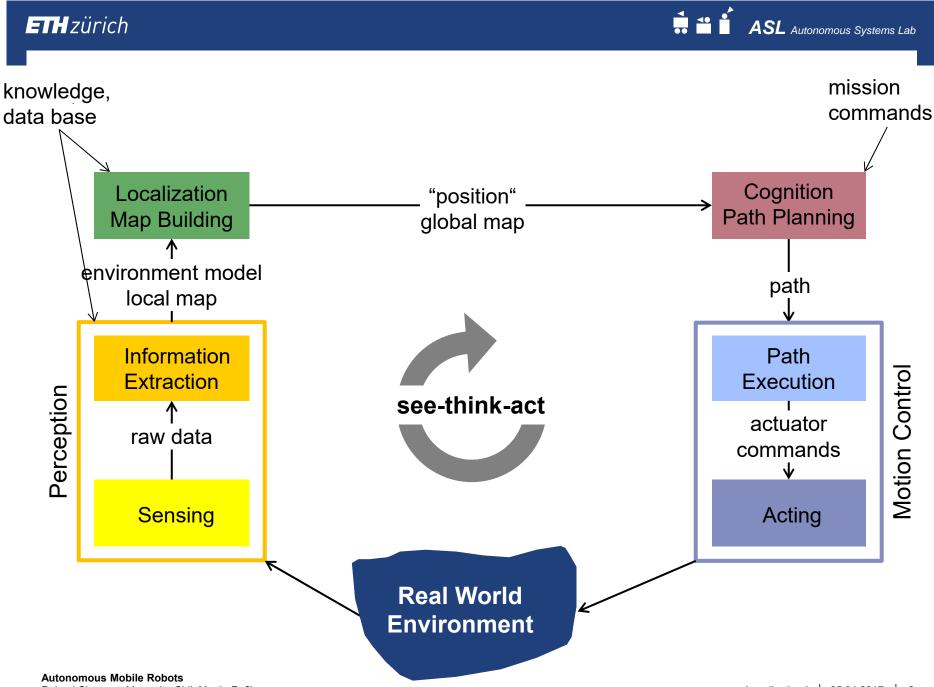


Localization II

Roland Siegwart, Margarita Chli, Martin Rufli

Autonomous Mobile Robots Roland Siegwart, Margarita Chli, Martin Rufli



Probabilistic Reasoning (e.g. Bayesian)

- Reasoning in the presence of uncertainties and incomplete information
- Combining preliminary information and models with learning from experimental data

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

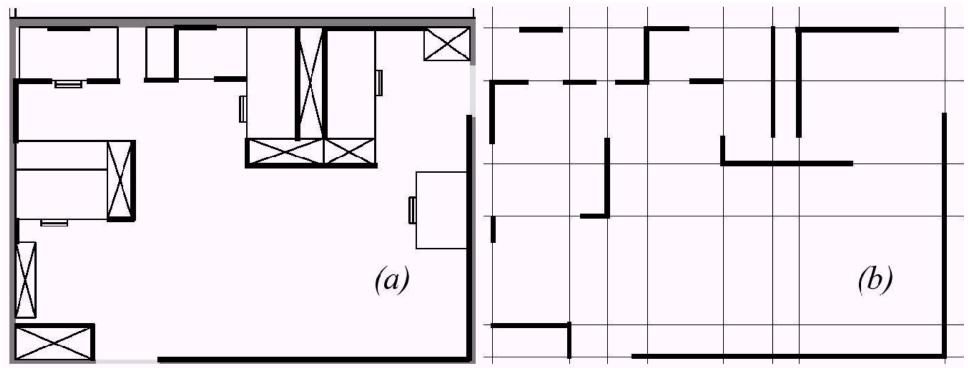
"optimization"
Avoid Obstacle

$$P(M \otimes S | \delta \otimes \pi)$$

Preliminary
Knowledge
Septemental
Data
Data
Experimental
Data
Data
Septemental
Septemen

