machine intelligence to date.

Seasons of hope and despair

In the summer of 1956 at Dartmouth College, ten scientists sharing an interest in neural nets, automata
theory, and the study of intelligence convened for a six-week workshop. This Dartmouth Summer
Project is often regarded as the cockcrow of artificial intelligence as a field of research. Many of the
participants would later be recognized as founding figures. The optimistic outlook among the
delegates 1s reflected in the proposal submitted to the Rockefeller Foundation, which provided
funding for the event:

We propose that a 2 month, 10 man study of artificial intelligence be carried out.... The study is
to proceed on the basis of the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a machine can be made to simulate it.
An attempt will be made to find how to make machines that use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve themselves. We think
that a significant advance can be made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.

In the six decades since this brash beginning, the field of artificial intelligence has been through
periods of hype and high expectations alternating with periods of setback and disappointment.

The first period of excitement, which began with the Dartmouth meeting, was later described by
John McCarthy (the event’s main organizer) as the “Look, Ma, no hands!” era. During these early
days, researchers built systems designed to refute claims of the form “No machine could ever do X!
Such skeptical claims were common at the time. To counter them, the Al researchers created small
systems that achieved X in a “microworld” (a well-defined, limited domain that enabled a pared-
down version of the performance to be demonstrated), thus providing a proof of concept and showing
that X could, in principle, be done by machine. One such early system, the Logic Theorist, was able to
prove most of the theorems in the second chapter of Whitehead and Russell’s Principia
Mathematica, and even came up with one proof that was much more elegant than the original, thereby
debunking the notion that machines could “only think numerically” and showing that machines were

also able to do deduction and to invent logical proofs.12 A follow-up program, the General Problem
Solver, could in principle solve a wide range of formally specified problems.1* Programs that could
solve calculus problems typical of first-year college courses, visual analogy problems of the type that
appear in some IQ tests, and simple verbal algebra problems were also written.l2 The Shakey robot
(so named because of its tendency to tremble during operation) demonstrated how logical reasoning
could be integrated with perception and used to plan and control physical activity.l® The ELIZA
program showed how a computer could impersonate a Rogerian psychotherapist.? In the mid-
seventies, the program SHRDLU showed how a simulated robotic arm in a simulated world of
geometric blocks could follow instructions and answer questions in English that were typed in by a
user.1® In later decades, systems would be created that demonstrated that machines could compose
music in the style of various classical composers, outperform junior doctors in certain clinical

diagnostic tasks, drive cars autonomously, and make patentable inventions.12 There has even been an

Al that cracked original jokes.2? (Not that its level of humor was high—“What do you get when you
cross anoptic with amental object? An eye-dea”—but children reportedly found its puns
consistently entertaining.)

The methods that produced successes in the early demonstration systems often proved difficult to
extend to a wider variety of problems or to harder problem instances. One reason for this is the
“combinatorial explosion” of possibilities that must be explored by methods that rely on something
like exhaustive search. Such methods work well for simple instances of a problem, but fail when
things get a bit more complicated. For instance, to prove a theorem that has a 5-line long proof in a
deduction system with one inference rule and 5 axioms, one could simply enumerate the 3,125
possible combinations and check each one to see if it delivers the intended conclusion. Exhaustive
search would also work for 6- and 7-line proofs. But as the task becomes more difficult, the method
of exhaustive search soon runs into trouble. Proving a theorem with a 50-line proof does not take ten
times longer than proving a theorem that has a 5-line proof: rather, if one uses exhaustive search, it

requires combing through 5°° = 8.9 x 103* possible sequences—which is computationally infeasible
even with the fastest supercomputers.

To overcome the combinatorial explosion, one needs algorithms that exploit structure in the target
domain and take advantage of prior knowledge by using heuristic search, planning, and flexible
abstract representations—capabilities that were poorly developed in the early Al systems. The
performance of these early systems also suffered because of poor methods for handling uncertainty,
reliance on brittle and ungrounded symbolic representations, data scarcity, and severe hardware
limitations on memory capacity and processor speed. By the mid-1970s, there was a growing
awareness of these problems. The realization that many Al projects could never make good on their
initial promises led to the onset of the first “Al winter”: a period of retrenchment, during which
funding decreased and skepticism increased, and Al fell out of fashion.

