EHzürich

SLAM II: SLAM for robotic vision-based perception

Autonomous Mobile Robots

Margarita Chli Martin Rufli, Roland Siegwart

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

SLAM II | today's lecture

Last time: how to do SLAM?

Today: what to do with SLAM?

- Vision-based SLAM state of the art
- Vision-based Robotic Perception:
 - Current Challenges
 - Overview of Research Activities in V4RL
 - Lifelong Place Recognition (Dr Zetao Chen)

Computer Vision meets Robotics | the SLAM problem

SLAM (SIMULTANEOUS LOCALIZATION AND MAPPING):

"How can a body **navigate** in a previously unknown environment, while constantly building & updating a **map** of its workspace using onboard sensors & onboard computation only?"

- The backbone of spatial awareness of a robot
- One of the most challenging problems in probabilistic robotics
 - Pure localization with a known map.
 SLAM: no a priori knowledge of the robot's workspace
 - Mapping with known robot poses. SLAM: the robot poses have to be estimated along the way

SLAM | how does it work?

- Can we track the motion of a camera/robot while it is moving?
- Traditional SLAM: Pick natural scene features as landmarks, observe their motion & reason about robot motion
- Research into:
 - "Good" features to track, sensors, trackers, representations, assumptions
 - Ways of dealing with uncertainty in the processes involved

Monocular SLAM | milestone systems

revolutionary in the Vision & Robotics communities, but...

not ready to perform tasks in general, uncontrolled environments

ORB-SLAM [Mur-Artal et al., TRO 2015]

- The most powerful monocular SLAM approach today
- Uses ORB features (binary) in a keyframe-based approach
- Binary place recognition

Code available on http://webdiis.unizar.es/~raulmur/orbslam/

Computer Vision meets Robotics | a very short history

2007: [**MonoSLAM**, Davison et al., PAMI]

2009: EU FP7, **sFly**

sFly | swarm of micro flying robots

aim:

Fully autonomous UAVs* to operate in and map an unknown environment in a search & rescue scenario.

*UAV= Unmanned Aerial Vehicle

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

Small UAVs | properties & challenges

control speed

Weight

- Lightweight & safe(r) ⇒ easily deployable than larger robots
- Limited payload (<500g): 10g needs approx. 1W in hovering mode
 - → Limited computational power onboard → choose sensors with high information density

Platform

dynamics

Autonomy

- Low bandwidth / unreliable data links
 ⇒ onboard processing
- Limited battery life (~10mins)

Agility

- Highly agile (up to 8m/s)
- Fast, unstable dynamics
- High-rate real-time state estimation.
 The UAV cannot "stop"

sFly | enabling UAV navigation

aim: autonomous vision-based flights in unknown environments

approach: minimal sensor setup→ essentially fuse visual & inertial cues

- Downward-looking camera: bearing only measurements
 → Monocular SLAM (based on PTAM)
- IMU: Acceleration & angular velocity
- Loosely-coupled visual-inertial fusion

Flights controlled using visual & inertial cues

TTTTTTTTTTTT

Vision-based UAV navigation

- First UAV system capable of vision-based flights in such real scenarios
- Publicly available framework used by NASA JPL, UPenn, MIT, TUM,...

Are we there yet?

•

SLAM | current challenges

- Fast motion Rich maps
- Large scales

Robustness

- Rich maps
- Low computation for embedded apps
- Combination of multiple agents

➡ dynamic scenes, motion blur, lighting, …

- Handle larger amounts of data more effectively
- Competing goals:

key: agile manipulation of information

Robotic Perception | what next?

