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Midterm Details
● Monday, December 8, 3:30-5:30 pm for both section 010 

and 011
○ Smith 130

● Covers all lectures from Tuesday, Oct. 21 through Tuesday, 
Dec. 2 

● Closed book, no notes, no calculators, cell phones, etc.
● Worth 20% of your grade (same as midterm)
● Question types (see posted 2010 final & midterm)

○ Data structure ADTs, application examples
○ Definitions, compare/contrast approaches, etc.
○ Write C++ code for some small functions 

■ No questions about file I/O or inheritance
○ Carry out operations and show steps (graph search, probing in 

hash tables, etc.)



Topics Covered

●Priority queues, heaps (Drozdek, 4.3, 4.6, 6.9)
●Disjoint sets / union-find (Drozdek, 8.4.1; UW 

slides (first 5 pages))
●Compression (Drozdek, 11-11.2 (skip 11.2.1)) 
●Hashing (Drozdek, 10-10.2.2, 10.3; cryptographic 

hashes page)
●Graphs (Drozdek, 8-8.1, 8.5 (Kruskal’s only), 8.2, 

8.3 (stop after Dijkstra’s))
●Sorting (Drozdek, 9-9.1.2, 9.3.2-9.3.4)

http://courses.cs.washington.edu/courses/cse332/12su/slides/lecture15-mst-dsuf-handout.pdf
http://courses.cs.washington.edu/courses/cse332/12su/slides/lecture15-mst-dsuf-handout.pdf
http://courses.cs.washington.edu/courses/cse332/12su/slides/lecture15-mst-dsuf-handout.pdf
http://unixwiz.net/techtips/iguide-crypto-hashes.html
http://unixwiz.net/techtips/iguide-crypto-hashes.html
http://unixwiz.net/techtips/iguide-crypto-hashes.html


Priority Queues

• In some circumstances, the normal FIFO operation of a 
queue may need to be overridden

• This may occur due to priorities that are associated the 
elements of the queue that affect the order of processing

• In cases such as these, a priority queue is used, where the 
elements are removed based on priority and position

• The difficulty in implementing such a structure is trying to 
accommodate the priorities while still maintaining efficient 
enqueuing and dequeuing

• Elements typically arrive randomly, so their order typically 
reflects no specific priority

 Data Structures and Algorithms in C++, Fourth Edition



Priority Queues (continued)

• The situation is further complicated because there are 
numerous priority scenarios that could be applied

• There are several ways to represent priority queues

• With linked lists, one arrangement maintains the items in 
entry order, and another inserts them based on priority

• Another variation, attributed to Blackstone (Blackstone et. al. 
1981) uses a short ordered list and larger unordered list

• Items are placed in the shorter list based on a calculated 
threshold priority

• On some occasions, the shorter list could be emptied, 
requiring the threshold to be dynamically recalculated

 Data Structures and Algorithms in C++, Fourth Edition



Heaps

• A heap is a special type of binary tree with the following 
properties:
– The value of each node is greater than or equal to the values stored in 

its children
– The tree is perfectly balanced, and the leaves in the last level are 

leftmost in the tree

• This actually defines a max heap; if “greater than” is replaced 
by “less than” in the first property, we have a min heap

• Thus the root of a max heap is the largest element, and the 
root of a min heap the smallest

• If each nonleaf of a tree exhibits the first property, the tree 
exhibits the heap property
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Heaps (continued)

• Figure 6.51 exhibits some examples; those in Figure 6.51a are 
heaps, while those in Figure 6.51b violate the first property 
and those in Figure 6.51c violate the second

Fig. 6.51 Examples of (a) heaps and (b–c) nonheaps
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Heaps (continued)

• Heaps can be implemented as arrays

• As an example, consider the array data=[2 8 6 1 10 15 3 
12 11] represented as a nonheap tree in Figure 6.52

Fig. 6.52 The array [2 8 6 1 10 15 3 12 11]
seen as a tree

• The arrangement of the elements reflects the tree from top-to-
bottom and left-to-right
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Heaps (continued)

• We can define a heap as an array heap of length n where

heap[i] > heap[2i + 1], for 0 < i < (n – 1)/2

and
heap[i] > heap[2i + 2], for 0 < i < (n – 2)/2

• Elements in a heap are not ordered; we only know the root is 
the largest and the descendants are less than or equal to it

• The relationship between siblings or between elements in 
adjacent subtrees is undetermined

• All we are aware of is that there is a linear relationship along 
the lines of descent, but lateral lines are ignored

Data Structures and Algorithms in C++, Fourth Edition  



Heaps (continued)

• This is why, although all the trees in Figure 6.53 are heaps, 
Figure 6.53b is ordered the best

Fig. 6.53 Different heaps constructed with the same elements
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Heaps (continued)

• Heaps as Priority Queues
– Heaps are ideal for implementing priority queues

– We saw linked lists used to do this in section 4.3, but for large amounts 
of data, they can become inefficient

– Because heaps are perfectly balanced trees, the inherent efficiency of 
searching such structures makes them more useful

– We will need a couple of routines to enqueue and dequeue elements 
on the priority queue, though

– To enqueue, the node is added at the end of the heap as the last leaf

– If the heap needs to be restructured to preserve the heap property, it 
can be done by moving the node from last leaf towards the root

Data Structures and Algorithms in C++, Fourth Edition  



Heaps (continued)

• Heaps as Priority Queues (continued)
– The enqueuing algorithm is as follows:

heapEnqueue(el)
   put el at the end of the heap;

   while el is not in the root and el > parent(el)
      swap el with its parent;

– This is illustrated in Figure 6.54a, where the node 15 is added to the 
heap

– Because this destroys the heap property, 15 is moved up the tree until 
it is either the root or finds a parent greater than or equal to 15

– This is reflected in Figure 6.54b-d
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Heaps (continued)

• Heaps as Priority Queues (continued)

Fig. 6.54 Enqueuing an element to a heap
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Heaps (continued)

• Heaps as Priority Queues (continued)
– Dequeuing an element from a heap simply removes the root (since it is 

the largest value) and replacing it by the last leaf

– Since this will most likely violate the heap property, the node is moved 
down the tree to the appropriate location

– The algorithm for this looks like:

heapDequeue()
   extract the element from the root;
   put the element from the last leaf in its place;
   remove the last leaf;
// both subtrees of the root are heaps
   p = the root;
   while p is not a leaf and p < any of its children
      swap p with the larger child;

Data Structures and Algorithms in C++, Fourth Edition  



Heaps (continued)
• Heaps as Priority Queues (continued)

– This is shown in Figure 6.55; 20 is dequeued and 6 put in its place

– This is then swapped with 15 (the larger child) and again with 14

Fig. 6.55 Dequeuing an element from a heap
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Heaps (continued)

