– In this way the probing sequence becomes

h(K), h(K) + h
p
(K), . . . , h(K) + i · h

p
(K), . . .

– Here, h is the primary hashing function and h
p
 is the secondary hash

– The table size should be a prime number so every location is included
in the sequence, since the values above are divided modulo TSize

– Empirical evidence shows that this approach works well to eliminate
secondary clustering, since the probe sequence is based on h

p

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Open Addressing (continued)
– This is because the probing sequence for key K

1
 hashed to location j is

j, j + h
p
(K

1
), j + 2 · h

p
(K

1
), . . .

– And if another key hashes to j + h
p
(K

1
), the next location to be checked

is j + h
p
(K

1
) + h

p
(K

2
), not j + 2 · h

p
(K

1
)

– This avoids secondary clustering, as long as h
p
 is well chosen

– So even if two keys hash to the same position initially, the probing
sequences can be different for each key

– The use of two different hash functions can be time-consuming, so it is
possible to define the second hash in terms of the first

– For example, the function could be h
p
(K) = i · h(K) + 1; for key K

1
 the

probe sequence is j, 2j + 1, 5j + 2, . . . ; if K
2
 hashes to 2j + 1, the

sequence is 2j + 1, 4j + 3, 10j + 11, . . .

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Chaining
– In chaining, the keys are not stored in the table, but in the info

portion of a linked list of nodes associated with each table position

– This technique is called separate chaining, and the table is called a
scatter table

– This was the table never overflows, as the lists are extended when new
keys arrive, as can be seen in Figure 10.5

– This is very fast for short lists, but as they increase in size, performance
can degrade sharply

– Gains in performance can be made if the lists are ordered so
unsuccessful searches don’t traverse the entire list, or by using self-
organizing linked lists

– This approach requires additional space for the pointers, so if there are
a large number of keys involved, space requirements can be high

Data Structures and Algorithms in C++, Fourth Edition

Collision Resolution (continued)

• Chaining (continued)

Fig. 10.5 In chaining, colliding keys are put on the same linked list.

Data Structures and Algorithms in C++, Fourth Edition

Deletion

• How can data be removed from a hash table?

• If chaining is used, the deletion of an element entails deleting
the node from the linked list holding the element

• For the other techniques we’ve considered, deletion usually
involves more careful handling of collision issues, unless a
perfect hash function is used

• This is illustrated in Figure 10.10a, which stores keys using
linear probing

• In Figure 10.10b, when A
4
 is deleted, attempts to find B

4

check location 4, which is empty, indicating B
4
 is not in the

table

• A similar situation occurs in Figure 10.10c, when A
2
 is

deleted, causing searches for B
1
 to stop at position 2

Data Structures and Algorithms in C++, Fourth Edition

Deletion (continued)

Fig. 10.10 Linear search in the situation where both insertion and deletion of keys are permitted

– A solution to this is to leave the deleted keys in the table with some
type of indicator that the keys are not valid

– This way, searches for elements won’t terminate prematurely

– When new keys are inserted, they can overwrite the marked keys

Data Structures and Algorithms in C++, Fourth Edition

Rehashing

• When hash tables become full, no more items can be added

• As they fill up and reach certain levels of occupancy
(saturation), their efficiency falls due to increased searching
needed to place items

• A solution to these problems is rehashing, allocating a new,
larger table, possibly modifying the hash function (and at
least TSize), and hashing all the items from the old table to
the new

• The old table is then discarded and all further hashes are
done to the new table with the new function

• The size of the new table can be determined in a number of
ways: doubled, a prime closest to doubled, etc.

