CISC 220 – Regular section Final

Wednesday, December 15, 2010

This exam is worth 15% of your grade. Read all instructions before answering—some questions are multi-part. Partial credit will be given in 0.25-point gradations; show your work where possible. Write your answers on both sides of exam pages as necessary.

Q1 (2 points)

Draw the 11-slot hash table, including intermediate steps, that results from using the hash function $h(k) = (2k + 5) \mod 11$ to hash the keys 88, 94, 23, 39, 42, 11, 36, and 14 (in that order) using linear probing. What is the average number of probes per insertion (treating a no-collision insertion as 0 probes)?

Q2 (1 point)

What does lazy deletion mean in the context of hash table probing and why is it necessary?

Q3 (1 point)

What does it mean for a hash function *h* to be "one-way"? Why is this important if we want to use *h* for password storage?

Q8 (3 points)

Consider a graph whose vertices are labeled with the letters A through I, with the neighbors of each vertex given by the table below:

vertex	neighbors	vertex	neighbors		
Α	(B, D, E)	F	(C, H, I)		
В	(A, C, E)	G	(D, E, H)		
C	(B, F)	H	(F, G, I)		
D	(A, E, G)	I	(F, H)		
E	(A, B, D, G)				

Assume that in any search of this graph the neighbors of a given vertex are explored in alphabetical order. Sketch the graph and show your work for the following:

- (a) Give the sequence of vertices visited using a depth-first search starting at vertex A.
- **(b)** Give the sequence of vertices visited using a breadth-first search starting at vertex A.

Q9 (2 points)

Consider the following disjoint set in array form. Sketch the "forest of trees" that it corresponds to before and after applying union(6,3) then union(9,3) using union-by-size.

0								_	_
3	-4	1	1	-5	4	5	4	4	-1