A new springtime arrived in the early 1980s, when Japan launched its Fifth-Generation Computer
Systems Project, a well-funded public—private partnership that aimed to leapfrog the state of the art
by developing a massively parallel computing architecture that would serve as a platform for
artificial intelligence. This occurred at peak fascination with the Japanese “post-war economic
miracle,” a period when Western government and business leaders anxiously sought to divine the
formula behind Japan’s economic success in hope of replicating the magic at home. When Japan
decided to invest big in Al, several other countries followed suit.

The ensuing years saw a great proliferation of expert systems. Designed as support tools for
decision makers, expert systems were rule-based programs that made simple inferences from a
knowledge base of facts, which had been elicited from human domain experts and painstakingly hand-
coded in a formal language. Hundreds of these expert systems were built. However, the smaller
systems provided little benefit, and the larger ones proved expensive to develop, validate, and keep
updated, and were generally cumbersome to use. It was impractical to acquire a standalone computer
just for the sake of running one program. By the late 1980s, this growth season, too, had run its
course.

The Fifth-Generation Project failed to meet its objectives, as did its counterparts in the United
States and Europe. A second Al winter descended. At this point, a critic could justifiably bemoan
“the history of artificial intelligence research to date, consisting always of very limited success in
particular areas, followed immediately by failure to reach the broader goals at which these initial

successes seem at first to hint.”2l Private investors began to shun any venture carrying the brand of
“artificial intelligence.” Even among academics and their funders, “Al” became an unwanted
epithet.22

Technical work continued apace, however, and by the 1990s, the second Al winter gradually
thawed. Optimism was rekindled by the introduction of new techniques, which seemed to offer
alternatives to the traditional logicist paradigm (often referred to as “Good Old-Fashioned Artificial
Intelligence,” or “GOFAI” for short), which had focused on high-level symbol manipulation and
which had reached its apogee in the expert systems of the 1980s. The newly popular techniques,
which included neural networks and genetic algorithms, promised to overcome some of the
shortcomings of the GOFAI approach, in particular the “brittleness” that characterized classical Al
programs (which typically produced complete nonsense if the programmers made even a single
slightly erroneous assumption). The new techniques boasted a more organic performance. For
example, neural networks exhibited the property of “graceful degradation”: a small amount of damage
to a neural network typically resulted in a small degradation of its performance, rather than a total
crash. Even more importantly, neural networks could learn from experience, finding natural ways of

generalizing from examples and finding hidden statistical patterns in their input.2 This made the nets
good at pattern recognition and classification problems. For example, by training a neural network on
a data set of sonar signals, it could be taught to distinguish the acoustic profiles of submarines, mines,
and sea life with better accuracy than human experts—and this could be done without anybody first
having to figure out in advance exactly how the categories were to be defined or how different
features were to be weighted.

While simple neural network models had been known since the late 1950s, the field enjoyed a
renaissance after the introduction of the backpropagation algorithm, which made it possible to train

multi-layered neural networks.2* Such multilayered networks, which have one or more intermediary
(“hidden”) layers of neurons between the input and output layers, can learn a much wider range of

functions than their simpler predecessors.22 Combined with the increasingly powerful computers that
were becoming available, these algorithmic improvements enabled engineers to build neural
networks that were good enough to be practically useful in many applications.

The brain-like qualities of neural networks contrasted favorably with the rigidly logic-chopping
but brittle performance of traditional rule-based GOFAI systems—enough so to inspire a new “-ism,”
connectionism, which emphasized the importance of massively parallel sub-symbolic processing.
More than 150,000 academic papers have since been published on artificial neural networks, and
they continue to be an important approach in machine learning.