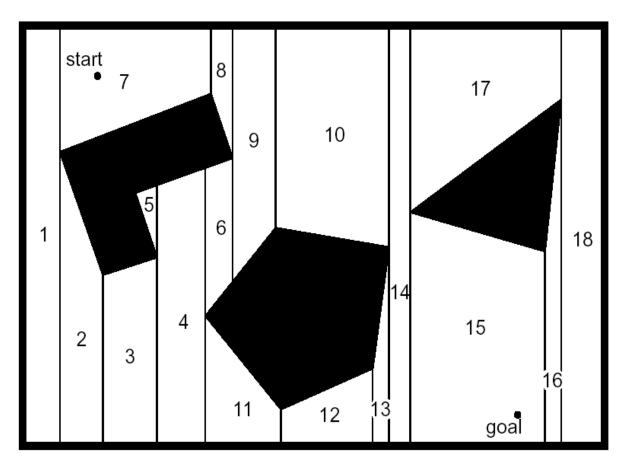
Map Representation | Continuous Line-Based

- a) Architecture map
- b) Representation with set of finite or infinite lines



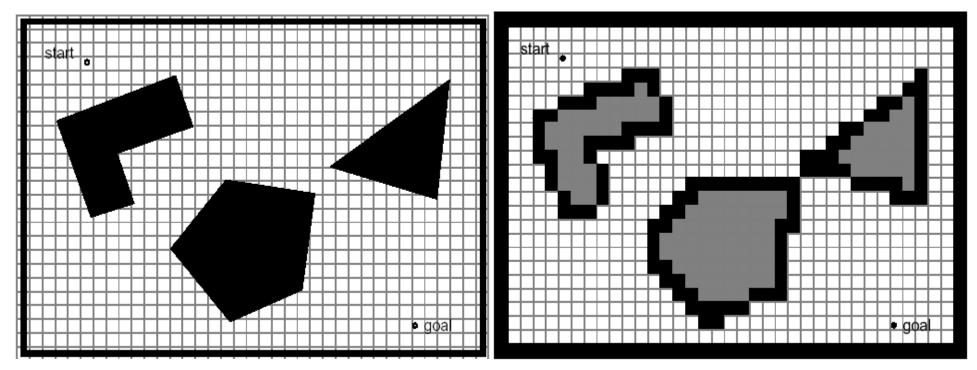
Map Representation | Exact cell decomposition

Exact cell decomposition - Polygons



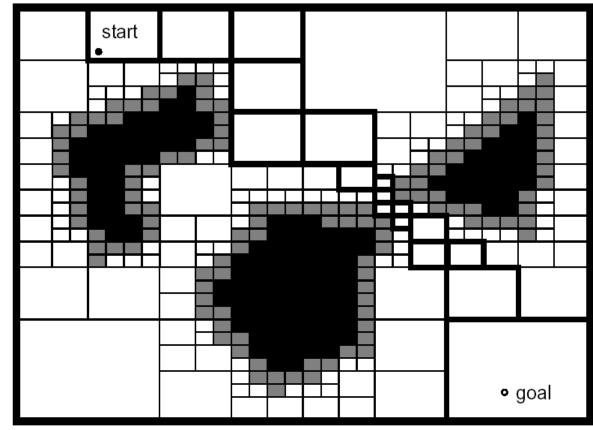
Map Representation | Approximate cell decomposition

- Fixed cell decomposition (occupancy grid)
 - Narrow passages disappear



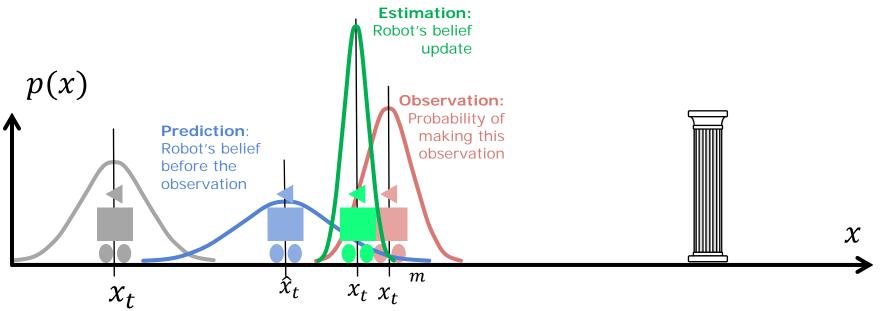
Map Representation | Adaptive cell decomposition