Data Structures and Algorithms in C++, Fourth Edition

Also make sure to review your notes &
the reading on cryptographic hashes

Chapter 8: Graphs

Introductory Remarks

• Although trees are quite flexible, they have an inherent
limitation in that they can only express hierarchical
structures

• Fortunately, we can generalize a tree to form a graph, in
which this limitation is removed

• Informally, a graph is a collection of nodes and the
connections between them

• Figure 8.1 illustrates some examples of graphs; notice there
is typically no limitation on the number of vertices or edges

• Consequently, graphs are extremely versatile and applicable
to a wide variety of situations

• Graph theory has developed into a sophisticated field of
study since its origins in the early 1700s

Data Structures and Algorithms in C++, Fourth Edition

Introductory Remarks (continued)

Fig. 8.1 Examples of graphs: (a–d) simple graphs; (c) a complete graph K
4
; (e) a multigraph;

(f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the digraph

Data Structures and Algorithms in C++, Fourth Edition

Introductory Remarks (continued)

• And, while many results are theoretical, the applications of
graphs are numerous and worth consideration

• First, though, we need to consider some definitions

• A simple graph G = (V, E) consists of a (finite) set denoted by
V, and a collection E, of unordered pairs {u, v} of distinct
elements from V

• Each element of V is called a vertex or a point or a node, and
each element of E is called an edge or a line or a link

• The number of vertices, the cardinality of V, is called the
order of graph and devoted by |V|

• The cardinality of E, called the size of graph, is denoted by
|E|

Data Structures and Algorithms in C++, Fourth Edition

Introductory Remarks (continued)

•

Data Structures and Algorithms in C++, Fourth Edition

Introductory Remarks (continued)

•

Data Structures and Algorithms in C++, Fourth Edition

Introductory Remarks (continued)

•

Data Structures and Algorithms in C++, Fourth Edition

Graph Representation

• Graphs can be represented in a number of ways

• One of the simplest is an adjacency list, where each vertex
adjacent to a give vertex is listed

• This can be designed as a table (known as a star
representation) or a linked list, shown in Figure 8.2b-c on
page 393

• Another representation is as a matrix, which can be designed
in two ways

• An adjacency matrix is a |V| x |V| binary matrix where:

 Data Structures and Algorithms in C++, Fourth Edition

Graph Representation (continued)

• An example of an adjacency matrix is shown in Figure 8.2d

• The order of the vertices in the matrix is arbitrary, so there
are n! possible matrices for a graph of n vertices

 Data Structures and Algorithms in C++, Fourth Edition

Graph Traversals

• Like tree traversals, graph traversals visit each node once
• However, we cannot apply tree traversal algorithms to

graphs because of cycles and isolated vertices
• One algorithm for graph traversal, called the depth-first

search, was developed by John Hopcroft and Robert Tarjan in
1974

• In this algorithm, each vertex is visited and then all the
unvisited vertices adjacent to that vertex are visited

• If the vertex has no adjacent vertices, or if they have all been
visited, we backtrack to that vertex’s predecessor

• This continues until we return to the vertex where the
traversal started

Data Structures and Algorithms in C++, Fourth Edition

Graph Traversals (continued)

• If any vertices remain unvisited at this point, the traversal
restarts at one of the unvisited vertices

• Although not necessary, the algorithm assigns unique
numbers to the vertices, so they are renumbered

• Pseudocode for this algorithm is shown on page 395
• Figure 8.3 shows an example of this traversal; the numbers

indicate the order in which the nodes are visited; the solid
lines indicate the edges traversed during the search

Fig. 8.3 An example of application of the depthFirstSearch() algorithm to a graph

Data Structures and Algorithms in C++, Fourth Edition

Graph Traversals (continued)

• The algorithm guarantees that we will create a tree (or a
forest, which is a set of trees) including the graph’s vertices

• Such a tree is called a spanning tree

• The guarantee is based on the algorithm not processing any
edge that leads to an already visited node

• Consequently, some edges are not included in the tree
(marked with dashed lines)

• The edges included in the tree are called forward edges;
those omitted are called back edges

• In Figure 8.4, we can see this algorithm applied to a digraph,
which is a graph where the edges have a direction

Data Structures and Algorithms in C++, Fourth Edition

Graph Traversals (continued)

Fig. 8.4 The depthFirstSearch() algorithm applied to a digraph

• Notice in this case we end up with a forest of three trees,
because the traversal must follow the direction of the edges