Evolution-based methods, such as genetic algorithms and genetic programming, constitute another
approach whose emergence helped end the second Al winter. It made perhaps a smaller academic
impact than neural nets but was widely popularized. In evolutionary models, a population of
candidate solutions (which can be data structures or programs) is maintained, and new candidate
solutions are generated randomly by mutating or recombining variants in the existing population.
Periodically, the population is pruned by applying a selection criterion (a fitness function) that allows
only the better candidates to survive into the next generation. Iterated over thousands of generations,
the average quality of the solutions in the candidate pool gradually increases. When it works, this
kind of algorithm can produce efficient solutions to a very wide range of problems—solutions that
may be strikingly novel and unintuitive, often looking more like natural structures than anything that a
human engineer would design. And in principle, this can happen without much need for human input

beyond the initial specification of the fitness function, which is often very simple. In practice,
however, getting evolutionary methods to work well requires skill and ingenuity, particularly in
devising a good representational format. Without an efficient way to encode candidate solutions (a
genetic language that matches latent structure in the target domain), evolutionary search tends to
meander endlessly in a vast search space or get stuck at a local optimum. Even if a good
representational format 1s found, evolution is computationally demanding and is often defeated by the
combinatorial explosion.

Neural networks and genetic algorithms are examples of methods that stimulated excitement in the
1990s by appearing to offer alternatives to the stagnating GOFAI paradigm. But the intention here is
not to sing the praises of these two methods or to elevate them above the many other techniques in
machine learning. In fact, one of the major theoretical developments of the past twenty years has been
a clearer realization of how superficially disparate techniques can be understood as special cases
within a common mathematical framework. For example, many types of artificial neural network can
be viewed as classifiers that perform a particular kind of statistical calculation (maximum likelihood

estimation).2® This perspective allows neural nets to be compared with a larger class of algorithms
for learning classifiers from examples—“decision trees,” “logistic regression models,” “support

vector machines,” “naive Bayes,” “k-nearest-neighbors regression,” among others.ZZ In a similar
manner, genetic algorithms can be viewed as performing stochastic hill-climbing, which is again a
subset of a wider class of algorithms for optimization. Each of these algorithms for building
classifiers or for searching a solution space has its own profile of strengths and weaknesses which
can be studied mathematically. Algorithms differ in their processor time and memory space
requirements, which inductive biases they presuppose, the ease with which externally produced
content can be incorporated, and how transparent their inner workings are to a human analyst.

Behind the razzle-dazzle of machine learning and creative problem-solving thus lies a set of
mathematically well-specified tradeoffs. The ideal is that of the perfect Bayesian agent, one that
makes probabilistically optimal use of available information. This ideal is unattainable because it is
too computationally demanding to be implemented in any physical computer (see Box 1).
Accordingly, one can view artificial intelligence as a quest to find shortcuts: ways of tractably
approximating the Bayesian ideal by sacrificing some optimality or generality while preserving
enough to get high performance in the actual domains of interest.

A reflection of this picture can be seen in the work done over the past couple of decades on
probabilistic graphical models, such as Bayesian networks. Bayesian networks provide a concise
way of representing probabilistic and conditional independence relations that hold in some particular
domain. (Exploiting such independence relations is essential for overcoming the combinatorial
explosion, which is as much of a problem for probabilistic inference as it is for logical deduction.)

They also provide important insight into the concept of causality.23

One advantage of relating learning problems from specific domains to the general problem of
Bayesian inference is that new algorithms that make Bayesian inference more efficient will then yield
immediate improvements across many different areas. Advances in Monte Carlo approximation
techniques, for example, are directly applied in computer vision, robotics, and computational
genetics. Another advantage 1s that it lets researchers from different disciplines more easily pool their
findings. Graphical models and Bayesian statistics have become a shared focus of research in many
fields, including machine learning, statistical physics, bioinformatics, combinatorial optimization, and

communication theory.3> A fair amount of the recent progress in machine learning has resulted from

29 ¢

incorporating formal results originally derived in other academic fields. (Machine learning
applications have also benefitted enormously from faster computers and greater availability of large
data sets.)