- Fixed cell decomposition
 - Narrow passages disappear



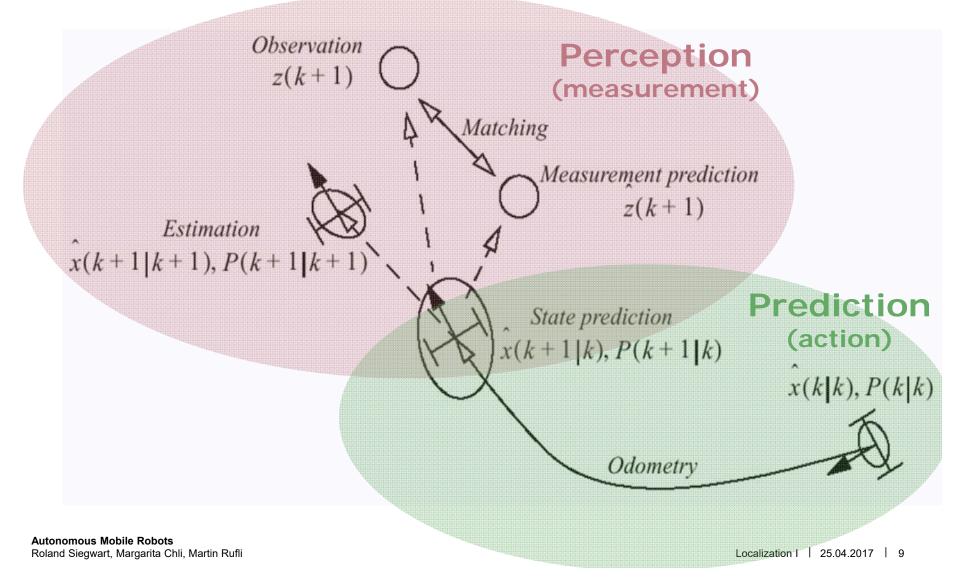
Kalman Filter Localization | in summery

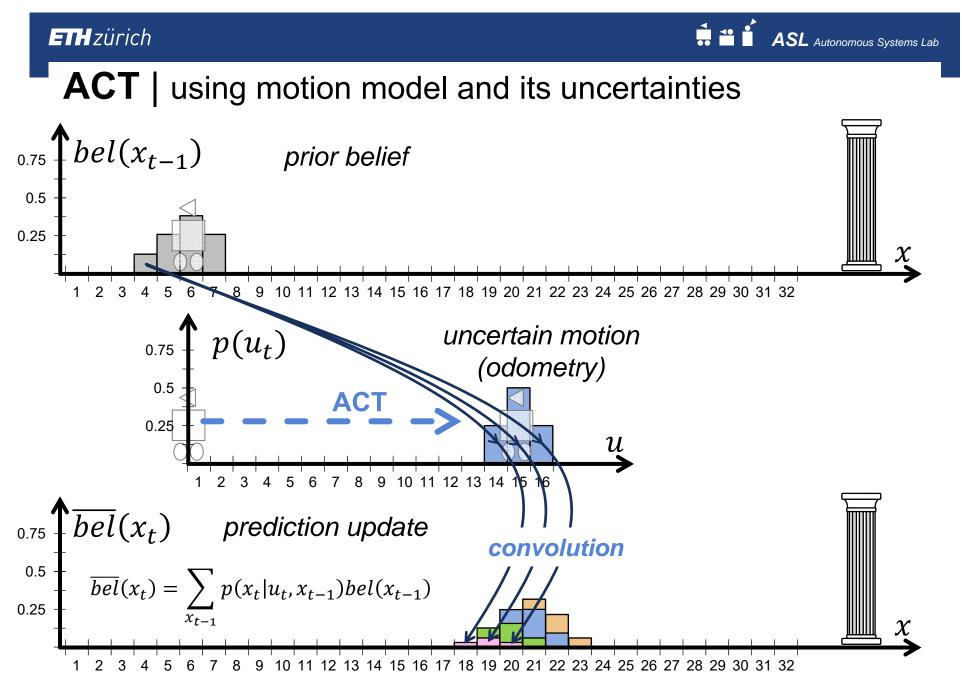
- 1. Prediction (ACT) based on previous estimate and odometry
- 2. Observation (SEE) with on-board sensors
- 3. Measurement prediction based on prediction and map
- 4. Matching of observation and map
- **5.** Estimation \rightarrow position update (posteriori position)