• There are a number of algorithms based on depth-first
searching

• However, some are more efficient if the underlying
mechanism is breadth-first instead

Data Structures and Algorithms in C++, Fourth Edition

Graph Traversals (continued)

• Recall from our consideration of tree traversals that depth-
first traversals used a stack, while breadth-first used queues

• This can be extended to graphs, as the pseudocode on page
397 illustrates

• Figure 8.4 shows this applied to a graph; Figure 8.5 shows the
application to a digraph

• In both, the basic operation is to mark all the vertices
accessible from a given vertex, placing them in a queue as
they are visited

• The first vertex in the queue is then removed, and the
process repeated

• No visited nodes are revisited; if a node has no accessible
nodes, the next node in the queue is removed and processed

Data Structures and Algorithms in C++, Fourth Edition

Graph Traversals (continued)

Fig. 8.5 An example of application of the breadthFirstSearch() algorithm to a graph

Fig. 8.6 The breadthFirstSearch() algorithm applied to a digraph

Data Structures and Algorithms in C++, Fourth Edition

Shortest Paths
• A classical problem in graph theory is finding the shortest

path between two nodes, with numerous approaches
suggested

• The edges of the graph are associated with values denoting
such things as distance, time, costs, amounts, etc.

• If we’re determining the distance between two vertices, say
v and u, information about the distance between the
intermediate vertices in the path, w, needs to be kept track
of

• This can be recorded as a label associated with the vertices

• The label may simply be the distance between vertices, or
the distance along with the current node’s predecessor in the
path

• Methods for finding shortest paths depend on these labels
Data Structures and Algorithms in C++, Fourth Edition

Shortest Paths (continued)
• Based on how many times the labels are updated, solutions

to the shortest path problem fall into two groups

• In label-setting methods, one vertex is assigned a value that
remains unchanged

• This occurs each time we go through the vertices that remain
to be processed

• The main drawback to this is that we cannot process graphs
that have negative weights on any edges

• In label-correcting methods, any label can be changed

• This means it can be applied to graphs with negative weights
as long as they don’t have negative cycles (a cycle where the
sum of the edges is a negative value)

Data Structures and Algorithms in C++, Fourth Edition

Shortest Paths (continued)
• However this method guarantees that after processing is

complete, for all vertices the current distances indicate the
shortest path

• Most of these forms (both label-setting and label-correcting)
can be looked at as part of the same general process,
however

• That is the task of finding the shortest paths from one vertex
to all the other vertices, the pseudocode being on page 399

• In this algorithm, a label is defined as:
label(v) = (currDist(v),predecessor(v))

• Two open issues in the code are the design of the set called
toBeChecked and the order new values are assigned to v

• It is the design of the set that impacts both the choice of v
and the efficiency of the algorithm

Data Structures and Algorithms in C++, Fourth Edition

Shortest Paths (continued)
• The distinction between label-setting and label-correcting

algorithms is the way the value for vertex v is chosen

• This is the vertex in the set toBeChecked with the smallest
current distance

• In considering label-setting algorithms, one of the first was
developed by Edsgar Dijkstra in 1956

• In this algorithm, the shortest from among a number of paths
from a vertex, v, are tried

• This means that a particular path may be extended by adding
one more edge to it each time v is checked

• However, if the path is longer than any other path from that
point, it is dropped, and the other path is expanded

Data Structures and Algorithms in C++, Fourth Edition

Shortest Paths (continued)
• Since the vertices may have more than one outgoing edge,

each new edge adds possible paths for exploration

• Thus each vertex is visited, the new paths are started, and
the vertex is then not used anymore

• Once all the vertices are visited, the algorithm is done

• Dijkstra’s algorithm is shown on page 400; it is derived from
the general algorithm by changing the line

v=a vertex in toBeChecked;

to
v=a vertex in toBeChecked with minimal currDist(v);

• It also extends the condition in the if to make permanent
the current distance of vertices eliminated from the set

Data Structures and Algorithms in C++, Fourth Edition

Shortest Paths (continued)
• Notice that the set’s structure is not indicated; recall it is the

structure that determines efficiency
• Figure 8.7 illustrates this for the graph in part (a)

Fig. 8.7 An execution of DijkstraAlgorithm()

Data Structures and Algorithms in C++, Fourth Edition

Spanning Trees

• Consider an airline that has routes between seven cities
represented as the graph in Figure 8.14a

Fig. 8.14 A graph representing (a) the airline connections between
seven cities and (b–d) three possible sets of connections

• If economic hardships force the airline to cut routes, which
ones should be kept to preserve a route to each city, if only
indirectly?