Box 1 An optimal Bayesian agent

An ideal Bayesian agent starts out with a “prior probability distribution,” a function that assigns
probabilities to each “possible world” (i.e. to each maximally specific way the world could turn out

to be).2 This prior incorporates an inductive bias such that simpler possible worlds are assigned
higher probabilities. (One way to formally define the simplicity of a possible world is in terms of its
“Kolmogorov complexity,” a measure based on the length of the shortest computer program that

generates a complete description of the world.2%) The prior also incorporates any background
knowledge that the programmers wish to give to the agent.
As the agent receives new information from its sensors, it updates its probability distribution by

conditionalizing the distribution on the new information according to Bayes’ theorem.3!
Conditionalization is the mathematical operation that sets the new probability of those worlds that are
inconsistent with the information received to zero and renormalizes the probability distribution over
the remaining possible worlds. The result is a “posterior probability distribution” (which the agent
may use as its new prior in the next time step). As the agent makes observations, its probability mass
thus gets concentrated on the shrinking set of possible worlds that remain consistent with the
evidence; and among these possible worlds, simpler ones always have more probability.

Metaphorically, we can think of a probability as sand on a large sheet of paper. The paper is
partitioned into areas of various sizes, each area corresponding to one possible world, with larger
areas corresponding to simpler possible worlds. Imagine also a layer of sand of even thickness
spread across the entire sheet: this is our prior probability distribution. Whenever an observation is
made that rules out some possible worlds, we remove the sand from the corresponding areas of the
paper and redistribute it evenly over the areas that remain in play. Thus, the total amount of sand on
the sheet never changes, it just gets concentrated into fewer areas as observational evidence
accumulates. This is a picture of learning in its purest form. (To calculate the probability of a
hypothesis, we simply measure the amount of sand in all the areas that correspond to the possible
worlds in which the hypothesis is true.)

So far, we have defined a learning rule. To get an agent, we also need a decision rule. To this end,
we endow the agent with a “utility function” which assigns a number to each possible world. The
number represents the desirability of that world according to the agent’s basic preferences. Now, at

each time step, the agent selects the action with the highest expected utility.32 (To find the action with
the highest expected utility, the agent could list all possible actions. It could then compute the
conditional probability distribution given the action—the probability distribution that would result
from conditionalizing its current probability distribution on the observation that the action had just
been taken. Finally, it could calculate the expected value of the action as the sum of the value of each

possible world multiplied by the conditional probability of that world given the action.33)

The learning rule and the decision rule together define an “optimality notion” for an agent.
(Essentially the same optimality notion has been broadly used in artificial intelligence, epistemology,

philosophy of science, economics, and statistics.2?) In reality, it is impossible to build such an agent
because it is computationally intractable to perform the requisite calculations. Any attempt to do so
succumbs to a combinatorial explosion just like the one described in our discussion of GOFAIL To
see why this is so, consider one tiny subset of all possible worlds: those that consist of a single
computer monitor floating in an endless vacuum. The monitor has 1, 000 x 1, 000 pixels, each of
which is perpetually either on or off. Even this subset of possible worlds is enormously large: the

2(1,000>1,000) hnssible monitor states outnumber all the computations expected ever to take place in the
observable universe. Thus, we could not even enumerate all the possible worlds in this tiny subset of
all possible worlds, let alone perform more elaborate computations on each of them individually.

Optimality notions can be of theoretical interest even if they are physically unrealizable. They give
us a standard by which to judge heuristic approximations, and sometimes we can reason about what
an optimal agent would do in some special case. We will encounter some alternative optimality
notions for artificial agents in Chapter 12.

State of the art

Artificial intelligence already outperforms human intelligence in many domains. Table 1 surveys the

state of game-playing computers, showing that Als now beat human champions in a wide range of

games.3®

These achievements might not seem impressive today. But this is because our standards for what is
impressive keep adapting to the advances being made. Expert chess playing, for example, was once
thought to epitomize human intellection. In the view of several experts in the late fifties: “If one could
devise a successful chess machine, one would seem to have penetrated to the core of human

intellectual endeavor.”2> This no longer seems so. One sympathizes with John McCarthy, who
lamented: “As soon as it works, no one calls it Al anymore.”2°