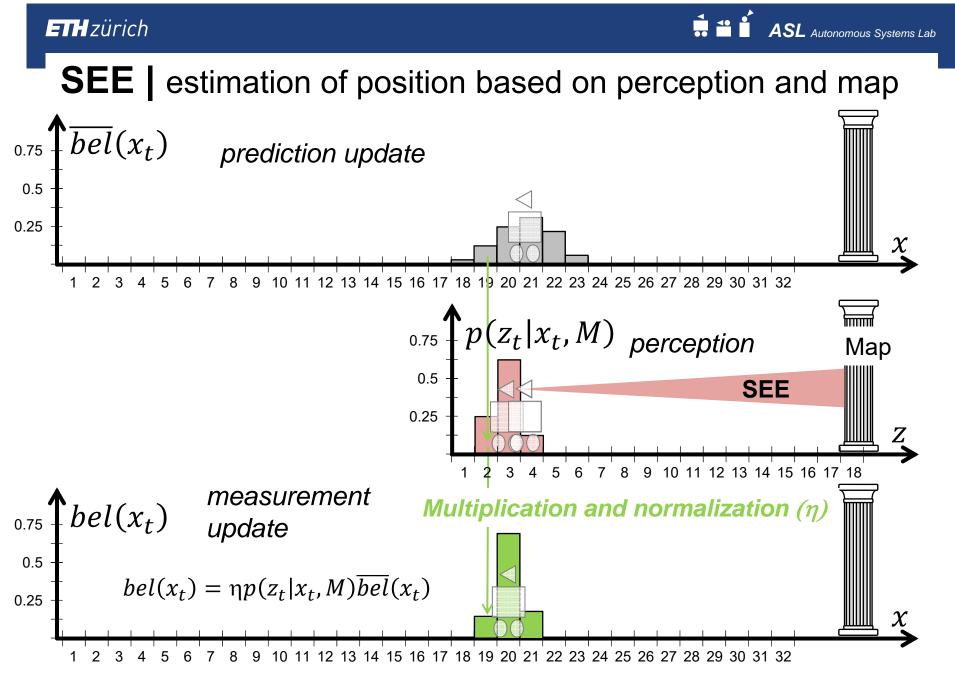
Localization: Probabilistic Position Estimation

(Kalman Filter: continuous, recursive and very compact)





Autonomous Mobile Robots Roland Siegwart, Margarita Chli, Martin Rufli

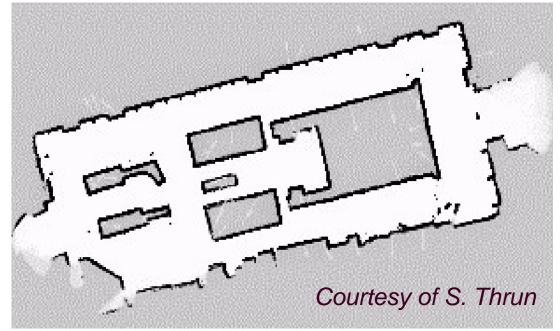


Autonomous Mobile Robots Roland Siegwart, Margarita Chli, Martin Rufli

Kalman Filter Localization Markov versus Kalman localization

Markov	Kalman
PROS	PROS
 localization starting from any unknown position 	 Tracks the robot and is inherently very precise and efficient
 recovers from ambiguous situation 	
CONS	CONS
 However, to update the probability of all positions within the whole state space at any time requires a discrete representation of the space (grid). The required memory and calculation power can thus become very important if a fine grid is used. 	 If the uncertainty of the robot becomes to large (e.g. collision with an object) the Kalman filter will fail and the position is definitively lost

