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Last time: how to do SLAM? 

Today: what to do with SLAM? 

 

§  Vision-based SLAM – state of the art 

§  Vision-based Robotic Perception:  

§  Current Challenges  

§  Overview of Research Activities in V4RL 

§  Lifelong Place Recognition (Dr Zetao Chen) 

SLAM II 2 

SLAM II | today’s lecture 
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SLAM (SIMULTANEOUS LOCALIZATION AND MAPPING):  
“How can a body navigate in a previously unknown environment,  
while constantly building & updating a map of its workspace using 
onboard sensors & onboard computation only?” 

§  The backbone of spatial awareness of a robot 

§  One of the most challenging problems in  
probabilistic robotics 

§  Pure localization with a known map.  
SLAM: no a priori knowledge of the robot’s workspace 

§  Mapping with known robot poses.  
SLAM: the robot poses have to be estimated along  
the way 

Helicopter position given by Vicon tracker 
ETH Zurich Flying Machine Arena, IDCS & NCCR DF, 2013 

Robot localization using Satellite images 
[Senlet and Elgammal, ICRA 2012] 

Computer Vision meets Robotics| the SLAM problem 
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SLAM | how does it work? 

§  Can we track the motion of a camera/robot while  
it is moving? 

§  Traditional SLAM:  
Pick natural scene features as landmarks, observe their 
motion & reason about robot motion 

§  Research into:  
§  “Good” features to track, sensors, trackers, representations, 

assumptions 

§  Ways of dealing with uncertainty in the processes  
involved 

The videos are courtesy of A. Davison 
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ü  revolutionary in the Vision & Robotics communities, but… 
û  not ready to perform tasks in general, uncontrolled environments 

 

Monocular SLAM | milestone systems 

PTAM 
[Klein, Murray 2007] 

Graph-SLAM 
[Eade, Drummond 2007] 

5 

MonoSLAM 
[Davison et al. 2003, 2007] 

SLAM II 
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ORB-SLAM [Mur-Artal et al., TRO 2015] 

SLAM II 

§  The most powerful monocular  
SLAM approach today 

§  Uses ORB features (binary) in a  
keyframe-based approach 

§  Binary place recognition 

￼ 

Code available on http://webdiis.unizar.es/~raulmur/orbslam/ 
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2007: [MonoSLAM,  
Davison et al., PAMI] 
 
 
 
 
2009: EU FP7, sFly 

Computer Vision meets Robotics | a very short history 
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aim:  
Fully autonomous UAVs* to operate in and map 
an unknown environment in a search & rescue  
scenario. 
 
 
 
*UAV= Unmanned Aerial Vehicle 

sFly | swarm of micro flying robots 

SLAM II 
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Weight 
§  Lightweight & safe(r) ð easily deployable than larger robots 
§  Limited payload (<500g): 10g needs approx. 1W in hovering mode 

è Limited computational power onboard è choose sensors with high information density 

 
Autonomy 
§  Low bandwidth / unreliable data links 

ð onboard processing 
§  Limited battery life (~10mins) 

Small UAVs | properties & challenges  

Agility 
§  Highly agile (up to 8m/s) 
§  Fast, unstable dynamics 
§  High-rate real-time state estimation.  

The UAV cannot “stop” 
Platform 
dynamics 

control speed 
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Failure detection 

unscaled  
pose + cov Monocular SLAM EKF 

State: pose, scale, biases 
Complexity = constant 

acc 
gyro IMU readings 

sFly | enabling UAV navigation 

aim: autonomous vision-based flights in unknown  
environments 

approach: minimal sensor setup 
à essentially fuse visual & inertial cues 
§  Downward-looking camera: bearing only measurements  

à Monocular SLAM (based on PTAM) 

§  IMU:  Acceleration & angular velocity 

§  Loosely-coupled visual-inertial fusion 
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    Flights controlled using visual & inertial cues  

[Achtelik et al., IROS 2012] 
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Vision-based UAV navigation 

§  First UAV system capable of vision-based flights in such real scenarios 
§  Publicly available framework used by NASA JPL, UPenn, MIT, TUM,…  

Are we there yet? 