• One possibility is shown in Figure 8.14b

Data Structures and Algorithms in C++, Fourth Edition

Spanning Trees (continued)

• However, we want to make sure we have the minimum
connections necessary to preserve the routes

• To accomplish this, a spanning tree should be used,
specifically one created using depthFirstSearch()

• There is a possibility of multiple spanning trees (Figure 8.14c-
d), but each of these has the minimum number of edges

• We don’t know which of these might be optimal, since we
haven’t taken distances into account

• The airline, wanting to minimize costs, will want to use the
shortest distances for the connections

• So what we want to find is the minimum spanning tree,
where the sum of the edge weights is minimal

Data Structures and Algorithms in C++, Fourth Edition

Spanning Trees (continued)

• The problem we looked at earlier involving finding a
spanning tree in a simple graph is a case of this where edge
weights = 1

• So each spanning tree is a minimum tree in a simple graph

• There are a number of solutions to the minimum spanning
tree problem, and we will consider two

• One popular algorithm is Kruskal’s algorithm, developed by
Joseph Kruskal in 1956

• It orders the edges by weight, and then checks to see if they
can be added to the tree under construction

• It will be added if its inclusion doesn’t create a cycle

Data Structures and Algorithms in C++, Fourth Edition

Spanning Trees (continued)

• The algorithm is as follows:

KruskalAlgorithm(weighted connected undirected graph)
 tree = null;
 edges = sequence of all edges of graph sorted by weight;
 for (i = 1; i # |E| and |tree| < |V| – 1; i++)
 if ei from edges does not form a cycle with edges in tree
 add ei to tree;

• A step-by-step example of the application of this algorithm is
shown in Figure 8-15ba-bf on page 413

Data Structures and Algorithms in C++, Fourth Edition

Chapter 9: Sorting

Introduction

• Sorting data to improve the efficiency with which it is
handled is an accepted part of daily life—it’s convenient!

• Using sorted data is addressed computationally by
considering the process and deciding which criteria to use in
arranging the data

• The choice may vary considerably depending on the
application and the user’s needs

• Frequently, a natural ordering will suggest itself that may be
useful

• Once a criterion is chosen, the second step is determining
how to apply it to the data

Data Structures and Algorithms in C++, Fourth Edition

Introduction (continued)

• Efficiency criteria and methods for comparing algorithms in a
quantitative fashion have to be devised

• This evaluation should be machine-independent, because
hardware may facilitate or impede the software process

• Common measures are the number of comparisons that
occur and the number of data movements that take place

• This isn’t surprising, because in sorting, we compare and
possibly move data; the size of the data set then plays a role

Data Structures and Algorithms in C++, Fourth Edition

Introduction (continued)

• Since these values may be difficult to determine exactly,
approximations are often used

• These can then be represented using big-O notation to
indicate orders of magnitude

• We must also consider the behavior of algorithms
– Some may differ depending on the original state of the data set

(sorted, unsorted, partially sorted)

– Others may behave the same way regardless of the data

– Typically, we obtain a best case, worst case, and average case

Data Structures and Algorithms in C++, Fourth Edition

Introduction (continued)

• We may also find that the number of comparisons and
number of data movements don’t apparently coincide

• An algorithm maybe very efficient in one case, and perform
poorly on the other

• So practical considerations have to be taken into account in
choosing the algorithm to use

• The bottom line is that any theoretical results have to be
tempered by practical application

Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms

• Insertion Sort
– Insertion sort is a simple algorithm that builds the final sorted list one

item at a time

– Each repetition of the sort takes an element from input and inserts it
into the correct position in the already-sorted list, until no input
elements remain

– The choice of which element to remove from the input is arbitrary, and
can be made using almost any choice algorithm

– Sorting is typically done in-place

– The resulting array after k iterations has the property where the
first k + 1 entries are sorted

– In each iteration the first remaining entry of the input is removed and
inserted into the result at the correct position

 Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms

• Insertion Sort (continued)
– The pseudocode for the insertion sort follows:

insertionsort(data[],n)
 for i = 1 to n-1
 move all elements data[j] greater than data[i] by one position;
 place data[i] in its proper position;

– Notice that on each pass only a portion of the array is considered; it is
only in the last pass that the whole array is processed

– Figure 9.1 shows the manipulations that occur when the algorithm runs
against the list [5 2 3 8 1]

– Since an element with one array is already sorted, the algorithm starts
with the second element (in position 1), which is placed in tmp

– We compare this with the elements in position data[j], 0 < j < i, and
those larger than tmp are moved up one position

 Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms

• Insertion Sort (continued)

Fig. 9.1 The array [5 2 3 8 1] sorted by insertion sort

– The sort can be implemented with the following code:
template<class T>
void insertionSort(T data[], int n) {
 for (int i = 1, j; i < n; i++) {
 T tmp = data[i];
 for (j = i; j > 0 && tmp < data[j – 1]; j--)
 data[j] = data[j – 1];
 data[j] = tmp; } }

 Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms

• Insertion Sort (continued)
– One important characteristic of the insertion sort is that it only sorts

when necessary

– For instance if the array is already sorted, only the temporary variable
is initialized, and that value is moved back to its original location

– The algorithms also recognizes when the array is partially sorted, and
stops accordingly

– However, it can only recognize that, and elements in their proper
locations can be overlooked, so items can be moved and subsequently
moved back

– Another obvious disadvantage is the movement of data items to insert
an item, which can occur in any position

– This data movement, combined with the move-and-replace mentioned
above, significantly impacts efficiency

 Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms (continued)

• Selection Sort
– Selection sort is an in-place comparison sort that tries to localize the

exchange of array elements by finding an unsorted item and putting it
in its final location

– It works by locating the minimum element in the list and swapping it
with the item in the first location

– Then it advances one position and repeats the process with the next
smallest element, etc. until it reaches the end of the list

– Effectively, the list is divided into two parts

– There is the sublist of items already sorted, which is built up from left
to right and is found at the beginning

– Then there is the sublist of items remaining to be sorted, occupying the
remainder of the array

 Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms (continued)

• Selection Sort (continued)
– The pseudocode for the algorithm reflects its simplicity:

selectionsort(data[],n)
 for i = 0 to n-2
 select the smallest element among data[i], . . . , data[n-1];
 swap it with data[i];

– The last value for i is n – 2 since if all items have been looked at and
placed except for the last, then the nth element has to be the largest

– Figure 9.2 shows an example of this for the same list as Figure 9.1

Fig. 9.2 The array [5 2 3 8 1] sorted by selection sort

 Data Structures and Algorithms in C++, Fourth Edition

Elementary Sorting Algorithms (continued)

• Selection Sort (continued)
– The following code implements this algorithm:

template<class T>
void selectionsort(T data[], int n) {
 for (int i = 0,j,least; i < n-1; i++) {
 for (j = i+1, least = i; j < n; j++)
 if (data[j] < data[least])

least = j;
 swap(data[least],data[i]);
 }
}

– The swap()function is used to exchange the elements in the list; not
that the variable least refers to position of the smallest value, not its
position

 Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Heap Sort
– Even though selection sort is fairly inefficient (O(n2)), it makes relatively

few moves of the data

– So if the comparison portion of the sort can be improved, its
performance can likewise improve

– This was the motivation behind the development of heap sort, created
by John W. J. Williams in 1964

– Heap sort is a comparison-based, in-place algorithm, but is not a stable
sort

– Although somewhat slower in practice than quicksort, it has the
advantage of a more favorable worst-case runtime

– Recall that selection sort finds the smallest element in the list and
places it first, then the next smallest, etc.