Map Representation | Approximate cell decomposition



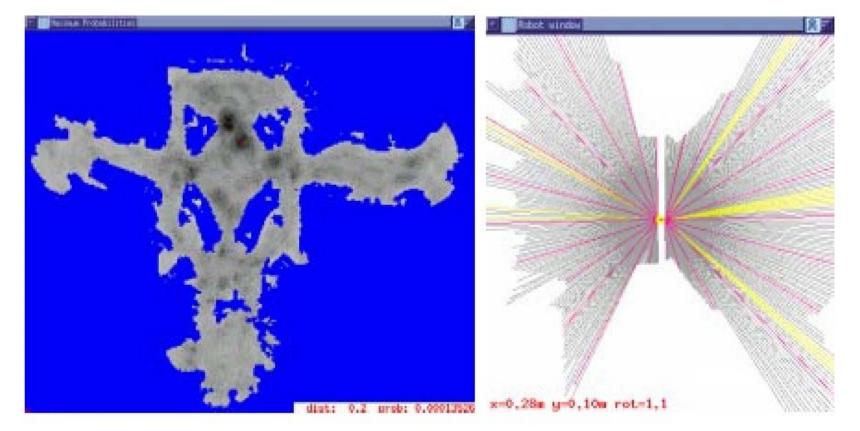
- Occupancy grid example
 - 0 indicates that the cell has not been hit by any ranging measurements (free space)
 - 1 indicates that the cell has been hit one or multiple times by ranging measurements (occupied space)
 - Can change over time (e.g. dynamic obstacles)