- Employ team of aerial robots equipped with cameras
- Develop visual perception & intelligence to:
 - Navigate autonomously
 - Collaboratively build a 3D reconstruction of the surrounding area

UAVs : Unmanned Aerial Vehicles

- Agile, easy access to scene overview & remote areas
- Dynamics hard to track, limited payload
 \$\vec{collaboration}\$ is key to efficient sensing & processing
- Extension to additional platforms

AEROWORKS | EU project

- Team of small UAVs: each equipped with visual & inertial sensors and a manipulator
- Aim: collaboratively perceive the environment, develop autonomy in navigation and coordination to perform a common manipulation task
- V4RL: collaborative vision-based perception for navigation & 3D reconstruction
- 2015-2018, 9 partners

ICARUS | EU project

REA O ICARUS

- Integrated Components for Assisted Rescue and Unmanned Search operations (2012-2015), budget: 17.5 M€, 24 partners
- Search-and-rescue combining robotics for land, sea and air
- ETHZ: map generation, people detection, ... from a UAV

SHERPA | EU project

- Smart collaboration between Humans and ground-aErial Robots for imProving rescuing activities in Alpine environments
- 11 M€, 10 partners, 2013-2017
- Sensor fusion (visible light and thermal cameras, IMU, …) for robust SLAM, environment reconstruction & victim localization

SHERPA

.sherpa-project.eu

Vision-based Robotic Perception | the challenges

Challenge I: High-fidelity localization & mapping

The backbone of perception of space & navigation autonomy

 Pioneering work in UAV navigation, but lacks scalability, robustness and deployability for application in real scenarios

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

Suitable keypoint detection/description

- Image keypoints suitable for robotics applications: for fas & robust detection and matching
- Rotation-, scale-invariant keypoints
- Binary descriptor: e.g. BRISK, ORB, BRIEF & variants

		_
Descriptor	Run time [ms.]	
SURF	117.1	- Γ
SIFT	448.6	
BRIEF	3.8	
BRISK	10.6	
ORB	4.2	0.4

							E	BR	IS	< (des	scr	ipt	or	
0	0	Τ.			0	Т	~		0				•		

11/.1	1 1	0	0	1	1 1		0	0	1	0	0	1	1	1	0
448.6						_									
3.8									SL	IR	Fс	les	scr	ip	tor
10.6														<u> </u>	
4 2	0.4	1.0	0.1		0.3	0.4	0.7	0.	.6 0	0.11	2	5	0	.1	0.7

BRISK:

- Precision-Recall: comparable to SIFT & SURF
- ~10x faster than SURF
- Open-source, features in OpenCV

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

[Leutenegger et al., ICCV 2011]

rich

Sensor fusion for SLAM

 Visual-Inertial sensor: HW-synced stereo camera (global shutter) + IMU

"OKVIS": visual-inertial SLAM

- Tight visual & inertial fusion: replace motion model with IMU constraints on the actual motion
- Visual cues: very descriptive, but sensitive to motion blur, lighting conditions...
- Inertial cues: accurate estimates for short-term motions, unsuitable for longer-term
- Open-source: <u>http://ethz-asl.github.io/okvis_ros/</u>

Robust VI SLAM for repetitive flights [Surber et al., ICRA 2017]

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

Margarit

rich

Event-based Cameras for Robot Navigation

- Dynamic Vision Sensor (DVS)
- Similar to the human retina:
 captures intensity changes asynchronously instead of capturing image frames at a fixed rate
 - ✓ Low power
 - ✓ High temporal resolution → tackle motion blur
 - ✓ High dynamic range

iniLabs

Vision-based Robotic Perception | the challenges

Challenge II: Dense scene reconstruction

- Vital for robot interaction with its environment
- Trade-off: level of detail vs. computational cost
- Work towards both
 (a) online onboard and
 (b) scalable offboard functionality

Towards low-cost, denser 3D reconstruction with a single camera

[Teixeira & Chli, ICRA 2017]

Towards low-cost, denser 3D reconstruction with a single camera

Towards low-cost, denser 3D reconstruction with a single camera from a small UAV

- Monocular-inertial SLAM (OKVIS)
- Isolate reliable SLAM
 points → form regular,
 "smooth" mesh
- Denser representation in < 8ms per frame
- Datasets & Code on <u>www.v4rl.ethz.ch</u>

[Teixeira & Chli, IROS 2016]

Real-time Dense Surface Reconstruction for Manipulation

 Datasets & ground truth on <u>www.v4rl.ethz.ch</u>

```
[Karrer et al., IROS 2016]
```

Vision-based Robotic Perception | the challenges

Challenge III: Place recognition

- Recognising when the robot visits a "known" location for:
 - Drift Correction

Trajectory / map merging

Vision-based Place recognition: common problems

Towards lifelong place recognition

Dr Zetao Chen

Postdoctoral Research Fellow, V4RL, ETH Zurich

What is "Lifelong Place Recognition"?

