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Introduction | Do we need to localize or not?

 To go from A to B, does the 
robot need to know where it is?
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 How to navigate between A and B
 navigation without hitting obstacles
 detection of goal location

 Possible by following always the left wall
 However, how to detect 

that the goal is reached

Localization I 4

Introduction | Do we need to localize or not?
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 Following the left wall is an example 
of “behavior based navigation”
 It can work in some environments 

but not in all
 With which accuracy and reliability do 

we reach the goal?

10.04.2017Localization I 5

Introduction | Do we need to localize or not?
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Introduction | Do we need to localize or not?

 As opposed to behavior based navigation is “map based 
navigation”
 Assuming that the map is known, at every time step the robot has 

to know where it is. How?
 If we know the start position, we can use wheel odometry or dead 

reckoning. Is this enough? What else can we use?

 But how do we represent the map for the robot?
 And how do we represent the position of the 

robot in the map? 
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 Global localization
 The robot is not told its initial position
 Its position must be estimated from scratch

 Position Tracking
 A robot knows its initial position and “only” has to accommodate 

small errors in its odometry as it moves

Localization I 7

Introduction | Definitions

?

10.04.2017
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 Localization based on external sensors, beacons or 
landmarks

 Odometry

 Map Based Localization - without external sensors or 
artificial landmarks, just use robot onboard sensors
 Example: Probabilistic Map Based Localization

Localization I 8

Introduction | How to localize?

10.04.2017
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Introduction | Beacon Based Localization

 Triangulation
 Ex 1: Poles with highly reflective surface and a laser for detecting 

them
 Ex 2: Coloured beacons and an omnidirectional camera for 

detecting them (example: RoboCup or autonomous robots in tennis 
fields)

10.04.2017
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 KIVA Systems, Boston (MA) (acquired by Amazon in 2011)

Localization I 10

Introduction | Beacon Based Localization

Unique marker with known
absolute 2D position in the

map

Prof. Raff D'Andrea, ETH

10.04.2017
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 High resolution (from VGA up to 16 Mpixels)
 Very high frame rate (several hundreds of Hz)
 Good for ground truth reference and multi-robot control

strategies
 Popular brands: 
 VICON (10kCHF per camera), 
 OptiTrack (2kCHF per camera)

Localization I 11

Introduction | Motion Capture Systems

10.04.2017
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 Consider a mobile robot moving in a known environment.

Localization I 12

Introduction | Map-based localization
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.

Localization I 13

Introduction | Map-based localization

10.04.2017
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.

Localization I 15

Introduction | Map-based localization

Sensor reference frame

10.04.2017
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
 The robot makes an observation and updates its position 

and uncertainty

Localization I 16

Introduction | Map-based localization

Sensor reference frame

10.04.2017
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 Probability theory → error propagation, sensor fusion

 Belief representation  → discrete / continuous
(map/position)

 Motion model → odometry model

 Sensing → measurement model

Localization I 17

Ingredients | Probabilistic Map-based localization

10.04.2017
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 Continuous map with single 
hypothesis probability 
distribution 

 Continuous map with multiple 
hypotheses probability 
distribution 

 Discretized metric map (grid ) 
with 
probability distribution 

 Discretized topological map 
(nodes ) with probability 
distribution 

Localization I 18

Probabilistic localization | Belief Representation

A B C D E F G

Kalman Filter
Localization

Markov Localization

10.04.2017
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 Continuous

 Precision bound by sensor data
 Typically single hypothesis pose 

estimate
 Lost when diverging (for single 

hypothesis)
 Compact representation and 

typically reasonable in 
processing power.

 Discrete

 Precision bound by resolution of 
discretisation

 Typically multiple hypothesis 
pose estimate

 Never lost (when diverges 
converges to another cell)

 Important memory and 
processing power needed. (not 
the case for topological maps)

Localization I 19

Belief Representation | Characteristics

10.04.2017
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 Definition
 Dead reckoning (also deduced reckoning or odometry) is the 

process of calculating vehicle's current position by using a 
previously determined position and estimated speeds over the 
elapsed time

 Robot motion is recovered by integrating proprioceptive 
sensor velocities readings
 Pros: Straightforward
 Cons: Errors are integrated -> unbound

 Heading sensors (e.g., gyroscope) help to reduce the 
accumulated errors but drift remains

Localization I 20

Odometry

10.04.2017
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Odometry | The Differential Drive Robot
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 Kinematics

Localization I 22

Odometry | Wheel Odometry
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Can you demonstrate these equations?

This term comes from the application 
of the Instantaneous Center of Rotation

10.04.2017
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 Error model

Localization I 23

Odometry | Error  Propagation
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 Note: Errors perpendicular to the direction of movement 
are growing much faster!

Localization I 24

Odometry | Growth of Pose uncertainty for Straight 
Line Movement

10.04.2017
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 Note: Errors ellipse does not remain perpendicular to the 
direction of movement!

Localization I 25

Odometry | Growth of Pose uncertainty for 
Movement on a Circle

10.04.2017
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 Note: Errors are not shaped like ellipses!

Localization I 26

Odometry | Example of non-Gaussian error model

[Fox, Thrun, Burgard, Dellaert, 2000]

Courtesy AI Lab, Stanford

10.04.2017
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 Deterministic Non-Deterministic 
(Systematic) (Non-Systematic) 

 Deterministic errors can be eliminated by proper calibration of the 
system. 

 Non-Deterministic errors are random errors. They have to be 
described by error models and will always lead to uncertain position 
estimate.

 Major Error Sources in Odometry:
 Limited resolution during integration (time increments, measurement 

resolution)
 Misalignment of the wheels (deterministic)
 Unequal wheel diameter (deterministic)
 Variation in the contact point of the wheel (non deterministic)
 Unequal floor contact (slippage, non planar …) (non deterministic)

Localization I 27

Odometry | Error sources

10.04.2017
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Odometry | Calibration of systematic errors 
[Borenstein 1996]

 The unidirectional square path experiment

10.04.2017
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 The bi-directional square path experiment

 BILD 2/3 Borenstein

Localization I 29

Odometry | Calibration of Errors II 
[Borenstein 1996]

10.04.2017