• Heaps as Priority Queues (continued)
– The last three lines of this dequeuing algorithm can be used as a stand-

alone routine to restore the heap property if it is violated by the root 
by moving it down the tree; a coded form is shown below:

Fig. 6.56 Implementation of an algorithm to move the root element down a tree

Data Structures and Algorithms in C++, Fourth Edition  



Heaps (continued)

• Organizing Arrays as Heaps
– As we’ve seen, heaps can be implemented as arrays, but not all arrays 

are heaps

– In some circumstances, though, we need to organize the contents of an 
array as a heap, such as in the heap sort

– One of the simpler ways to accomplish this is attributed to John 
Williams; we start with an empty heap and sequentially add elements

– This is a top-down technique that extends the heap by enqueuing new 
elements in the heap

– This process is described on page 273 and illustrated in Figure 6.57

Data Structures and Algorithms in C++, Fourth Edition  
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Making Connections
You have a set of nodes (numbered 1-9) on a 
network. You are given a sequence of 
pairwise connections between them:

3-5     4-2     1-6     5-7     4-8     3-7

Q: Are nodes 2 and 4 connected?  
Indirectly?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections 
redundant due to indirect connections?
Q: How many sub-networks do you have?
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Making Connections

Start:
3-5

4-2

1-6

5-7

4-8

3-7

{1} {2} {3} {4} {5} {6} {7} {8} {9}
{1} {2} {3, 5} {4} {6} {7} {8} {9}

{1} {2, 4} {3, 5} {6} {7} {8} {9}

{1, 6} {2, 4} {3, 5} {7} {8} {9}

{1, 6} {2, 4} {3, 5, 7} {8} {9}

{1, 6} {2, 4, 8} {3, 5, 7} {9}

no change 

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  

Answering these questions is much easier if we 
create disjoint sets of nodes that are connected:



Making Connections
Let's ask the questions again.

3-5     4-2     1-6     5-7     4-8     3-7
⇓

{1, 6} {2, 4, 8} {3, 5, 7} {9}

Q: Are nodes 2 and 4 connected?  
Indirectly?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections 
redundant due to indirect connections?
Q: How many sub-networks do you have?
August 13, 2012 CSE 332 Data Abstractions, Summer 2012  



Disjoint Set Union-Find ADT
Separate elements into disjoint sets
▪ If set x ≠ y then x ⋂ y = ∅ (i.e. no shared elements)

Each set has a name (usually an element in the set)

union(x,y): take the union of the sets x and y (x ⋃ y)
▪ Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}
▪ union(5,1) → {3,5,7,1,6}, {4,2,8}, {9}, 

find(x): return the name of the set containing x.
▪ Given sets: {3,5,7,1,6}, {4,2,8}, {9}, 
▪ find(1) returns 5
▪ find(4) returns 8

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  



Disjoint Set Union-Find Performance
Believe it or not:
▪ We can do Union in constant time. 
▪ We can get Find to be amortized 

constant time with worst case O(log n) 
for an individual Find operation

Let's see how…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  



What Makes a Good Maze?
▪ We can get from any room to any other 

room (connected)
▪ There is just one simple path between 

any two rooms (no loops)
▪ The maze is not a simple pattern 

(random)
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Making a Maze
A high-level algorithm for a random maze is easy:
▪ Start with a grid 
▪ Pick Start and Finish
▪ Randomly erase edges

START

FINISH
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The Middle of the Algorithm
So far, we've knocked down 
several walls while others 
still remain.
Consider the walls between A 
and B and C and D
▪ Which walls can we knock 

down and maintain both 
our connectedness and 
our no cycles properties?

How do we do this efficiently?

A

B

D

C
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Maze Algorithm: Number the Cells
Number each cell and treat as disjoint sets:
▪ S ={ {1}, {2}, {3}, {4},… {36} }
Create a set of all edges between cells:
▪ W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total.

1 2 3 4 5 6

7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

START

FINISH
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Maze Algorithm: Building with DSUF
Algorithm sketch:
▪ Choose a wall at random.
▪ Erase wall if the neighbors are in disjoint 

sets (this avoids creating cycles)
▪ Take union of those cell's sets
▪ Repeat until there is only one set

▪ Every cell is thus reachable from every 
other cell
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The Secret To Why This Works
Notice that a connected, acyclic maze is 
actually a Hidden Tree

This suggests how we should implement the 
Disjoint Set Union-Find ADT

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  
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Up Trees for Disjoint Set Union-
Find
Up trees 
▪ Notes point to parent, not children
▪ Thus only one pointer per node

In a DSUF
▪ Each disjoint set is its own up tree
▪ The root of the tree is the name for the disjoint 

set
1 2 3 4 5 6 7Initial State

1

4

3After Unions

25

6

7
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Find Operation
find(x): follow x to the root and return the 
root (the name of the disjoint set)

find(1) = 1
find(3) = 3
find(4) = 1
find(6) = 7

1

4

3

5

7

2

6
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Find Operation
union(i,j): assuming i and j are roots, point 
root i to root j

What if i or j is not a root?
▪ Run a find on i and j first and use the 

returned values for the joining

Why do we join roots and not just the nodes?

union(1,7)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  
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Simple Implementation
Once again, it is better to implement a tree 
using an array than with node objects
▪ Leave up[0] empty (or # of disjoint sets)
▪ up[x] = i means node x's parent is node i
▪ up[x] = 0 means x is a root

1

4

3

25

6

7

0 7 0 1 7 2 0u
p

1 2 3 4 5 6 7
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Performance
Using array-based up trees, what is the cost for
▪ union(i,j)?
▪ find(x)?

union(i,j) is O(1) if i and j are roots
▪ Otherwise depends on cost of find

find(x) is O(n) in worst-case
▪ What does the worst-case look like?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  
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Performance – Doing Better
The problem is that up trees get too tall

In order to make DSUF perform as we 
promised, we need to improve both our 
union and find algorithms:
▪ Weighted Union
▪ Path Compression

Only with BOTH of these will we get find to 
average-case O(log n) and amortized O(1) 
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Weighted Union
Instead of arbitrarily joining two roots, always point 
the smaller tree to the root of the larger tree
▪ Each up tree has a weight (number of nodes)
▪ The idea is to limit the height of each up tree
▪ Trees with more nodes tend to be deeper
Union by rank or height are similar ideas but more 
complicated to implement

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  
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3
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7
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1
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Weighted Union Implementation
We can just use an additional array to store 
weights of the roots…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  
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2 1 4
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1 2 3 4 5 6 7

2 1 4weight



Weighted Union Implementation
… or we use negative numbers to represent 
roots and their weights 

But generally, saving O(n) space is not critical

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  
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Weighted Union Performance
Weighted union gives us guaranteed worst-
case O(log n) for find
▪ The union rule prevents linear up trees
▪ Convince yourself that it will produce at 

worst a fairly balanced binary tree

However, we promised ourselves O(1) 
amortized time for find
▪ Weighted union does not give us enough
▪ Average-case is still O(log n)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  



Motivating Path Compression
Recall splay trees
▪ To speed up later finds, we moved searched for 

nodes to the root 
▪ Also improved performance for finding other nodes 
▪ Can we do something similar here?