Table 1 Game-playing Al

Arthur Samuel’s checkers program, originally written in 1952 and later
improved (the 1955 version incorporating machine learning), becomes

the first program to learn to play a game better than its creator.3Z In
1994, the program CHINOOK beats the reigning human champion,

Checkers Superhuman marking the first time a program wins an official world championship in
a game of skill. In 2002, Jonathan Schaeffer and his team “solve”
checkers, i.e. produce a program that always makes the best possible
move (combining alpha-beta search with a database of 39 trillion

endgame positions). Perfect play by both sides leads to a draw.38
1979: The backgammon program BKG by Hans Berliner defeats the

world champion—the first computer program to defeat (in an exhibition
match) a world champion in any game—though Berliner later attributes

the win to luck with the dice rolls.2

Backgammon Superhuman

Traveller
TCS

Othello

Chess

Crosswords

Scrabble

Bridge

Jeopardy!

Poker

FreeCell

Superhuman
in

Superhuman

Superhuman

Expert level

Superhuman

Equal to the
best

Superhuman

Varied

Superhuman

1992: The backgammon program TD-Gammon by Gerry Tesauro
reaches championship-level ability, using temporal difference learning

(a form of reinforcement learning) and repeated plays against itself to

improve. 4

In the years since, backgammon programs have far surpassed the best

human players.*!

In both 1981 and 1982, Douglas Lenat’s program Eurisko wins the US
championship in Traveller TCS (a futuristic naval war game),

collaboration prompting rule changes to block its unorthodox strategies.®> Eurisko had

with human®2 heuristics for designing its fleet, and it also had heuristics for modifying

its heuristics.

1997: The program Logistello wins every game in a six-game match
against world champion Takeshi Murakami.**

1997: Deep Blue beats the world chess champion, Garry Kasparov.
Kasparov claims to have seen glimpses of true intelligence and
creativity in some of the computer’s moves.® Since then, chess engines
have continued to improve.%

1999: The crossword-solving program Proverb outperforms the average
crossword-solver.2Z

2012: The program Dr. Fill, created by Matt Ginsberg, scores in the top
quartile among the otherwise human contestants in the American
Crossword Puzzle Tournament. (Dr. Fill’s performance is uneven. It
completes perfectly the puzzle rated most difficult by humans, yet is
stumped by a couple of nonstandard puzzles that involved spelling
backwards or writing answers diagonally.)*

As 0f 2002, Scrabble-playing software surpasses the best human
players.®

By 2005, contract bridge playing software reaches parity with the best
human bridge players.2’

2010: IBM’s Watson defeats the two all-time-greatest human Jeopardy!
champions, Ken Jennings and Brad Rutter.2l Jeopardy! is a televised
game show with trivia questions about history, literature, sports,
geography, pop culture, science, and other topics. Questions are
presented in the form of clues, and often involve wordplay.

Computer poker players remain slightly below the best humans for full-
ring Texas hold ‘em but perform at a superhuman level in some poker
variants.>2

Heuristics evolved using genetic algorithms produce a solver for the
solitaire game FreeCell (which in its generalized form is NP-complete)
that is able to beat high-ranking human players.23

As of 2012, the Zen series of go-playing programs has reached rank 6

dan in fast games (the level of a very strong amateur player), using

Very strong . _ - o .
Go amateur Monte Carlo tree search and machine learning techniques.>* Go-playing
level programs have been improving at a rate of about 1 dan/year in recent

years. If this rate of improvement continues, they might beat the human
world champion in about a decade.