Markov Localization Case Study – Grid Map

- Example 2: Museum
 - Laser scan 1

Courtesy of W. Burgard

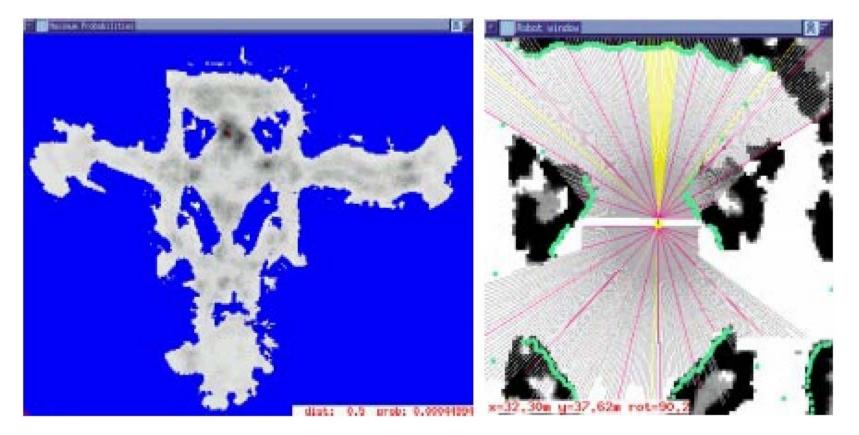
ASL Autonomous Systems Lab



Markov Localization Case Study – Grid Map

- Example 2: Museum
 - Laser scan 2

Courtesy of W. Burgard

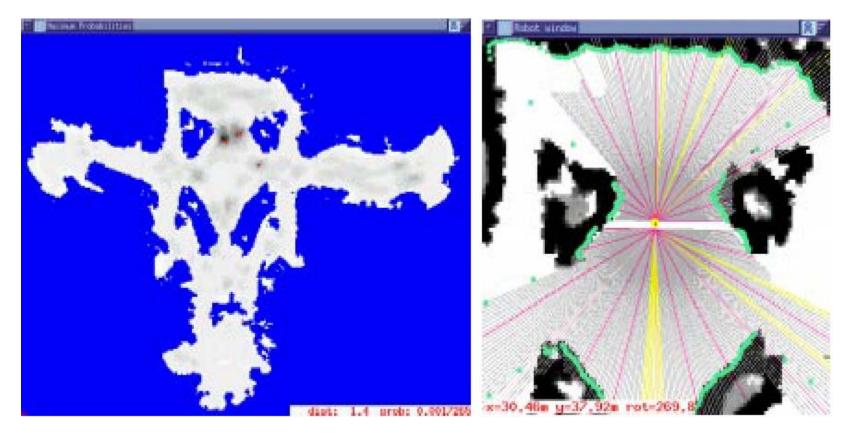


Markov Localization Case Study – Grid Map

- Example 2: Museum
 - Laser scan 3

ASL Autonomous Systems Lab

Courtesy of W. Burgard

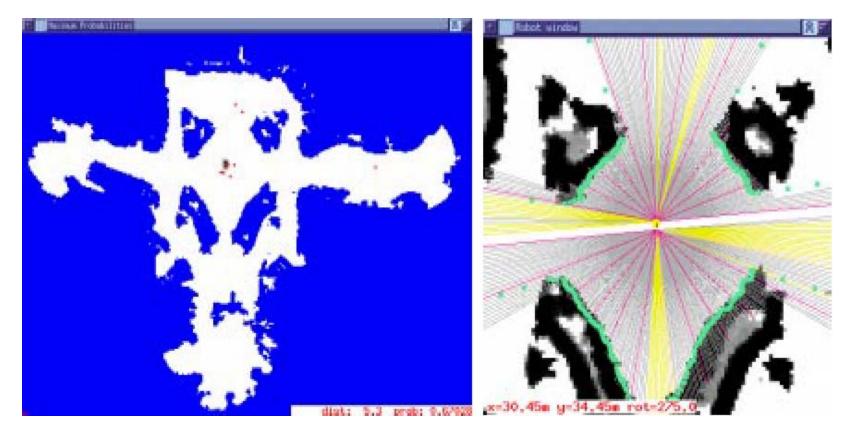


Markov Localization Case Study – Grid Map

- Example 2: Museum
 - Laser scan 13

ASL Autonomous Systems Lab

Courtesy of W. Burgard

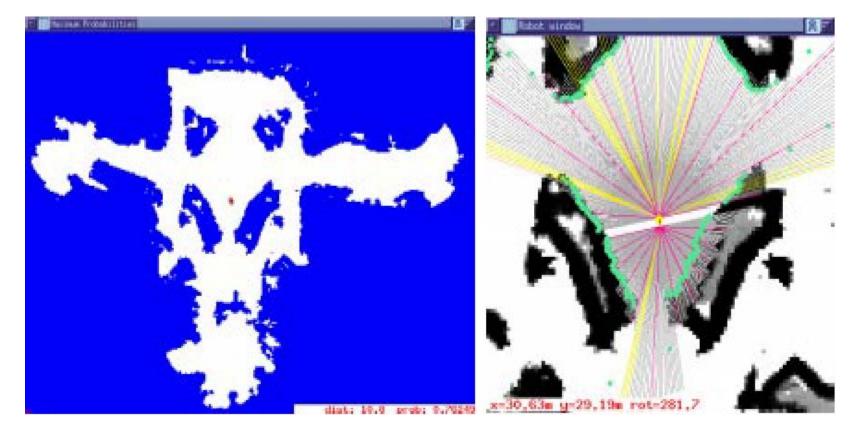


Markov Localization Case Study – Grid Map

- Example 2: Museum
 - Laser scan 21

ASL Autonomous Systems Lab

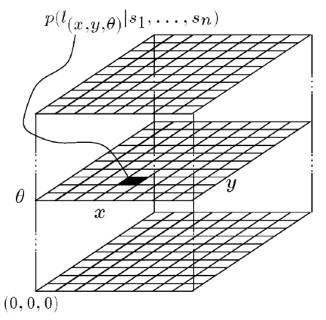
Courtesy of W. Burgard



ASL Autonomous Systems Lab

Drawbacks of Markov localization

- Planar motion case
 - is a three-dimensional grid-map array
 - cell size must be chosen carefully.
- During each prediction and measurement steps
 - all the cells are updated
 - the computation can become too heavy for real-time operations.
- Example
 - 30x30 m environment;
 - cell size of 0.1 m x 0.1 m x 1 deg
 - \rightarrow 300 x 300 x 360 = 32.4 million cells!
 - \rightarrow Important processing power needed
 - \rightarrow Large memory requirement