Yes, but we cannot move the node to the root
▪ Roots are the names of the disjoint set
▪ Plus, we want to move associated nodes up at the 

same time
▪ Why not move all nodes touched in a find to point 

directly to the root?
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Path Compression
On a find operation point all the nodes on the 
search path directly to the root
▪ Keep a stack/queue as you traverse up
▪ Then empty to the stack/queue to repoint 

each stored node to the root

August 13, 2012 CSE 332 Data Abstractions, Summer 2012  

find(3)
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9 5
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Conditions for Data Compression

• The choice of data representation dictates how fast the data 
can be transmitted

• Careful choice of representation can improve the throughput 
of a given transmission channel without changing the 
channel

• A number of methods of data compression exist that reduce 
the size of the way the data is represented

• This is done without impacting the information itself

Data Structures and Algorithms in C++, Fourth Edition  



Huffman Coding

• David Huffman developed the construction for an optimal 
code in 1952, utilizing a binary tree for binary code

• The algorithm is shown on page 592; the tree that results 
from this has a probability of 1 in its root

• This algorithm is not deterministic in the sense that a unique 
tree is produced

• This is due to the fact that for trees with equal probability in 
their roots, the algorithm does not set their positions with 
respect to each other at the beginning or during execution

• Consequently, different trees can be obtained depending on 
where trees with equal probability are placed with respect to 
each other 
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Huffman Coding (continued)

• Regardless of the shape of the tree, however, the length of 
the codeword remains the same

• To assess the efficiency of the Huffman algorithm’s 
compression, we will use weighted path length

• The L(m
i
) terms represents the number of 0s and 1s in the 

codeword assign to m
i
 by the algorithm

• Figure 11.1 illustrates an example for the five letters A, B, C, 
D, and E with probabilities 0.39, 0.21, 0.19, 0.12, and 0.09, 
respectively

• The trees in Figure 11.1a-b differ in the way the two nodes 
with probability 0.21 are combined with a tree of 0.19
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Huffman Coding (continued)

Data Structures and Algorithms in C++, Fourth Edition  

Fig. 11.1 Two Huffman trees created for five letters A, B, C, D, and E with probabilities .39, .21, .19, .12, and .09



Huffman Coding (continued)

• No matter which way is chosen, the codeword lengths for 
the five letters are the same – 2, 2, 2, 3, and 3 – respectively

• The codewords assigned to them are slightly different, 
however, as can be seen in Figures 11.1c-d

• Those present abbreviated and more commonly used 
versions of the way the trees in Figures 11.1a-b were created

• For these latter two trees, their average length is
L

Huf
 = .39 · 2 + .21 · 2 + .19 · 2 + .12 · 3 + .09 · 3 = 2.21

• The average length computed by the entropy equation is
L

ave
 = .39 · 1.238 + .21 · 2.252 + .19 · 2.396 + .12 · 3.059 + .09 · 3.474 = 2.09

• So these two are very close (within 5 percent)
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Huffman Coding (continued)

• Codewords of the same length have been assigned to the 
corresponding letters in Figures 11.1a-b

• As we’ve seen, the average length for both trees is the same

• However, each way of building the Huffman tree should 
result in the same average length, regardless of the shape of 
the tree, if they start from the same data

• Huffman trees for letters P, Q, R, S, and T with probabilities 
0.1, 0.1, 0.1, 0.2, and 0.5 respectively are shown in Figure 
11.2

• Different codewords with different lengths may be assigned 
to these letters depending on how the lowest probabilities 
are chosen

• The average length remains the same, however, and is 2.0
Data Structures and Algorithms in C++, Fourth Edition  



Huffman Coding (continued)

Fig. 11.2 Two Huffman trees generated for letters P, Q, R, S, and T with probabilities .1, .1, .1, .2, and .5

• There are a number of ways to implement the Huffman 
algorithm, but one of the more natural ways is to use a 
priority queue

• This is because it requires removing the two smallest 
probabilities and inserting the largest one

•
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Chapter 10: Hashing



Introduction

• In earlier chapters, the main process used by the searching 
techniques was comparing keys

• In sequential search for instance, the table storing the 
elements is searched in order, using key comparisons to 
determine a match

• In binary searching, we successively divide the table into 
halves to determine which cell to check, and again use key 
comparison to determine a match

• In binary search trees, the direction to take in the tree is 
determined by comparing keys in the nodes

• A different way to search can be based on calculating the 
position of the key in the table, based on the key’s value

 Data Structures and Algorithms in C++, Fourth Edition



Introduction (continued)

• Since the value of the key is the only indication of position, if 
the key is known, we can access the table directly

• This reduces the search time from O(n) or O(lg n) to 1 or at 
least O(1)

• No matter how many elements there are, the run time is the 
same

• Unfortunately, this is just an ideal; in real applications we can 
only approximate this

• The task is to develop a function, h, that can transform a key, 
K, into an index for a table used to store items of the same 
type as K

• The function h is called a hash function

 Data Structures and Algorithms in C++, Fourth Edition



Introduction (continued)

• If h is able to transform different key values into different 
hash values, it is called a perfect hash function

• For the hash function to be perfect, the table must have as 
many positions as there are items to be hashed

• However, it is not always possible to know how many 
elements will be hashed in advance, so some estimating is 
needed

• Consider a symbol table for a compiler, to store all the 
variable names

• Given the nature of the variable names typically used, a table 
with 1000 positions may be more than adequate

• However, even if we wanted to handle all possible variable 
names, we still need to design an appropriate h
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Introduction (continued)

• For example, we could define h to be the sum of the ASCII 
values of the letters in the variable name

• If we restrict variables to 31 letters, we will need 3782 
positions, since a variable with of 31 characters all “z” would 
sum to 31 · 122 (the ASCII code for “z”) = 3782

• Even then, the function will not produce unique values, for h
(“abc”) = 97 + 98 + 99 = 294, and h(“acb”) = 97 + 99 + 98 = 
294

• This is called a collision, and is a measure of the usefulness of 
a hash function

• Avoiding collisions can be achieved by making h more 
complex, but complexity and speed must be balanced

 Data Structures and Algorithms in C++, Fourth Edition



Hash Functions

•  
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Hash Functions (continued)

• Division
– Hash functions must guarantee that the value they produce is a valid 

index to the table

– A fairly easy way to ensure this is to use modular division, and divide 
the keys by the size of the table, so h(K) = K mod TSize where TSize = 
sizeof(table)