There is an important sense, however, in which chess-playing Al turned out to be a lesser triumph
than many imagined it would be. It was once supposed, perhaps not unreasonably, that in order for a
computer to play chess at grandmaster level, it would have to be endowed with a high degree of

general intelligence.?? One might have thought, for example, that great chess playing requires being
able to learn abstract concepts, think cleverly about strategy, compose flexible plans, make a wide
range of ingenious logical deductions, and maybe even model one’s opponent’s thinking, Not so. It

turned out to be possible to build a perfectly fine chess engine around a special-purpose algorithm.?8
When implemented on the fast processors that became available towards the end of the twentieth
century, it produces very strong play. But an Al built like that is narrow. It plays chess; it can do no

other.>

In other domains, solutions have turned out to be more complicated than initially expected, and
progress slower. The computer scientist Donald Knuth was struck that “Al has by now succeeded in
doing essentially everything that requires ‘thinking’ but has failed to do most of what people and

animals do ‘without thinking’—that, somehow, is much harder!”® Analyzing visual scenes,
recognizing objects, or controlling a robot’s behavior as it interacts with a natural environment has
proved challenging. Nevertheless, a fair amount of progress has been made and continues to be made,
aided by steady improvements in hardware.

Common sense and natural language understanding have also turned out to be difficult. It is now
often thought that achieving a fully human-level performance on these tasks is an “Al-complete”
problem, meaning that the difficulty of solving these problems is essentially equivalent to the

difficulty of building generally human-level intelligent machines.®! In other words, if somebody were
to succeed in creating an Al that could understand natural language as well as a human adult, they
would 1n all likelihood also either already have succeeded in creating an Al that could do everything
else that human intelligence can do, or they would be but a very short step from such a general
capability.%2

Chess-playing expertise turned out to be achievable by means of a surprisingly simple algorithm. It
1s tempting to speculate that other capabilities—such as general reasoning ability, or some key ability
involved in programming—might likewise be achievable through some surprisingly simple algorithm.
The fact that the best performance at one time is attained through a complicated mechanism does not
mean that no simple mechanism could do the job as well or better. It might simply be that nobody has
yet found the simpler alternative. The Ptolemaic system (with the Earth in the center, orbited by the
Sun, the Moon, planets, and stars) represented the state of the art in astronomy for over a thousand
years, and its predictive accuracy was improved over the centuries by progressively complicating the
model: adding epicycles upon epicycles to the postulated celestial motions. Then the entire system
was overthrown by the heliocentric theory of Copernicus, which was simpler and—though only after
further elaboration by Kepler—more predictively accurate.®2

Artificial intelligence methods are now used in more areas than it would make sense to review
here, but mentioning a sampling of them will give an idea of the breadth of applications. Aside from

the game Als listed in Table 1, there are hearing aids with algorithms that filter out ambient noise;
route-finders that display maps and offer navigation advice to drivers; recommender systems that
suggest books and music albums based on a user’s previous purchases and ratings; and medical
decision support systems that help doctors diagnose breast cancer, recommend treatment plans, and
aid in the interpretation of electrocardiograms. There are robotic pets and cleaning robots, lawn-

mowing robots, rescue robots, surgical robots, and over a million industrial robots.®* The world

population of robots exceeds 10 million.®

Modern speech recognition, based on statistical techniques such as hidden Markov models, has
become sufficiently accurate for practical use (some fragments of this book were drafted with the
help of a speech recognition program). Personal digital assistants, such as Apple’s Siri, respond to
spoken commands and can answer simple questions and execute commands. Optical character
recognition of handwritten and typewritten text is routinely used in applications such as mail sorting
and digitization of old documents.®

Machine translation remains imperfect but is good enough for many applications. Early systems
used the GOFAI approach of hand-coded grammars that had to be developed by skilled linguists from
the ground up for each language. Newer systems use statistical machine learning techniques that
automatically build statistical models from observed usage patterns. The machine infers the
parameters for these models by analyzing bilingual corpora. This approach dispenses with linguists:

the programmers building these systems need not even speak the languages they are working with.&Z

Face recognition has improved sufficiently in recent years that it is now used at automated border
crossings in Europe and Australia. The US Department of State operates a face recognition system
with over 75 million photographs for visa processing. Surveillance systems employ increasingly
sophisticated Al and data-mining technologies to analyze voice, video, or text, large quantities of
which are trawled from the world’s electronic communications media and stored in giant data
centers.

Theorem-proving and equation-solving are by now so well established that they are hardly
regarded as Al anymore. Equation solvers are included in scientific computing programs such as
Mathematica. Formal verification methods, including automated theorem provers, are routinely used
by chip manufacturers to verify the behavior of circuit designs prior to production.