Photo credit: Francois Pomerleau 
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SLAM | current challenges 

•  Fast motion 
•  Large scales 
•  Robustness  

    dynamic scenes, motion blur, lighting, … 

•  Rich maps 
•  Low computation for embedded apps 
•  Combination of multiple agents 

 
§  Handle larger amounts of data more effectively 
§  Competing goals: 

 

 
 PRECISION 

EFFICIENCY 

key: agile manipulation  
of information 

1ms Target Tracking Vision Chip  
by Ishikawa Komuro University 
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§  Employ team of aerial robots equipped with cameras  
§  Develop visual perception & intelligence to: 

§  Navigate autonomously 
§  Collaboratively build a 3D reconstruction of the  

surrounding area  

UAVs : Unmanned Aerial Vehicles 
§  Agile, easy access to scene overview & remote areas 

§  Dynamics hard to track, limited payload 
ð collaboration is key to efficient sensing & processing 

§  Extension to additional platforms  

Robotic Perception | what next? 

SLAM II 
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§  Team of small UAVs: each equipped with visual & inertial  
sensors and a manipulator 

§  Aim: collaboratively perceive the environment, develop  
autonomy in navigation and coordination to perform a  
common manipulation task 

§  V4RL: collaborative vision-based perception for navigation  
& 3D reconstruction 

§  2015-2018, 9 partners 

AEROWORKS | EU project 
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§  Integrated Components for Assisted Rescue and Unmanned Search operations (2012-2015),  
budget: 17.5 M€, 24 partners 

§  Search-and-rescue combining robotics for land, sea and air 
§  ETHZ: map generation, people detection, … from a UAV 

ICARUS| EU project 

SLAM II 
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§  Smart collaboration between Humans and ground-aErial Robots for imProving rescuing 
activities in Alpine environments 

§  11 M€, 10 partners, 2013-2017 

§  Sensor fusion (visible light and thermal cameras, IMU, …) for robust SLAM, environment 
reconstruction & victim localization  
 

SHERPA | EU project 
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Challenge I: High-fidelity localization & mapping 
§  The backbone of perception of space & navigation autonomy 

 
§  Pioneering work in UAV navigation, but lacks scalability, robustness and deployability for 

application in real scenarios 

? ? 
I                           II                          III                       IV                         V 

         EXTERNAL VIEW                                ONBOARD VIEW                                         INTERNAL MAP 

Vision-based Robotic Perception | the challenges 

SLAM II 
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§  Image keypoints suitable for robotics applications: for fast 
& robust detection and matching 

§  Rotation-, scale-invariant keypoints 

§  Binary descriptor: e.g. BRISK, ORB, BRIEF & variants 

 

 
BRISK: 
§  Precision-Recall: comparable to SIFT & SURF 
§  ~10x faster than SURF 
§  Open-source, features in OpenCV 

 

SURF descriptor 

BRISK descriptor 

? 
I 

[Leutenegger et al., ICCV 2011] 

Test Frame 1               |  Test Frame 2 

Suitable keypoint detection/description 
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§  Visual-Inertial sensor: 
HW-synced stereo camera (global shutter) + IMU 
 

“OKVIS”: visual-inertial SLAM 

§  Tight visual & inertial fusion: replace motion  
model with IMU constraints on the actual motion 

§  Visual cues: very descriptive, but sensitive to  
motion blur, lighting conditions… 

§  Inertial cues: accurate estimates for short-term  
motions, unsuitable for longer-term 

§  Open-source: http://ethz-asl.github.io/okvis_ros/ 

? 
I 

[Leutenegger et al., RSS 2013] 

Latest Keyframe                                               SLAM map 

Current Frame 

Sensor fusion for SLAM 

SLAM II 
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       Robust VI SLAM for repetitive flights [Surber et al., ICRA 2017] 

Introduction 

? 
I 
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§  Dynamic Vision Sensor (DVS) 

§  Similar to the human retina:  
captures intensity changes asynchronously instead of 
capturing image frames at a fixed rate 

ü  Low power 
ü  High temporal resolution è tackle motion blur 
ü  High dynamic range 

Work with Ignacio Alzugaray 

? 
I 

Event-based Cameras for Robot Navigation 
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Challenge II: Dense scene reconstruction 

§  Vital for robot interaction with its environment 

§  Trade-off: level of detail vs.  
computational cost 

§  Work towards both  
(a) online onboard and  
(b) scalable offboard functionality 

 
 
 
 

  LSD-SLAM [Engel et al, ECCV 2014]        DTAM [Newcombe et al., ICCV 2011] 

? ? 
I                           II                          III                       IV                         V 

Vision-based Robotic Perception | the challenges 

SLAM II 
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Towards low-cost, denser  
3D reconstruction with a single camera 

[Teixeira & Chli, ICRA 2017] 

II 

SLAM II 
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Leica Theodolite 
Total Station Aim: global, accurate, dense reconstruction 

II 

Work with Lucas Teixeira 

Towards low-cost, denser  
3D reconstruction with a single camera 

SLAM II 
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§  Monocular-inertial 
SLAM (OKVIS) 