– This works best if the table size is a prime number, but if not, we can 
use h(K) = (K mod p) mod TSize for a prime p > TSize

– However, nonprimes work well for the divisor provided they do not 
have any prime factors less than 20

– The division method is frequently used when little is known about the 
keys
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Hash Functions (continued)

• Folding
– In folding, the keys are divided into parts which are then combined (or 

“folded”) together and often transformed into the address

– Two types of folding are used, shift folding and boundary folding
– In shift folding, the parts are placed underneath each other and then 

processed (for example, by adding)
– Using a Social Security number, say 123-45-6789, we can divide it into 

three parts - 123, 456, and 789 – and add them to get 1368
– This can then be divided modulo TSize to get the address
– With boundary folding, the key is visualized as being written on a piece 

of paper and folded on the boundaries between the parts
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Hash Functions (continued)

• Folding (continued)
– The result is that alternating parts of the key are reversed, so the Social 

Security number part would be 123, 654, 789, totaling 1566
– As can be seen, in both versions, the key is divided into even length 

parts of some fixed size, plus any leftover digits
– Then these are added together and the result is divided modulo the 

table size
– Consequently this is very fast and efficient, especially if bit strings are 

used instead of numbers
– With character strings, one approach is to exclusively-or the individual 

character together and use the result
– In this way, h(“abcd”) = “a” ⋁ “b” ⋁ “c” ⋁ “d”
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Hash Functions (continued)

• Mid-Square Function
– In the mid-square approach, the numeric value of the key is squared 

and the middle part is extracted to serve as the address
– If the key is non-numeric, some type of preprocessing needs to be done 

to create a numeric value, such as folding
– Since the entire key participates in generating the address, there is a 

better chance of generating different addresses for different keys
– So if the key is 3121, 31212 = 9,740,641, and if the table has 1000 

locations, h(3121) = 406, which is the middle part of 31212

– In application, powers of two are more efficient for the table size and 
the middle of the bit string of the square of the key is used

– Assuming a table size of 1024, 31212 is represented by the bit string 
1001010 0101000010 1100001, and the key, 322, is in italics
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Collision Resolution

• The hashing we’ve looked at so far does have problems with 
multiple keys hashing to the same location in the table

• For example, consider a function that places names in a table 
based on hashing the ASCII code of the first letter of the 
name

• Using this function, all names beginning with the same letter 
would hash to the same position

• If we attempt to improve the function by hashing the first 
two letters, we achieve better results, but still have problems

• In fact, even if we used all the letters in the name, there is 
still a possibility of collisions

• Also, while using all the letters of the name gives a better 
distribution, if the table only has 26 positions there is no 
improvement in using the other versions
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Collision Resolution (continued)

• So in addition to using more efficient functions, we also need 
to consider the size of the table being hashed into

• Even then, we cannot guarantee to eliminate collisions; we 
have to consider approaches that assure a solution

• A number of methods have been developed; we will consider 
a few in the following slides
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Collision Resolution (continued)

• Open Addressing
– In open addressing, collisions are resolved by finding an available table 

position other than the one to which the key hashed
– If the position h(K) is already occupied, positions are tried in the 

probing sequence

norm(h(K) + p(1)), norm(h(K) + p(2)), . . . , norm(h(K) + p(i)), . . .

until an open location is found, the same positions are tried again, or the 
table is full

– The function p is called a probing function, i is the probe, and norm is a 
normalization function, often division modulo the table size

– The simplest realization of this is linear probing, where the search 
proceeds sequentially from the point of the collision

– If the end of the table is reached before finding an empty cell, it 
continued from the beginning of the table

– If it reaches the cell before the one causing the collision, it then stops
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Collision Resolution (continued)

• Open Addressing (continued)
– The drawback to linear probing is that clusters of displaced keys tend 

to form
– This is illustrated in Figure 10.1, where keys K

i
 are hashed to locations i

– In Figure 10.1a, three keys have been hashed to their locations
– In Figure 10.1b, the key B

5
 arrives, but since A

5
 is stored there, it is 

moved to the next location
– Then A

9
 is stored OK, but when B

2
 arrives, it has to be placed in 

location 4, and a large cluster is forming (Figure 10.1b)
– When B

9
 arrives, it has to be placed from the beginning of the table, 

and finally, when C
2
 shows up, it is placed five locations away from its 

home address
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Collision Resolution (continued)

Fig. 10.1 Resolving collisions with the linear probing method. Subscripts indicate the home positions of the keys being hashed
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Collision Resolution (continued)

• Open Addressing (continued)
– As can be seen from the figure, empty cells immediately following 

clusters tend to be filled more quickly than other locations

– So if a cluster is created, it tends to grow, and as it grows, it increases 
the likelihood of growing even larger

– This behavior significantly reduces the efficiency of the hash table for 
processing data

– So to avoid cluster creation and buildup, a better choice of the probing 
function, p, needs to be found

– One possibility is to use a quadratic function producing the formula

p(i) = h(K) + (–1)i–1((i + 1)/2)2 for i = 1, 2, . . . , TSize – 1

– Expressed as a sequence of probes, this is

h(K) + i2, h(K) – i2 for i = 1, 2, . . . , (TSize – 1)/2
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Collision Resolution (continued)

• Open Addressing (continued)
– Starting with the first hash, this produces the sequence

h(K), h(K) + 1, h(K) – 1, h(K) + 4, h(K) – 4, . . . , h(K) + (TSize – 1)2/4, 

h(K) – (TSize – 1)2/4

– Each of these values is divided modulo TSize
– Because the value of h(K) tries only the even or odd positions in the 

table, the size of the table should not be an even number
– The ideal value for the table size is a prime of the form 4j + 3, which j is 

an integer
– This will guarantee that all the table locations will be checked in the 

probing process
– Applying this to the example of Figure 10.1 yields the configuration in 

Figure 10.2; B
2
 still takes two probes, but C

2
 only takes four
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Collision Resolution (continued)

Fig. 10.2 Using quadratic probing for collision resolution
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Collision Resolution (continued)

• Open Addressing (continued)
– Notice that though we obtain better results with this approach, we 

don’t avoid clustering entirely
– This is because the same probe sequence is used for any collision, 

creating secondary clusters
– These are less of a problem than primary clusters, however
– Another variation is to have p be a random number generator (RNG)
– This eliminates the need to have special conditions on the table size, 

and does prevent secondary cluster formation
– However, it does have an issue with repeating the same probing 

sequence for the same keys
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Collision Resolution (continued)

• Open Addressing (continued)
– The best approach to secondary clustering is through the technique of 

double hashing
– This utilizes two hashing functions, one for the primary hash and the 

other to resolve collisions
– In this way the probing sequence becomes

h(K), h(K) + h
p
(K), . . . , h(K) + i · h

p
(K), . . .