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Heap Sort (continued)
– For ascending order, heap sort places the largest element last in the

array, then puts the next largest in front of that, etc.
– To accomplish this, heap sort uses a two phase process

• The first phase is to build a heap out of the data
• The second phase begins by removing the largest item from the

heap and inserting that item into the sorted array
• For the first element, this would be position 0 of the array
• Then we reconstruct the heap and remove the next largest item,

and insert it into the array
• After all the objects are removed from the heap, we have a sorted

array
• The order of the sorted elements can be selected by choosing a

min-heap or max-heap in step one

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Heap Sort (continued)
– The pseudocode for this process is as follows:

heapsort(data[],n)
 transform data into a heap;
 for i = down to 2
 swap the root with the element in position i;
 restore the heap property for the tree

data[0], . . . , data[i-1];

– The construction of the heap uses the method developed by Floyd and
described in Chapter 6

– This is illustrated for the array [2 8 6 1 10 15 3 12 11] in Figure
9.9 on page 510

– Once the heap is built, the second phase begins, which consists of
taking the largest value, 15, and moving it to the end of the array

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Heap Sort (continued)
– The value in the last location is swapped with the largest, causing a

violation the heap property
– So the heap is restored using the movedown()function (see section

6.9), omitting the last element of the array, which is now in place
– This process continues until all the elements have been placed in

their proper locations; it is illustrated in Figure 9.10 on page 511
– The code for heapsort is shown below:

template<class T>
void heapsort(T data[], int n) {
 for (int i = n/2 - 1; i >= 0; --i) // create a heap;
 moveDown (data,i,n-1);
 for (int i = n-1; i >= 1; --i) {
 swap(data[0],data[i]); // move the largest item to data[i];
 moveDown(data,0,i-1); // restore the heap property;
 }
}

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Quicksort
– The process behind Shell sort was to divide the original array into

subarrays, sort those, and then divide the partially sorted array into
new subarrays to be sorted, until the entire array was in order

– This was also the motivation behind quicksort, developed by Sir Charles
A. R. Hoare in 1960

– Initially, the array is divided into two subarrays, one containing items
less than or equal to a chosen item called the pivot or bound, and the
other containing elements larger than or equal to the pivot

– This process is repeated on these two subarrays, creating four
subarrays, and it is continued until we have subarrays of one element

– Because the grouping of items separates them into smaller and larger,
these one-element arrays do not need to be sorted at all, they are
already arranged in order

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– By nature of the partitioning process, quicksort is recursive; the

pseudocode for this algorithm is as follows:

quicksort(array[])
 if length(array) > 1
 choose bound; // partition array into subarray1 and subarray2
 while there are elements left in array
 include element either in subarray1 = {el: el ≤ bound}
 or in subarray2 = {el: el ≥ bound};
 quicksort(subarray1);
 quicksort(subarray2);

– Two operations need to be performed to partition the array: choosing
a pivot, and moving the elements to the proper subarrays

– Choosing the pivot is non-trivial; the goal is to have the two subarrays
to be nearly equal in length

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– Several strategies have been developed, but the one incorporated into

the code in Figure 9.11 on page 514 simply chooses the item in the
middle of the array

– The pseudocode is vague regarding the second task, separating the
elements into the subarrays

– In particular it does not decide where to put items equal to the bound;
we have only indicated it could be put with either list

– The reasoning behind this is to attempt to keep the lists about the
same length

– Again, the details are in the implementation, and in this case in Figure
9.11

– Another consideration in this code is the preprocessing that is carried
out to locate the largest element and move it to the end of the array

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– This is done to simplify the algorithm somewhat, and keep the value

lower from running off the end of the array
– The algorithm also uses the principal property of bound, that it is the

boundary item between the two arrays, to place it in its final position
once it is selected