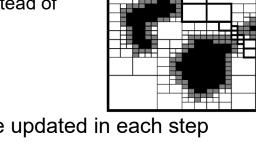


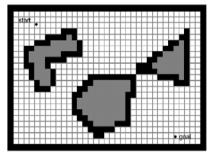
Drawbacks of Markov localization

- Reducing complexity
 - Various approached have been proposed for reducing complexity
 - One possible solution would be to increase the cell size at the expense of localization accuracy.
 - Another solution is to use an adaptive cell decomposition instead of a fixed cell decomposition.
- Randomized Sampling / Particle Filter
 - The main goal is to reduce the number of states that are updated in each step
 - Approximated belief state by representing only a 'representative' subset of all states (possible locations)
 - E.g update only 10% of all possible locations
 - The sampling process is typically weighted, e.g. put more samples around the local peaks in the probability density function
 - However, you have to ensure some less likely locations are still tracked, otherwise the robot might get lost

probability distribution (ellipse) as particle set (red dots)

Х



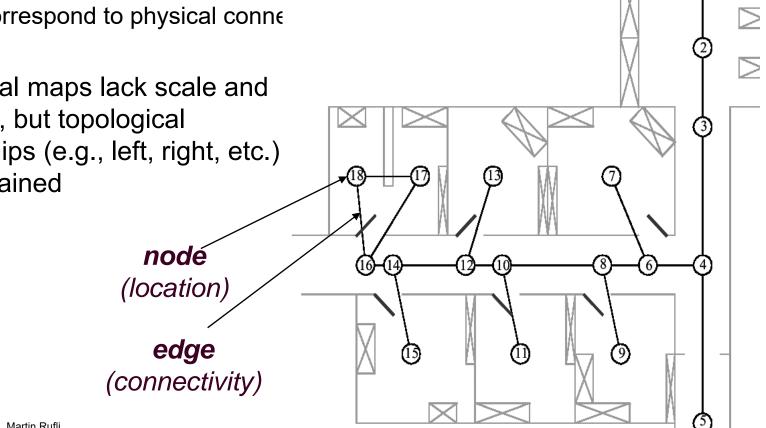


ETH zürich

E *H* zürich

Map Representation | Topological map

- A topological map represents the environment as a graph with nodes and edges.
 - Nodes correspond to spaces
 - Edge correspond to physical conne
- Topological maps lack scale and distances, but topological relationships (e.g., left, right, etc.) are maintained

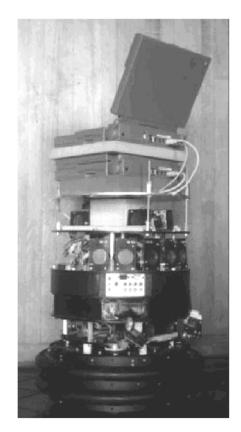


Map Representation | Topological map

London underground map

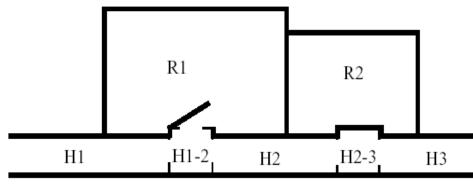
Markov Localization: Case Study - Topological Map (1)

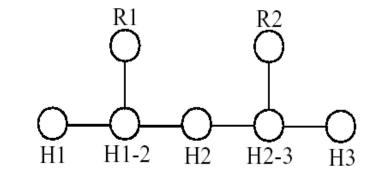
- The Dervish Robot
- Topological Localization