– Here, h is the primary hashing function and h
p
 is the secondary hash

– The table size should be a prime number so every location is included 
in the sequence, since the values above are divided modulo TSize

– Empirical evidence shows that this approach works well to eliminate 
secondary clustering, since the probe sequence is based on h

p
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Collision Resolution (continued)

• Open Addressing (continued)
– This is because the probing sequence for key K

1
 hashed to location j is

j, j + h
p
(K

1
), j + 2 · h

p
(K

1
), . . .

– And if another key hashes to j + h
p
(K

1
), the next location to be checked 

is j + h
p
(K

1
) + h

p
(K

2
), not  j + 2 · h

p
(K

1
)

– This avoids secondary clustering, as long as h
p
 is well chosen

– So even if two keys hash to the same position initially, the probing 
sequences can be different for each key

– The use of two different hash functions can be time-consuming, so it is 
possible to define the second hash in terms of the first

– For example, the function could be h
p
(K) = i · h(K) + 1; for key K

1
 the 

probe sequence is j, 2j + 1, 5j + 2, . . . ; if K
2
 hashes to 2j + 1, the 

sequence is 2j + 1, 4j + 3, 10j + 11, . . .
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Collision Resolution (continued)

• Chaining
– In chaining, the keys are not stored in the table, but in the info 

portion of a linked list of nodes associated with each table position

– This technique is called separate chaining, and the table is called a 
scatter table

– This was the table never overflows, as the lists are extended when new 
keys arrive, as can be seen in Figure 10.5

– This is very fast for short lists, but as they increase in size, performance 
can degrade sharply

– Gains in performance can be made if the lists are ordered so 
unsuccessful searches don’t traverse the entire list, or by using self-
organizing linked lists

– This approach requires additional space for the pointers, so if there are 
a large number of keys involved, space requirements can be high
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Collision Resolution (continued)

• Chaining (continued)

Fig. 10.5 In chaining, colliding keys are put on the same linked list.
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Deletion

• How can data be removed from a hash table?

• If chaining is used, the deletion of an element entails deleting 
the node from the linked list holding the element

• For the other techniques we’ve considered, deletion usually 
involves more careful handling of collision issues, unless a 
perfect hash function is used

• This is illustrated in Figure 10.10a, which stores keys using 
linear probing

• In Figure 10.10b, when A
4
 is deleted, attempts to find B

4
 

check location 4, which is empty, indicating B
4
 is not in the 

table

• A similar situation occurs in Figure 10.10c, when A
2
 is 

deleted, causing searches for B
1
 to stop at position 2
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Deletion (continued)

Fig. 10.10 Linear search in the situation where both insertion and deletion of keys are permitted

– A solution to this is to leave the deleted keys in the table with some 
type of indicator that the keys are not valid

– This way, searches for elements won’t terminate prematurely

– When new keys are inserted, they can overwrite the marked keys
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Rehashing

• When hash tables become full, no more items can be added

• As they fill up and reach certain levels of occupancy 
(saturation), their efficiency falls due to increased  searching 
needed to place items

• A solution to these problems is rehashing, allocating a new, 
larger table, possibly modifying the hash function (and at 
least TSize), and hashing all the items from the old table to 
the new

• The old table is then discarded and all further hashes are 
done to the new table with the new function

• The size of the new table can be determined in a number of 
ways: doubled, a prime closest to doubled, etc.
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Also make sure to review your notes & 
the reading on cryptographic hashes 



Chapter 8: Graphs



Introductory Remarks

• Although trees are quite flexible, they have an inherent 
limitation in that they can only express hierarchical 
structures

• Fortunately, we can generalize a tree to form a graph, in 
which this limitation is removed

• Informally, a graph is a collection of nodes and the 
connections between them

• Figure 8.1 illustrates some examples of graphs; notice there 
is typically no limitation on the number of vertices or edges

• Consequently, graphs are extremely versatile and applicable 
to a wide variety of situations

• Graph theory has developed into a sophisticated field of 
study since its origins in the early 1700s
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Introductory Remarks (continued)

Fig. 8.1 Examples of graphs: (a–d) simple graphs; (c) a complete graph K
4
; (e) a multigraph;

(f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the digraph

Data Structures and Algorithms in C++, Fourth Edition  



Introductory Remarks (continued)

• And, while many results are theoretical, the applications of 
graphs are numerous and worth consideration

• First, though, we need to consider some definitions

• A simple graph G = (V, E) consists of a (finite) set denoted by 
V, and a collection E, of unordered pairs {u, v} of distinct 
elements from V

• Each element of V is called a vertex or a point or a node, and 
each element of E is called an edge or a line or a link

• The number of vertices, the cardinality of V, is called the 
order of graph and devoted by |V|

• The cardinality of E, called the size of graph, is denoted by 
|E|
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Introductory Remarks (continued)

•  
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Introductory Remarks (continued)

•  
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Introductory Remarks (continued)

•  
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Graph Representation

• Graphs can be represented in a number of ways

• One of the simplest is an adjacency list, where each vertex 
adjacent to a give vertex is listed

• This can be designed as a table (known as a star 
representation) or a linked list, shown in Figure 8.2b-c on 
page 393

• Another representation is as a matrix, which can be designed 
in two ways

• An adjacency matrix is a |V| x |V| binary matrix where:
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Graph Representation (continued)

• An example of an adjacency matrix is shown in Figure 8.2d

• The order of the vertices in the matrix is arbitrary, so there 
are n! possible matrices for a graph of n vertices
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Graph Traversals

• Like tree traversals, graph traversals visit each node once
• However, we cannot apply tree traversal algorithms to 

graphs because of cycles and isolated vertices
• One algorithm for graph traversal, called the depth-first 

search, was developed by John Hopcroft and Robert Tarjan in 
1974

• In this algorithm, each vertex is visited and then all the 
unvisited vertices adjacent to that vertex are visited

• If the vertex has no adjacent vertices, or if they have all been 
visited, we backtrack to that vertex’s predecessor

• This continues until we return to the vertex where the 
traversal started
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Graph Traversals (continued)

• If any vertices remain unvisited at this point, the traversal 
restarts at one of the unvisited vertices

• Although not necessary, the algorithm assigns unique 
numbers to the vertices, so they are renumbered

• Pseudocode for this algorithm is shown on page 395
• Figure 8.3 shows an example of this traversal; the numbers 

indicate the order in which the nodes are visited; the solid 
lines indicate the edges traversed during the search

Fig. 8.3 An example of application of the depthFirstSearch() algorithm to a graph
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Graph Traversals (continued)

• The algorithm guarantees that we will create a tree (or a 
forest, which is a set of trees) including the graph’s vertices

• Such a tree is called a spanning tree

• The guarantee is based on the algorithm not processing any 
edge that leads to an already visited node

• Consequently, some edges are not included in the tree 
(marked with dashed lines)

• The edges included in the tree are called forward edges; 
those omitted are called back edges