The US military and intelligence establishments have been leading the way to the large-scale
deployment of bomb-disposing robots, surveillance and attack drones, and other unmanned vehicles.
These still depend mainly on remote control by human operators, but work 1s underway to extend
their autonomous capabilities.

Intelligent scheduling is a major area of success. The DART tool for automated logistics planning
and scheduling was used in Operation Desert Storm in 1991 to such effect that DARPA (the Defense
Advanced Research Projects Agency in the United States) claims that this single application more

than paid back their thirty-year investment in AL%8 Airline reservation systems use sophisticated
scheduling and pricing systems. Businesses make wide use of Al techniques in inventory control
systems. They also use automatic telephone reservation systems and helplines connected to speech
recognition software to usher their hapless customers through labyrinths of interlocking menu options.

Al technologies underlie many Internet services. Software polices the world’s email traffic, and
despite continual adaptation by spammers to circumvent the countermeasures being brought against
them, Bayesian spam filters have largely managed to hold the spam tide at bay. Software using Al
components is responsible for automatically approving or declining credit card transactions, and

continuously monitors account activity for signs of fraudulent use. Information retrieval systems also
make extensive use of machine learning. The Google search engine is, arguably, the greatest Al
system that has yet been built.

Now, it must be stressed that the demarcation between artificial intelligence and software in
general 1s not sharp. Some of the applications listed above might be viewed more as generic software
applications rather than Al in particular—though this brings us back to McCarthy’s dictum that when
something works it is no longer called Al. A more relevant distinction for our purposes is that
between systems that have a narrow range of cognitive capability (whether they be called “AI” or
not) and systems that have more generally applicable problem-solving capacities. Essentially all the
systems currently in use are of the former type: narrow. However, many of them contain components
that might also play a role in future artificial general intelligence or be of service in its development
—components such as classifiers, search algorithms, planners, solvers, and representational
frameworks.

One high-stakes and extremely competitive environment in which Al systems operate today is the
global financial market. Automated stock-trading systems are widely used by major investing houses.
While some of these are simply ways of automating the execution of particular buy or sell orders
issued by a human fund manager, others pursue complicated trading strategies that adapt to changing
market conditions. Analytic systems use an assortment of data-mining techniques and time series
analysis to scan for patterns and trends in securities markets or to correlate historical price
movements with external variables such as keywords in news tickers. Financial news providers sell
newsfeeds that are specially formatted for use by such Al programs. Other systems specialize in
finding arbitrage opportunities within or between markets, or in high-frequency trading that seeks to
profit from minute price movements that occur over the course of milliseconds (a timescale at which
communication latencies even for speed-of-light signals in optical fiber cable become significant,
making it advantageous to locate computers near the exchange). Algorithmic high-frequency traders

account for more than half of equity shares traded on US markets.®2 Algorithmic trading has been
implicated in the 2010 Flash Crash (see Box 2).

Box 2 The 2010 Flash Crash

By the afternoon of May, 6, 2010, US equity markets were already down 4% on worries about the
European debt crisis. At 2:32 p.m., a large seller (a mutual fund complex) initiated a sell algorithm to
dispose of a large number of the E-Mini S&P 500 futures contracts to be sold off at a sell rate linked
to a measure of minute-to-minute liquidity on the exchange. These contracts were bought by
algorithmic high-frequency traders, which were programmed to quickly eliminate their temporary
long positions by selling the contracts on to other traders. With demand from fundamental buyers
slacking, the algorithmic traders started to sell the E-Minis primarily to other algorithmic traders,
which in turn passed them on to other algorithmic traders, creating a “hot potato” effect driving up
trading volume—this being interpreted by the sell algorithm as an indicator of high liquidity,
prompting it to increase the rate at which it was putting E-Mini contracts on the market, pushing the
downward spiral. At some point, the high-frequency traders started withdrawing from the market,
drying up liquidity while prices continued to fall. At 2:45 p.m., trading on the E-Mini was halted by
an automatic circuit breaker, the exchange’s stop logic functionality. When trading was restarted, a

