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Introduction | Do we need to localize or not?

 To go from A to B, does the 
robot need to know where it is?
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 How to navigate between A and B
 navigation without hitting obstacles
 detection of goal location

 Possible by following always the left wall
 However, how to detect 

that the goal is reached

Localization I 4

Introduction | Do we need to localize or not?
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 Following the left wall is an example 
of “behavior based navigation”
 It can work in some environments 

but not in all
 With which accuracy and reliability do 

we reach the goal?
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Introduction | Do we need to localize or not?
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Introduction | Do we need to localize or not?

 As opposed to behavior based navigation is “map based 
navigation”
 Assuming that the map is known, at every time step the robot has 

to know where it is. How?
 If we know the start position, we can use wheel odometry or dead 

reckoning. Is this enough? What else can we use?

 But how do we represent the map for the robot?
 And how do we represent the position of the 

robot in the map? 
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 Global localization
 The robot is not told its initial position
 Its position must be estimated from scratch

 Position Tracking
 A robot knows its initial position and “only” has to accommodate 

small errors in its odometry as it moves

Localization I 7

Introduction | Definitions

?

10.04.2017
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 Localization based on external sensors, beacons or 
landmarks

 Odometry

 Map Based Localization - without external sensors or 
artificial landmarks, just use robot onboard sensors
 Example: Probabilistic Map Based Localization

Localization I 8

Introduction | How to localize?

10.04.2017
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Introduction | Beacon Based Localization

 Triangulation
 Ex 1: Poles with highly reflective surface and a laser for detecting 

them
 Ex 2: Coloured beacons and an omnidirectional camera for 

detecting them (example: RoboCup or autonomous robots in tennis 
fields)

10.04.2017
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 KIVA Systems, Boston (MA) (acquired by Amazon in 2011)

Localization I 10

Introduction | Beacon Based Localization

Unique marker with known
absolute 2D position in the

map

Prof. Raff D'Andrea, ETH

10.04.2017



||

ASL Autonomous Systems Lab

Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Martin Rufli 

 High resolution (from VGA up to 16 Mpixels)
 Very high frame rate (several hundreds of Hz)
 Good for ground truth reference and multi-robot control

strategies
 Popular brands: 
 VICON (10kCHF per camera), 
 OptiTrack (2kCHF per camera)

Localization I 11

Introduction | Motion Capture Systems

10.04.2017
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 Consider a mobile robot moving in a known environment.

Localization I 12

Introduction | Map-based localization

10.04.2017
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
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Introduction | Map-based localization
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it can keep track of its motion using odometry.
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Introduction | Map-based localization
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
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Introduction | Map-based localization

Sensor reference frame

10.04.2017
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
 The robot makes an observation and updates its position 

and uncertainty

Localization I 16

Introduction | Map-based localization

Sensor reference frame

10.04.2017
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 Probability theory → error propagation, sensor fusion

 Belief representation  → discrete / continuous
(map/position)

 Motion model → odometry model

 Sensing → measurement model

Localization I 17

Ingredients | Probabilistic Map-based localization

10.04.2017
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 Continuous map with single 
hypothesis probability 
distribution 

 Continuous map with multiple 
hypotheses probability 
distribution 

 Discretized metric map (grid ) 
with 
probability distribution 

 Discretized topological map 
(nodes ) with probability 
distribution 

Localization I 18

Probabilistic localization | Belief Representation

A B C D E F G

Kalman Filter
Localization

Markov Localization

10.04.2017
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 Continuous

 Precision bound by sensor data
 Typically single hypothesis pose 

estimate
 Lost when diverging (for single 

hypothesis)
 Compact representation and 

typically reasonable in 
processing power.

 Discrete

 Precision bound by resolution of 
discretisation

 Typically multiple hypothesis 
pose estimate

 Never lost (when diverges 
converges to another cell)

 Important memory and 
processing power needed. (not 
the case for topological maps)

Localization I 19

Belief Representation | Characteristics

10.04.2017
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 Definition
 Dead reckoning (also deduced reckoning or odometry) is the 

process of calculating vehicle's current position by using a 
previously determined position and estimated speeds over the 
elapsed time

 Robot motion is recovered by integrating proprioceptive 
sensor velocities readings
 Pros: Straightforward
 Cons: Errors are integrated -> unbound

 Heading sensors (e.g., gyroscope) help to reduce the 
accumulated errors but drift remains

Localization I 20

Odometry

10.04.2017
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Odometry | The Differential Drive Robot
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 Kinematics

Localization I 22

Odometry | Wheel Odometry
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Can you demonstrate these equations?

This term comes from the application 
of the Instantaneous Center of Rotation
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 Error model

Localization I 23

Odometry | Error  Propagation
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 Note: Errors perpendicular to the direction of movement 
are growing much faster!

Localization I 24

Odometry | Growth of Pose uncertainty for Straight 
Line Movement

10.04.2017
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 Note: Errors ellipse does not remain perpendicular to the 
direction of movement!

Localization I 25

Odometry | Growth of Pose uncertainty for 
Movement on a Circle

10.04.2017
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 Note: Errors are not shaped like ellipses!

Localization I 26

Odometry | Example of non-Gaussian error model

[Fox, Thrun, Burgard, Dellaert, 2000]

Courtesy AI Lab, Stanford

10.04.2017
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 Deterministic Non-Deterministic 
(Systematic) (Non-Systematic) 

 Deterministic errors can be eliminated by proper calibration of the 
system. 

 Non-Deterministic errors are random errors. They have to be 
described by error models and will always lead to uncertain position 
estimate.

 Major Error Sources in Odometry:
 Limited resolution during integration (time increments, measurement 

resolution)
 Misalignment of the wheels (deterministic)
 Unequal wheel diameter (deterministic)
 Variation in the contact point of the wheel (non deterministic)
 Unequal floor contact (slippage, non planar …) (non deterministic)

Localization I 27

Odometry | Error sources

10.04.2017
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Odometry | Calibration of systematic errors 
[Borenstein 1996]

 The unidirectional square path experiment

10.04.2017
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 The bi-directional square path experiment

 BILD 2/3 Borenstein

Localization I 29

Odometry | Calibration of Errors II 
[Borenstein 1996]
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