• In Figure 8.4, we can see this algorithm applied to a digraph, 
which is a graph where the edges have a direction

Data Structures and Algorithms in C++, Fourth Edition  



Graph Traversals (continued)

Fig. 8.4 The depthFirstSearch() algorithm applied to a digraph

• Notice in this case we end up with a forest of three trees, 
because the traversal must follow the direction of the edges

• There are a number of algorithms based on depth-first 
searching

• However, some are more efficient if the underlying 
mechanism is breadth-first instead

Data Structures and Algorithms in C++, Fourth Edition  



Graph Traversals (continued)

• Recall from our consideration of tree traversals that depth-
first traversals used a stack, while breadth-first used queues

• This can be extended to graphs, as the pseudocode on page 
397 illustrates

• Figure 8.4 shows this applied to a graph; Figure 8.5 shows the 
application to a digraph

• In both, the basic operation is to mark all the vertices 
accessible from a given vertex, placing them in a queue as 
they are visited

• The first vertex in the queue is then removed, and the 
process repeated

• No visited nodes are revisited; if a node has no accessible 
nodes, the next node in the queue is removed and processed
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Graph Traversals (continued)

Fig. 8.5 An example of application of the breadthFirstSearch() algorithm to a graph

Fig. 8.6 The breadthFirstSearch() algorithm applied to a digraph
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Shortest Paths
• A classical problem in graph theory is finding the shortest 

path between two nodes, with numerous approaches 
suggested

• The edges of the graph are associated with values denoting 
such things as distance, time, costs, amounts, etc.

• If we’re determining the distance between two vertices, say 
v and u, information about the distance between the 
intermediate vertices in the path, w, needs to be kept track 
of

• This can be recorded as a label associated with the vertices

• The label may simply be the distance between vertices, or 
the distance along with the current node’s predecessor in the 
path

• Methods for finding shortest paths depend on these labels
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Shortest Paths (continued)
• Based on how many times the labels are updated, solutions 

to the shortest path problem fall into two groups

• In label-setting methods, one vertex is assigned a value that 
remains unchanged

• This occurs each time we go through the vertices that remain 
to be processed

• The main drawback to this is that we cannot process graphs 
that have negative weights on any edges

• In label-correcting methods, any label can be changed

• This means it can be applied to graphs with negative weights 
as long as they don’t have negative cycles (a cycle where the 
sum of the edges is a negative value)
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Shortest Paths (continued)
• However this method guarantees that after processing is 

complete, for all vertices the current distances indicate the 
shortest path

• Most of these forms (both label-setting and label-correcting) 
can be looked at as part of the same general process, 
however

• That is the task of finding the shortest paths from one vertex 
to all the other vertices, the pseudocode being on page 399

• In this algorithm, a label is defined as:
label(v) = (currDist(v),predecessor(v))

• Two open issues in the code are the design of the set called 
toBeChecked and the order new values are assigned to v

• It is the design of the set that impacts both the choice of v 
and the efficiency of the algorithm
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Shortest Paths (continued)
• The distinction between label-setting and label-correcting 

algorithms is the way the value for vertex v is chosen

• This is the vertex in the set toBeChecked with the smallest 
current distance

• In considering label-setting algorithms, one of the first was 
developed by Edsgar Dijkstra in 1956

• In this algorithm, the shortest from among a number of paths 
from a vertex, v, are tried

• This means that a particular path may be extended by adding 
one more edge to it each time v is checked

• However, if the path is longer than any other path from that 
point, it is dropped, and the other path is expanded
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Shortest Paths (continued)
• Since the vertices may have more than one outgoing edge, 

each new edge adds possible paths for exploration

• Thus each vertex is visited, the new paths are started, and 
the vertex is then not used anymore

• Once all the vertices are visited, the algorithm is done

• Dijkstra’s algorithm is shown on page 400; it is derived from 
the general algorithm by changing the line

v=a vertex in toBeChecked;

to
v=a vertex in toBeChecked with minimal currDist(v);

• It also extends the condition in the if to make permanent 
the current distance of vertices eliminated from the set
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Shortest Paths (continued)
• Notice that the set’s structure is not indicated; recall it is the 

structure that determines efficiency
• Figure 8.7 illustrates this for the graph in part (a)

Fig. 8.7 An execution of DijkstraAlgorithm()
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Spanning Trees

• Consider an airline that has routes between seven cities 
represented as the graph in Figure 8.14a

Fig. 8.14 A graph representing (a) the airline connections between
seven cities and (b–d) three possible sets of connections

• If economic hardships force the airline to cut routes, which 
ones should be kept to preserve a route to each city, if only 
indirectly?

• One possibility is shown in Figure 8.14b
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Spanning Trees (continued)

• However, we want to make sure we have the minimum 
connections necessary to preserve the routes

• To accomplish this, a spanning tree should be used, 
specifically one created using depthFirstSearch()

• There is a possibility of multiple spanning trees (Figure 8.14c-
d), but each of these has the minimum number of edges

• We don’t know which of these might be optimal, since we 
haven’t taken distances into account

• The airline, wanting to minimize costs, will want to use the 
shortest distances for the connections

• So what we want to find is the minimum spanning tree, 
where the sum of the edge weights is minimal
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Spanning Trees (continued)

• The problem we looked at earlier involving finding a 
spanning tree in a simple graph is a case of this where edge 
weights = 1

• So each spanning tree is a minimum tree in a simple graph

• There are a number of solutions to the minimum spanning 
tree problem, and we will consider two

• One popular algorithm is Kruskal’s algorithm, developed by 
Joseph Kruskal in 1956

• It orders the edges by weight, and then checks to see if they 
can be added to the tree under construction

• It will be added if its inclusion doesn’t create a cycle
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Spanning Trees (continued)

• The algorithm is as follows:

KruskalAlgorithm(weighted connected undirected graph)
   tree = null;
   edges = sequence of all edges of graph sorted by weight;
   for (i = 1; i # |E| and |tree| < |V| – 1; i++)
     if ei from edges does not form a cycle with edges in tree
       add ei to tree;

• A step-by-step example of the application of this algorithm is 
shown in Figure 8-15ba-bf on page 413
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Chapter 9: Sorting



Introduction

• Sorting data to improve the efficiency with which it is 
handled is an accepted part of daily life—it’s convenient!