– Figure 9.12 on page 515 illustrates the process of partitioning the array
for the array [8 5 4 7 6 1 6 3 8 12 10]

– The first partitioning locates the largest element and exchanges it with
the value in that position, so the last element no longer needs to be
processed

– This results in first = 1, last = 9, and the data in the first position is
exchanged with the bound value in position 4, so the array becomes[6
5 4 7 8 1 6 3 8 10 12]

– The remainder of the process is continued in Figure 9.12

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– One the partitioning is complete, the process continues with the left

and right subarrays, then for the subarrays of these subarrays

– This continues until the subarrays have less than two elements

– The entire sorting operation is shown in Figure 9.13 on page 517, which
also shows the changes in the current arrays

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort
– Quicksort’s one major drawback is that it has a worst case O(n2)

behavior due to the difficulty of the partitioning process
– There are numerous techniques of choosing a bound that attempt to

address this problem, however, there is no assurance that any
approach will result in arrays that are equal in size

– A different approach entirely simplifies the partitioning as much as can
be and focuses on merging the sorted arrays

– This is the idea behind mergesort, one of the first computerized sorting
algorithms, developed by John von Neumann in 1945

– The key operation in mergesort is the merging of the sorted halves of
the array into a single array

– Of course, these halves must be sorted, which occurs by merging the
sorted halves of these halves

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The process of splitting array into halves stops when each array has

fewer than two items in it

– Because of the similarity to the quicksort partitioning process, this can
also be implemented recursively, as follows:

mergesort(data[])
 if data have at least two elements
 mergesort(left half of data);
 mergesort(right half of data);
 merge(both halves into a sorted list);

– Merging the lists into a single list is also straightforward; the
pseudocode for this is shown on the next slide

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort (continued)
merge(array1[], array2[], array3[])
 i1, i2, i3 are properly initialized;
 while both array2 and array3 contain elements
 if array2[i2] < array3[i3]
 array1[i1++] = array2[i2++];
 else array1[i1++] = array3[i3++];
 load into array1 the remaining elements of either array2

or array3;

– So if array2 = [1 4 6 8 10] and array3 = [2 3 5 22], then
the resulting array1 = [1 2 3 4 5 6 8 10 22]

– Now, the pseudocode implies that the arrays are physically separate
entities

– However, for the code to work correctly, this is not the case

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The array is actually the concatenated form of the other two arrays, so

before the merge, it looks like [1 4 6 8 10 2 3 5 22]

– This creates problems for merging algorithm; for instance after the
while loop iterates twice, array2 is [1 2 6 8 10] and array1 is
[1 2 6 8 10 2 3 5 22]

– Consequently, a temporary array is needed during the merging process

– Once the merge is complete, the temporary array can be transferred
back into array1

– Since array2 and array3 are subarrays of array1, we don’t need to
pass them as parameters to the merge routine

– Instead, we can pass indexes to the beginning and end of array1

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The revised pseudocode now looks like:

merge (array1[], first, last)
 mid = (first + last) / 2;
 i1 = 0;
 i2 = first;
 i3 = mid + 1;
 while both left and right subarrays of array1 contain

elements
 if array1[i2] < array1[i3]
 temp[i1++] = array1[i2++];
 else temp[i1++] = array1[i3++];
 load into temp the remaining elements of array1;
 load to array1 the content of temp;

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The complete array1 is copied to temp, then copied back to array1

– So the number of moves when merge() executes is always 2 · (last –
first + 1)

– The number of comparisons depends on the ordering of array1

– The pseudocode for the sort process is now:

mergesort (data[], first, last)
 if first < last
 mid = (first + last) / 2
 mergesort(data, first, mid);
 mergesort(data, mid+1, last);
 merge(data, first, last);

– An example of this running is shown in Figure 9.14

Data Structures and Algorithms in C++, Fourth Edition

Efficient Sorting Algorithms (continued)

• Mergesort (continued)

Fig. 9.14 The array [1 8 6 4 10 5 3 2 22] sorted by mergesort

Data Structures and Algorithms in C++, Fourth Edition

