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Introduction | Do we need to localize or not?

= To go from Ato B, does the

robot need to know where it is?
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Introduction | Do we need to localize or not?

= How to navigate between A and B

= pavigation without hitting obstacles
= detection of goal location _=4 '
= Possible by following always the left wall B

= However, how to detect
that the goal is reached
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Introduction | Do we need to localize or not?

= Following the left wall is an example

of “behavior based navigation”
= [t can work in some environments :
but not in all i | = |

= With which accuracy and reliability do
we reach the goal?
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Introduction | Do we need to localize or not?

= As opposed to behavior based navigation is “map based

navigation”

= Assuming that the map is known, at every time step the robot has

to know where it is. How?

= |f we know the start position, we can use wheel odometry or dead

reckoning. Is this enough? What

else can we use”?

= But how do we represent the map for the robot? \
= And how do we represent the position of the a

robot in the map?
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Introduction | Definitions

= Global localization
= The robot is not told its initial position
= [ts position must be estimated from scratch

= Position Tracking
= Arobot knows its initial position and “only” has to accommodate

small errors in its odometry as it moves
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Introduction | How to localize?

= | ocalization based on external sensors, beacons or
landmarks

= Odometry

= Map Based Localization - without external sensors or
artificial landmarks, just use robot onboard sensors
= Example: Probabilistic Map Based Localization
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Introduction | Beacon Based Localization

= Triangulation
= Ex 1: Poles with highly reflective surface and a laser for detecting
them

= Ex 2: Coloured beacons and an omnidirectional camera for
detecting them (example: RoboCup or autonomous robots in tennis

fields)
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Introduction | Beacon Based Localization

= KIVA Systems, Boston (MA) (acquired by Amazon in 2011)

Unique marker with known
absolute 2D position in the
map

Prof. Raff D'Andrea, ETH
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Introduction | Motion Capture Systems

High resolution (from VGA up to 16 Mpixels)
= Very high frame rate (several hundreds of Hz)

= Good for ground truth reference and multi-robot control
strategies

Popular brands:
= VICON (10kCHF per camera),
= OptiTrack (2kCHF per camera)
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Introduction | Map-based localization

= Consider a mobile robot moving in a known environment.
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Introduction | Map-based localization
= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location,
it can keep track of its motion using odometry.
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Introduction | Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location,
it can keep track of its motion using odometry.
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Introduction | Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location,
it can keep track of its motion using odometry.

A ; L J L
ol (A)
7/
> Sensor reference frame
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Introduction | Map-based localization

= Consider a mobile robot moving in a known environment.

= As it starts to move, say from a precisely known location,
it can keep track of its motion using odometry.

= The robot makes an observation and updates its position
and uncertainty

A ; L J L
o 4 (A)
7/
> Sensor reference frame
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Ingredients | Probabilistic Map-based localization

= Probability theory — error propagation, sensor fusion

= Belief representation — discrete / continuous
(map/position)

= Motion model — odometry model

= Sensing — measurement model
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Probabilistic localization | Belief Representation

p(x)
N\
= Continuous map with single Kalman Filter
hypothesis probability Localization
distribution p(x) x
p(x)
N\
= Continuous map with multiple
hypotheses probability
distribution p(x) .
p(x)
= Discretized metric map (grid k) \ Markov Localization
with
probability distribution p(k)
k
p(x)
= Discretized topological map A

(nodes n) with probability
distribution p(n)

— [ 1 — 1 — N
Autonomous Mobile Robots B C D E F G
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Belief Representation | Characteristics

= Continuous = Discrete

= Precision bound by sensor data Precision bound by resolution of

= Typically single hypothesis pose discretisation
estimate = Typically multiple hypothesis

= Lost when diverging (for single pose estimate
hypothesis) = Never lost (when diverges

= Compact representation and converges to another cell)
typically reasonable in = Important memory and
processing power. processing power needed. (not

the case for topological maps)
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Odometry

= Definition
= Dead reckoning (also deduced reckoning or odometry) is the
process of calculating vehicle's current position by using a
previously determined position and estimated speeds over the
elapsed time

= Robot motion is recovered by integrating proprioceptive
sensor velocities readings
* Pros: Straightforward
= Cons: Errors are integrated -> unbound

= Heading sensors (e.g., gyroscope) help to reduce the
accumulated errors but drift remains
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Odometry | The Differential Drive Robot

X=|Y )A(IZXH"‘ Ay :f(xt—put)

V(1)
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Odometry | Wheel Odometry

= Kinematics

X1
)A(t = f(xt—laut): Yia
K=
As— As, +AS,
2
Af— As, —AS,
b
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AO

____ - This term comes from the application
of the Instantaneous Center of Rotation

Can you demonstrate these equations?
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Odometry | Error Propagation

= Error model P=F % ‘F "+F¢ZFg
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Odometry | Growth of Pose uncertainty for Straight
Line Movement

= Note: Errors perpendicular to the direction of movement
are growing much faster!

Error Propagation in Odometry
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Odometry | Growth of Pose uncertainty for
Movement on a Circle

= Note: Errors ellipse does not remain perpendicular to the
direction of movement!

Error Propagation in Odometry
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Odometry | Example of non-Gaussian error model

= Note: Errors are not shaped like ellipses!
Courtesy Al Lab, Stanford

~

[Fox, Thrun, Burgard, Dellaert, 2000]
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Odometry | Error sources

= Deterministic S — Non-Deterministic

(Systematic) (Non-Systematic)
= Deterministic errors can be eliminated by proper calibration of the
system.

= Non-Deterministic errors are random errors. They have to be
described by error models and will always lead to uncertain position
estimate.

= Major Error Sources in Odometry:

= Limited resolution during integration (time increments, measurement
resolution)

= Misalignment of the wheels (deterministic)

= Unequal wheel diameter (deterministic)

= Variation in the contact point of the wheel (non deterministic)

= Unequal floor contact (slippage, non planar ...) (non deterministic)
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Odometry | Calibration of systematic errors

[Borenstein 1996]

= The unidirectional square path experiment

Reference Wall

=
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square path, 4x4 m.

87° turn instead of 90° turn
(due to uncertainty about
the effective wheelbase).

« Curved instead of straight path
I". (due to unequal wheel diameters).

- In the example here, this causes
-a 3° orienfation error.

______
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Odometry | Calibration of Errors Il
[Borenstein 1996]

= The bi-directional square path experiment

Reference Wall

L
Curved instead of strat ht path

. (due to unequal whee diameters).

. In the example here, this causes
. a 3 origntation error.

: 93 turn instead of 90° turn ®\ '; ,

: (due to uncertainty about the | g' '; .

E effective wheelbase). ; Q |
/\ nvﬂ I \
— :i s ‘

: Preprogrammed ', ¥V 3 |

': square path, 4x4 m. \ o )
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