• Using sorted data is addressed computationally by 
considering the process and deciding which criteria to use in 
arranging the data

• The choice may vary considerably depending on the 
application and the user’s needs

• Frequently, a natural ordering will suggest itself that may be 
useful

• Once a criterion is chosen, the second step is determining 
how to apply it to the data
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Introduction (continued)

• Efficiency criteria and methods for comparing algorithms in a 
quantitative fashion have to be devised

• This evaluation should be machine-independent, because 
hardware may facilitate or impede the software process

• Common measures are the number of comparisons that 
occur and the number of data movements that take place

• This isn’t surprising, because in sorting, we compare and 
possibly move data; the size of the data set then plays a role

Data Structures and Algorithms in C++, Fourth Edition  



Introduction (continued)

• Since these values may be difficult to determine exactly, 
approximations are often used

• These can then be represented using big-O notation to 
indicate orders of magnitude

• We must also consider the behavior of algorithms
– Some may differ depending on the original state of the data set 

(sorted, unsorted, partially sorted)

– Others may behave the same way regardless of the data

– Typically, we obtain a best case, worst case, and average case
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Introduction (continued)

• We may also find that the number of comparisons and 
number of data movements don’t apparently coincide

• An algorithm maybe very efficient in one case, and perform 
poorly on the other

• So practical considerations have to be taken into account in 
choosing the algorithm to use

• The bottom line is that any theoretical results have to be 
tempered by practical application
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Elementary Sorting Algorithms

• Insertion Sort
– Insertion sort is a simple algorithm that builds the final sorted list one 

item at a time

– Each repetition of the sort takes an element from input and inserts it 
into the correct position in the already-sorted list, until no input 
elements remain

– The choice of which element to remove from the input is arbitrary, and 
can be made using almost any choice algorithm

– Sorting is typically done in-place

– The resulting array after k iterations has the property where the 
first k + 1 entries are sorted

– In each iteration the first remaining entry of the input is removed and 
inserted into the result at the correct position
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Elementary Sorting Algorithms

• Insertion Sort (continued)
– The pseudocode for the insertion sort follows:

insertionsort(data[],n)
  for i = 1 to n-1
    move all elements data[j] greater than data[i] by one position;
    place data[i] in its proper position;

– Notice that on each pass only a portion of the array is considered; it is 
only in the last pass that the whole array is processed

– Figure 9.1 shows the manipulations that occur when the algorithm runs 
against the list [5 2 3 8 1]

– Since an element with one array is already sorted, the algorithm starts 
with the second element (in position 1), which is placed in tmp

– We compare this with the elements in position data[j], 0 < j < i, and 
those larger than tmp are moved up one position
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Elementary Sorting Algorithms

• Insertion Sort (continued)

Fig. 9.1 The array [5 2 3 8 1] sorted by insertion sort

– The sort can be implemented with the following code:
template<class T>
void insertionSort(T data[], int n) {
  for (int i = 1, j; i < n; i++) {
    T tmp = data[i];
    for (j = i; j > 0 && tmp < data[j – 1]; j--)
      data[j] = data[j – 1];
    data[j] = tmp;  } }
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Elementary Sorting Algorithms

• Insertion Sort (continued)
– One important characteristic of the insertion sort is that it only sorts 

when necessary

– For instance if the array is already sorted, only the temporary variable 
is initialized, and that value is moved back to its original location

– The algorithms also recognizes when the array is partially sorted, and 
stops accordingly

– However, it can only recognize that, and elements in their proper 
locations can be overlooked, so items can be moved and subsequently 
moved back

– Another obvious disadvantage is the movement of data items to insert 
an item, which can occur in any position

– This data movement, combined with the move-and-replace mentioned 
above, significantly impacts efficiency
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Elementary Sorting Algorithms (continued)

• Selection Sort
– Selection sort is an in-place comparison sort that tries to localize the 

exchange of array elements by finding an unsorted item and putting it 
in its final location

– It works by locating the minimum element in the list and swapping it 
with the item in the first location

– Then it advances one position and repeats the process with the next 
smallest element, etc. until it reaches the end of the list

– Effectively, the list is divided into two parts

– There is the sublist of items already sorted, which is built up from left 
to right and is found at the beginning

– Then there is the sublist of items remaining to be sorted, occupying the 
remainder of the array
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Elementary Sorting Algorithms (continued)

• Selection Sort (continued)
– The pseudocode for the algorithm reflects its simplicity:

selectionsort(data[],n)
  for i = 0 to n-2
    select the smallest element among data[i], . . . , data[n-1];
    swap it with data[i];

– The last value for i is n – 2 since if all items have been looked at and 
placed except for the last, then the nth element has to be the largest

– Figure 9.2 shows an example of this for the same list as Figure 9.1

Fig. 9.2 The array [5 2 3 8 1] sorted by selection sort
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Elementary Sorting Algorithms (continued)

• Selection Sort (continued)
– The following code implements this algorithm:

template<class T>
void selectionsort(T data[], int n) {
  for (int i = 0,j,least; i < n-1; i++) {
    for (j = i+1, least = i; j < n; j++)
      if (data[j] < data[least])

least = j;
    swap(data[least],data[i]);
  }
}

– The swap()function is used to exchange the elements in the list; not 
that the variable least refers to position of the smallest value, not its 
position
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Efficient Sorting Algorithms (continued)

• Heap Sort
– Even though selection sort is fairly inefficient (O(n2)), it makes relatively 

few moves of the data

– So if the comparison portion of the sort can be improved, its 
performance can likewise improve

– This was the motivation behind the development of heap sort, created 
by John W. J. Williams in 1964

– Heap sort is a comparison-based, in-place algorithm, but is not a stable 
sort

– Although somewhat slower in practice than quicksort, it has the 
advantage of a more favorable worst-case runtime

– Recall that selection sort finds the smallest element in the list and 
places it first, then the next smallest, etc.
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Efficient Sorting Algorithms (continued)

• Heap Sort (continued)
– For ascending order, heap sort places the largest element last in the 

array, then puts the next largest in front of that, etc.
– To accomplish this, heap sort uses a two phase process

• The first phase is to build a heap out of the data
• The second phase begins by removing the largest item from the 

heap and inserting that item into the sorted array
• For the first element, this would be position 0 of the array
• Then we reconstruct the heap and remove the next largest item, 

and insert it into the array
• After all the objects are removed from the heap, we have a sorted 

array
• The order of the sorted elements can be selected by choosing a 

min-heap or max-heap in step one
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Efficient Sorting Algorithms (continued)

• Heap Sort (continued)
– The pseudocode for this process is as follows:

heapsort(data[],n)
  transform data into a heap;
    for i = down to 2
    swap the root with the element in position i;
    restore the heap property for the tree 

data[0], . . . , data[i-1];

– The construction of the heap uses the method developed by Floyd and 
described in Chapter 6

– This is illustrated for the array [2 8 6 1 10 15 3 12 11] in Figure 
9.9 on page 510

– Once the heap is built, the second phase begins, which consists of 
taking the largest value, 15, and moving it to the end of the array
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Efficient Sorting Algorithms (continued)

• Heap Sort (continued)
– The value in the last location is swapped with the largest, causing a 

violation the heap property
– So the heap is restored using the movedown()function (see section 