§  Isolate reliable SLAM 
points è form regular, 
“smooth” mesh 

§  Denser representation 
in < 8ms per frame 

§  Datasets & Code on 
www.v4rl.ethz.ch  

II 

[Teixeira & Chli, IROS 2016] 

Towards low-cost, denser 3D reconstruction 
with a single camera from a small UAV 

VIEW FROM UAV 

SLAM II 



Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  | 27 | 

[Karrer et al., IROS 2016] 

II 

Real-time Dense Surface Reconstruction for 
Manipulation 

SLAM II 

§  Datasets & 
ground truth on 
www.v4rl.ethz.ch  
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Challenge III: Place recognition 
§  Recognising when the robot visits a “known” location for: 

§  Drift Correction 
§  Trajectory / map merging 

? ? 
I                           II                          III                       IV                         V 

§  Trajectory / map merging 

Vision-based Robotic Perception | the challenges 
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§  Place appearance changes between visits 

§  Large viewpoint changes (especially from a UAV) 

§  Seasonal / Illumination changes 

? 
III 

§  Different places can appear identical 

Vision-based Place recognition:  
common problems  

SLAM II 
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? 
III 

Towards lifelong place recognition 
 

Dr Zetao Chen 
 

Postdoctoral Research Fellow, V4RL, ETH Zurich 

SLAM II 
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What is “Lifelong Place Recognition”? 

Lifelong Place Recognition is the process of identifying 
previously visited locations over long time spans, where the 

same location can undergo dramatic condition variations 
caused by illumination, seasons or weather.  

SLAM II 
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Lifelong Place Recognition | current systems 

Current systems have come far, but are not there yet 

SLAM II 
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Summer Image 

Is this the same place? Why? 

Winter Image 

Lifelong Place Recognition | spot the similarities 

SLAM II 
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§  Many false matches, because SIFT only looks at local patch gradients, which are not robust under  
strong condition variations.  

SLAM II 

Lifelong Place Recognition | spot the similarities 

Extract SIFT features in each image & match them 
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§  We look for the underlying, basic scene structure, e.g. buildings, railways, vegetation 
§  + We instinctively predict Conditional Changes, e.g. green trees in the summer may turn white in winter 

SLAM II 

Lifelong Place Recognition | spot the similarities 
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§  In order to localize against strong condition 
variations, we need high-level semantic 
context, such as what the scene is about, 
for example, via image segmentation to 
assign a class-label to each pixel in the 
scene, etc.  

Lifelong Place Recognition | how to do it? 

ROAD 

VEGETATION 

CARS 
TRUCK 

SIDE- 
STREET 

SKY LAMP 

SIGN 

PEOPLE 

BUILDING 
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Semantic Context I | scene type recognition 

SLAM II 

A white patch in context: 
A white patch in a rocky scene can be a 
waterfall, while in a sky scene it can 
represent a cloud  
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Semantic Context II | scene segmentation 

§  Scene segmentation can be used to predict the class label for each pixel in the image 

Image from [Yao et al., CVPR 2012] 

SLAM II 
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Obtaining Semantic Context | the deep learning approach 

§  Deep learning models have achieved state-of-the-art performance in various image semantic tasks, 
such as scene recognition, object detection, scene segmentation, etc. 

§  Use of deep learning enables end-to-end training directly on the task, without manual tuning on 
system parameters. 

Deep Learning approaches have 
been dominating the top scoring 

performances in the ongoing 
“ImageNet” image recognition 

challenge over the last 4 years! 

SLAM II 

Computer Vision 
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Obtaining Semantic Context | an illustrative example 

§  We need a model in the middle, which takes the input image on the left and generates the semantic 
segmentation & labeling of each pixel in that image as shown on the right. 

SLAM II 

Input:  Output:  y x 
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Input:  Output:  

forward/inference 

SLAM II 

Obtaining Semantic Context | an illustrative example 

§  The 1st model layer, which is parameterized by w1, takes x as input and outputs h1=f(x,w1) 

§  Th 2nd model layer, which is parameterized by w2, takes h1 as input and outputs h2=f(h1,	w2) 

§  The 3rd model layer, which is parameterized by w3, takes h2 as input and outputs h3=f(h2,	w3) 

§  The last model layer, which is parameterized by w4, takes h3 as input and outputs y=f(h3,	w4) 

§  A forward inference stage completes! 

h1=f(x,w1) 

w1 w2 w3 w4 

h2=f(h1,w2) h3=f(h2,w3) x y 
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Input:  Output:  

forward/inference 

SLAM II 

Obtaining Semantic Context | an illustrative example 

h1=f(x,w1) 

w1 w2 w3 w4 

h2=f(h1,w2) h3=f(h2,w3) x y 

§  The parameter set W={w1	,	w2	,	w3	,	w4	} encodes the mapping from x to y. How does it 
learn that? 
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Input:  Output:  

forward/inference 

SLAM II 

Obtaining Semantic Context | an illustrative example 

§  The parameter set W={w1	,	w2	,	w3	,	w4	} encodes the mapping from x to y. How does it 
learn that? 