Markov Localization: Case Study - Topological Map (2)

Topological map of office-type environment





	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

E *H* zürich

Markov Localization: Case Study - Topological Map (3)

Update of believe state for position *n* given the perceptpair *i*
 wall
 Closed
 Open
 Open

p(n|i) = p(i|n)p(n)

- p(n|i): new likelihood for being in position n
- *p*(*n*): current believe state
- *p*(*i*|*n*): probability of seeing *i* in *n* (see table)
- No action update !
 - However, the robot is moving and therefore we can apply a combination of action and perception update

$$p(n_t | i_t) = \int p(n_t | n'_{t-i}, i_t) p(n'_{t-i}) dn'_{t-i}$$

t-i is used instead of *t-1* because the topological distance between *n*' and *n* is very depending on the specific topological map

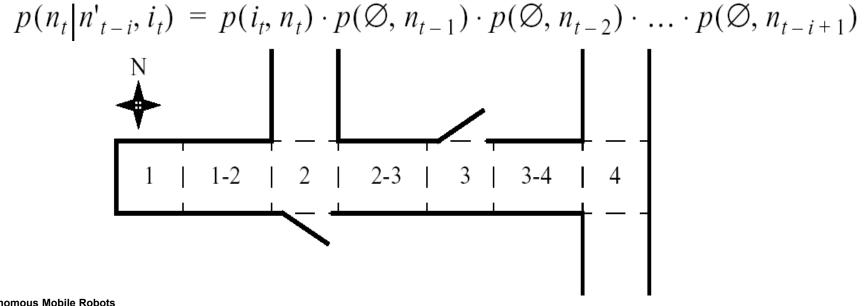
	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

Markov Localization: Case Study - Topological Map (4)

The calculation

$$p(n_t | n'_{t-i}, i_t)$$

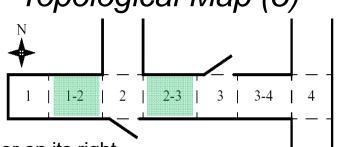
is realized by multiplying the probability of generating perceptual event i at position n by the probability of having failed to generate perceptual event s at all nodes between n' and n.



- Example calculation
 - Assume that the robot has two nonzero belief states
 - p(1-2) = 1.0; $p(2-3) = 0.2^*$

and that it is facing east with certainty

- Perceptual event: open hallway on its left and open door on its right
- State 2-3 will progress potentially to 3, 3-4 or 4.
- State 3 and 3-4 can be eliminated because the likelihood of detecting an open door is zero.
- The likelihood of reaching state 4 is the product of the initial likelihood p(2-3)= 0.2, (a) the likelihood of detecting anything at node 3 and the likelihood of detecting a hallway on the left and a door on the right at node 4 and (b) the likelihood of detecting a hallway on the left and a door on the right at node 4. (for simplicity we assume that the likelihood of detecting at node 3-4 is 1.0)
- (a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or open), [0.6 · 0.4 +(1-0.6) · 0.05] and correctly detects nothing on its right, 0.7.
- (b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and mistakes the right hallway for an open door, 0.10.
- This leads to:
 - $0.2 \cdot [0.6 \cdot 0.4 + 0.4 \cdot 0.05] \cdot 0.7 \cdot [0.9 \cdot 0.1] \rightarrow p(4) = 0.003.$
 - Similar calculation for progress from 1-2 \rightarrow p(2) = 0.3.



ASL Autonomous Systems Lab

D(4) = 0.003. Wall D(2) = 0.3. Nothing detected 0.70

		door	door	hallway	
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

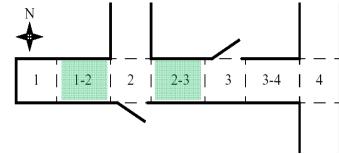
Closed

Open

Autonomous Mobile Robots Roland Siegwart, Margarita Chli, Martin Rufli

Localization I | 25.04.2017 | 30

Markov Localization: Case Study - Topological Map (5)



	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50