6.9), omitting the last element of the array, which is now in place
– This process continues until all the elements have been placed in 

their proper locations; it is illustrated in Figure 9.10 on page 511
– The code for heapsort is shown below:

template<class T>
void heapsort(T data[], int n) {
  for (int i = n/2 - 1; i >= 0; --i) // create a heap;
    moveDown (data,i,n-1);
  for (int i = n-1; i >= 1; --i) {
    swap(data[0],data[i]); // move the largest item to data[i];
    moveDown(data,0,i-1);  // restore the heap property;
  }
}
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Efficient Sorting Algorithms (continued)

• Quicksort
– The process behind Shell sort was to divide the original array into 

subarrays, sort those, and then divide the partially sorted array into 
new subarrays to be sorted, until the entire array was in order

– This was also the motivation behind quicksort, developed by Sir Charles 
A. R. Hoare in 1960

– Initially, the array is divided into two subarrays, one containing items 
less than or equal to a chosen item called the pivot or bound, and the 
other containing elements larger than or equal to the pivot

– This process is repeated on these two subarrays, creating four 
subarrays, and it is continued until we have subarrays of one element

– Because the grouping of items separates them into smaller and larger, 
these one-element arrays do not need to be sorted at all, they are 
already arranged in order
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Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– By nature of the partitioning process, quicksort is recursive; the 

pseudocode for this algorithm is as follows:

quicksort(array[])
  if length(array) > 1
    choose bound; // partition array into subarray1 and subarray2
    while there are elements left in array
      include element either in subarray1 = {el: el ≤ bound}
        or in subarray2 = {el: el ≥ bound};
    quicksort(subarray1);
    quicksort(subarray2);

– Two operations need to be performed to partition the array: choosing 
a pivot, and moving the elements to the proper subarrays

– Choosing the pivot is non-trivial; the goal is to have the two subarrays 
to be nearly equal in length
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Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– Several strategies have been developed, but the one incorporated into 

the code in Figure 9.11 on page 514 simply chooses the item in the 
middle of the array

– The pseudocode is vague regarding the second task, separating the 
elements into the subarrays

– In particular it does not decide where to put items equal to the bound; 
we have only indicated it could be put with either list

– The reasoning behind this is to attempt to keep the lists about the 
same length

– Again, the details are in the implementation, and in this case in Figure 
9.11

– Another consideration in this code is the preprocessing that is carried 
out to locate the largest element and move it to the end of the array
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Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– This is done to simplify the algorithm somewhat, and keep the value 

lower from running off the end of the array
– The algorithm also uses the principal property of bound, that it is the 

boundary item between the two arrays, to place it in its final position 
once it is selected

– Figure 9.12 on page 515 illustrates the process of partitioning the array 
for the array [8 5 4 7 6 1 6 3 8 12 10]

– The first partitioning locates the largest element and exchanges it with 
the value in that position, so the last element no longer needs to be 
processed

– This results in first = 1, last = 9, and the data in the first position is 
exchanged with the bound value in position 4, so the array becomes[6 
5 4 7 8 1 6 3 8 10 12]

– The remainder of the process is continued in Figure 9.12
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Efficient Sorting Algorithms (continued)

• Quicksort (continued)
– One the partitioning is complete, the process continues with the left 

and right subarrays, then for the subarrays of these subarrays

– This continues until the subarrays have less than two elements

– The entire sorting operation is shown in Figure 9.13 on page 517, which 
also shows the changes in the current arrays
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Efficient Sorting Algorithms (continued)

• Mergesort
– Quicksort’s one major drawback is that it has a worst case O(n2) 

behavior due to the difficulty of the partitioning process
– There are numerous techniques of choosing a bound that attempt to 

address this problem, however, there is no assurance that any 
approach will result in arrays that are equal in size

– A different approach entirely simplifies the partitioning as much as can 
be and focuses on merging the sorted arrays

– This is the idea behind mergesort, one of the first computerized sorting 
algorithms, developed by John von Neumann in 1945

– The key operation in mergesort is the merging of the sorted halves of 
the array into a single array

– Of course, these halves must be sorted, which occurs by merging the 
sorted halves of these halves
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Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The process of splitting array into halves stops when each array has 

fewer than two items in it

– Because of the similarity to the quicksort partitioning process, this can 
also be implemented recursively, as follows:

mergesort(data[])
  if data have at least two elements
    mergesort(left half of data);
    mergesort(right half of data);
    merge(both halves into a sorted list);

– Merging the lists into a single list is also straightforward; the 
pseudocode for this is shown on the next slide
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Efficient Sorting Algorithms (continued)

• Mergesort (continued)
merge(array1[], array2[], array3[])
  i1, i2, i3 are properly initialized;
  while both array2 and array3 contain elements
    if array2[i2] < array3[i3]
      array1[i1++] = array2[i2++];
    else array1[i1++] = array3[i3++];
  load into array1 the remaining elements of either array2 

or array3;

– So if array2 = [1 4 6 8 10] and array3 = [2 3 5 22], then 
the resulting array1 = [1 2 3 4 5 6 8 10 22]

– Now, the pseudocode implies that the arrays are physically separate 
entities

– However, for the code to work correctly, this is not the case
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Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The array is actually the concatenated form of the other two arrays, so 

before the merge, it looks like [1 4 6 8 10 2 3 5 22]

– This creates problems for merging algorithm; for instance after the 
while loop iterates twice, array2 is [1 2 6 8 10] and array1 is 
[1 2 6 8 10 2 3 5 22]

– Consequently, a temporary array is needed during the merging process

– Once the merge is complete, the temporary array can be transferred 
back into array1

– Since array2 and array3 are subarrays of array1, we don’t need to 
pass them as parameters to the merge routine

– Instead, we can pass indexes to the beginning and end of array1
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Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The revised pseudocode now looks like:

merge (array1[], first, last)
  mid = (first + last) / 2;
  i1 = 0;
  i2 = first;
  i3 = mid + 1;
  while both left and right subarrays of array1 contain 

elements
    if array1[i2] < array1[i3]
      temp[i1++] = array1[i2++];
    else temp[i1++] = array1[i3++];
  load into temp the remaining elements of array1;
  load to array1 the content of temp;
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Efficient Sorting Algorithms (continued)

• Mergesort (continued)
– The complete array1 is copied to temp, then copied back to array1

– So the number of moves when merge() executes is always 2 · (last – 
first + 1)

– The number of comparisons depends on the ordering of array1

– The pseudocode for the sort process is now:

mergesort (data[], first, last)
  if first < last
    mid = (first + last) / 2
    mergesort(data, first, mid);
    mergesort(data, mid+1, last);
    merge(data, first, last);

– An example of this running is shown in Figure 9.14
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Efficient Sorting Algorithms (continued)

• Mergesort (continued)

Fig. 9.14 The array [1 8 6 4 10 5 3 2 22] sorted by mergesort
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