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 Reasoning in the presence of uncertainties and 
incomplete information

 Combining preliminary information and models with 
learning from experimental data

25.04.2017Localization I 3

Probabilistic Reasoning (e.g. Bayesian)

“optimization”
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a) Architecture map
b) Representation with set of finite or infinite lines
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Map Representation | Continuous Line-Based
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 Exact cell decomposition - Polygons

25.04.2017Localization I 5

Map Representation | Exact cell decomposition
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 Fixed cell decomposition (occupancy grid)
 Narrow passages disappear

25.04.2017Localization I 6

Map Representation | Approximate cell decomposition
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 Fixed cell decomposition
 Narrow passages disappear
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Map Representation | Adaptive cell decomposition
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1. Prediction (ACT) based on previous estimate and odometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation → position update (posteriori position)

25.04.2017Localization I 8

Kalman Filter Localization | in summery
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Probability of 

making this 
observation
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Localization: Probabilistic Position Estimation 
(Kalman Filter: continuous, recursive and very compact)

Prediction
(action)

Perception
(measurement)
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ACT | using motion model and its uncertainties

prior belief
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SEE

25.04.2017Localization I 11

SEE | estimation of position based on perception and map

prediction update
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Kalman Filter Localization
Markov versus Kalman localization

Markov Kalman

PROS
 localization starting from any unknown

position 
 recovers from ambiguous situation

CONS
 However, to update the probability of all 

positions within the whole state space at 
any time requires a discrete representation 
of the space (grid). The required memory 
and calculation power can thus become 
very important if a fine grid is used. 

PROS
 Tracks the robot and is inherently very 
precise and efficient

CONS
 If the uncertainty of the robot becomes to 
large (e.g. collision with an object) the 
Kalman filter will fail and the position is 
definitively lost

25.04.2017
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 Occupancy grid example
 0 indicates that the cell has not been hit by any ranging 

measurements (free space)
 1 indicates that the cell has been hit one or multiple times by 

ranging measurements (occupied space) 
 Can change over time (e.g. dynamic obstacles)

25.04.2017Localization I 14

Map Representation | Approximate cell decomposition

Courtesy of S. Thrun
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 Example 2: Museum
 Laser scan 1

Localization I 15

Markov Localization
Case Study – Grid Map Courtesy of 

W. Burgard

25.04.2017
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 Example 2: Museum
 Laser scan 2
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Markov Localization
Case Study – Grid Map Courtesy of 

W. Burgard

25.04.2017
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 Example 2: Museum
 Laser scan 3
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Markov Localization
Case Study – Grid Map Courtesy of 

W. Burgard
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Markov Localization
Case Study – Grid Map Courtesy of 

W. Burgard
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 Example 2: Museum
 Laser scan 21

Localization I 19

Markov Localization
Case Study – Grid Map Courtesy of 

W. Burgard

25.04.2017
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 Planar motion case 
 is a three-dimensional grid-map array 
 cell size must be chosen carefully. 

 During each prediction and measurement steps
 all the cells are updated
 the computation can become too 

heavy for real-time operations.
 Example
 30x30 m environment; 

cell size of 0.1 m x 0.1 m x 1 deg
→ 300 x 300 x 360 = 32.4 million cells!
→ Important processing power needed
→ Large memory requirement

25.04.2017Localization I 20

Drawbacks of Markov localization
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 Reducing complexity
 Various approached have been proposed for reducing complexity
 One possible solution would be to increase the cell size at the expense of localization 

accuracy. 
 Another solution is to use an adaptive cell decomposition instead of 

a fixed cell decomposition.

 Randomized Sampling / Particle Filter
 The main goal is to reduce the number of states that are updated in each step
 Approximated belief state by representing only a ‘representative’ subset of all states 

(possible locations)
 E.g update only 10% of all possible locations
 The sampling process is typically weighted, 

e.g. put more samples around the local peaks 
in the probability density function

 However, you have to ensure some less likely 
locations are still tracked, otherwise the robot might get lost

25.04.2017Localization I 21

Drawbacks of Markov localization
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 A topological map represents the environment as a graph with nodes 
and edges. 
 Nodes correspond to spaces
 Edge correspond to physical connections between nodes

 Topological maps lack scale and
distances, but topological 
relationships (e.g., left, right, etc.)
are maintained

25.04.2017Localization I 22

Map Representation | Topological map

node
(location)

edge
(connectivity)
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 London underground map
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Map Representation | Topological map
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Markov Localization: Case Study - Topological Map (1)

 The Dervish Robot
 Topological Localization
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Markov Localization: Case Study - Topological Map (2)

 Topological map of office-type environment
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Markov Localization: Case Study - Topological Map (3)

 Update of believe state for position n given the percept-
pair i

 p(n|i): new likelihood for being in position n
 p(n): current believe state
 p(i|n): probability of seeing i in n (see table)

 No action update !
 However, the robot is moving and therefore we can apply a combination of 

action and perception update 

 t-i is used instead of t-1 because the topological distance between n’ and n
is very depending on the specific topological map
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Markov Localization: Case Study - Topological Map (4)

 The calculation

is realized by multiplying the probability of generating perceptual event i at 
position n by the probability of having failed to generate perceptual event s at 
all nodes between n’ and n.
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Markov Localization: Case Study - Topological Map (5)
 Example calculation

 Assume that the robot has two nonzero belief states
 p(1-2) = 1.0 ;     p(2-3) = 0.2*

and that it is facing east with certainty
 Perceptual event: open hallway on its left and open door on its right
 State 2-3 will progress potentially to 3, 3-4 or 4. 
 State 3 and 3-4 can be eliminated because the likelihood of detecting an open door is 

zero.
 The likelihood of reaching state 4 is the product of the initial likelihood p(2-3)= 0.2, (a) the 

likelihood of detecting anything at node 3 and the likelihood of detecting a hallway on the 
left and a door on the right at node 4 and (b) the likelihood of detecting a hallway on the 
left and a door on the right at node 4. (for simplicity we assume that the likelihood of 
detecting nothing at node 3-4 is 1.0)

 (a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or 
open), [0.6  0.4 +(1-0.6)  0.05] and correctly detects nothing on its right, 0.7.

 (b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and 
mistakes the right hallway for an open door, 0.10.

 This leads to:
 0.2  [0.6  0.4 + 0.4  0.05]  0.7  [0.9  0.1]  p(4) = 0.003.
 Similar calculation for progress from 1-2  p(2) = 0.3.
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Markov Localization: Case Study - Topological Map (5)