§  Actually, at the 1st forward stage, the output may be quite different from the ground truth   
§  A backward learning stage can then back-propagate their difference and update W to 

minimize this difference gradually 
§  This process iterates until the difference between the output and the ground truth is 

smaller than a pre-defined threshold 

h1=f(x,w1) 

w1 w2 w3 w4 

h2=f(h1,w2) h3=f(h2,w3) x y 

Ground truth 

- difference 

backward/learning 
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Lifelong Place Recognition | ongoing work at V4RL 

Construction of a condition-varying dataset to train a deep learning network 

§  We gather images captured from static cameras around the world  
§  Each camera observes the same scene constantly and over several years 
§  2500 cameras selected at the locations above(red dots) 

SLAM II 
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Dataset examples: diversity of scenes  

SLAM II 

Lifelong Place Recognition | ongoing work at V4RL 
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Large condition variations in each scene 

SLAM II 

Lifelong Place Recognition | ongoing work at V4RL 
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Feeds from different 
cameras: 

SLAM II 

Lifelong Place Recognition | ongoing work at V4RL 

Network Training 
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Lifelong Place Recognition | conclusion 

§  Currently, the use of deep learning-based approaches onboard a UAV is unrealistic 
due to their: 

§  High computational cost – cannot run in real-time on a typical UAV processor 
§  High power consumption  

§  Need for bigger onboard memory to host most existing deep learning models 

§  Open research questions: 
§  How can we compress deep learning models? 

§  Could we reuse image features that are typically extracted onboard UAVs in combination with deep 
learning approaches e.g. via the help of a ground station? 

SLAM II 

? 
III 
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Challenge IV: Collaborative robot sensing & mapping 
§  Exploit presence of multiple UAVs (occlusions, accuracy, time efficiency) 

? ? 
I                           II                          III                       IV                         V 

Vision-based Robotic Perception | the challenges 

SLAM II 



Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  | 50 | 

Challenge IV: Collaborative robot sensing & mapping 
§  Exploit presence of multiple UAVs (occlusions, accuracy, time efficiency) 

Variable-baseline stereo from 2 UAVs 
[Achtelik et al, IROS 2011] 

§  Flight-critical tasks on client 
§  Computationally expensive tasks on server 
§  What information needs to be shared? Work with Patrik Schmuck 

& Marco Karrer 

? ? 
I                           II                          III                       IV                         V 

Vision-based Robotic Perception | the challenges 
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[Schmuck & Chli, ICRA 2017] 
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[Alvarez et al, ISER 2014] 

Collision avoidance with a camera 
and offboard GPU processing 

[Achtelik et al, JFR 2014] 

Intermediate & final paths 
computed in simulation 

? ? 
I                           II                          III                       IV                         V 

Vision-based Robotic Perception | the challenges 

SLAM II 

Challenge V: Navigation Strategies – obstacle avoidance & path planning 

§  Complete the navigation loop 
§  Existing: mostly off-board solutions 

 
 

§  Develop onboard local obstacle avoidance & comprehensive path planning 
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UAV path planning with VI-SLAM in the loop  
[Alzugaray et al., ICRA 2017] 

V 
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Master/Semester Projects @ V4RL 

Introduction 

Long-Term Place Recognition with Generative Adversarial Nets (Tianshu Hu) 

Scene Reconstruction from a DVS camera (Wilko Schwarting) Dense 3D Reconstruction for Aerial Manipulation (Marco Karrer) 

Real-time pose tracking with an external camera (Marco Moos) 
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Vision-based SLAM:  
§  has come a long way: from handheld to vision-stabilised flights of UAVs 
§  key to spatial awareness of robots ð bridges the gap between Computer Vision and 

Robotics 
Perception + Collaboration are central to Robotics today: 

§  Large sums of research funds in the area (e.g. SHERPA €11M, ICARUS €17.5M) 

§  Still work to be done before robots are ready for real missions 
§  Potential for great impact in the way we perceive/employ robots today 

Conclusion & Impact 

? ? 
I                           II                          III                       IV                         V 

SLAM II 55 | 