Lifelong Place Recognition is the process of identifying previously **visited locations over long time spans**, where the same location can undergo **dramatic condition** variations caused by illumination, seasons or weather.

Lifelong Place Recognition | current systems

Current systems have come far, but are not there yet

Business

Google car is no match for snow and ice

Driverless vehicle can't yet detect winter road conditions, say experts who believe Google is decades away from a solution.

A Google self-driving car: snow remains an issue.

Lifelong Place Recognition | spot the similarities

Is this the same place? Why?

Winter Image

Summer Image

Lifelong Place Recognition | spot the similarities

Extract SIFT features in each image & match them

 Many false matches, because SIFT only looks at local patch gradients, which are not robust under strong condition variations.

Lifelong Place Recognition | spot the similarities

- We look for the underlying, basic scene structure, e.g. buildings, railways, vegetation
- + We instinctively predict Conditional Changes, e.g. green trees in the summer may turn white in winter

Lifelong Place Recognition | how to do it?

SIDE-STREET

 In order to localize against strong condition variations, we need high-level semantic context, such as what the scene is about, for example, via image segmentation to assign a class-label to each pixel in the scene, etc.

PEOPLE

ROAD

TRUCK

CARS

E *H* zürich

Semantic Context I | scene type recognition

SLAM II | 37

Semantic Context II | scene segmentation

Image from [Yao et al., CVPR 2012]

• Scene segmentation can be used to predict the class label for each pixel in the image

Obtaining Semantic Context | the deep learning approach

- Deep learning models have achieved state-of-the-art performance in various image semantic tasks, such as scene recognition, object detection, scene segmentation, etc.
- Use of deep learning enables end-to-end training directly on the task, without manual tuning on system parameters.

Deep Learning approaches have been **dominating the top scoring performances** in the ongoing "ImageNet" image recognition challenge over the last 4 years!

Obtaining Semantic Context | an illustrative example Image: Semantillustrative example Image: Seman

Input: x

Output: y

 We need a model in the middle, which takes the input image on the left and generates the semantic segmentation & labeling of each pixel in that image as shown on the right.

ETHzürich **Obtaining Semantic Context** | an illustrative example W_1 W_2 W_3 W_4 W

Input: x

$h_1 = f(x, w_1)$ $h_2 = f(h_1, w_2)$ $h_3 = f(h_2, w_3)$ forward/inference

- The 1st model layer, which is parameterized by w_1 , takes x as input and outputs $h_1 = f(x, w_1)$
- Th 2nd model layer, which is parameterized by w_2 , takes h_1 as input and outputs $h_2 = f(h_1, w_2)$
- The 3rd model layer, which is parameterized by w_3 , takes h_2 as input and outputs $h_3 = f(h_2, w_3)$
- The last model layer, which is parameterized by w_4 , takes h_3 as input and outputs $y=f(h_3, w_4)$
- A forward inference stage completes!

Output: y

EHzürich

Obtaining Semantic Context | an illustrative example

The parameter set W={w₁, w₂, w₃, w₄} encodes the mapping from x to y. How does it learn that?

Hzürich

Obtaining Semantic Context | an illustrative example

- learn that?
- Actually, at the 1st forward stage, the output may be quite different from the ground truth
- A backward learning stage can then back-propagate their difference and update W to minimize this difference gradually
- This process iterates until the difference between the output and the ground truth is smaller than a pre-defined threshold

car

road

Ground truth

Lifelong Place Recognition | ongoing work at V4RL

Construction of a condition-varying dataset to train a deep learning network

- We gather images captured from static cameras around the world
- Each camera observes the same scene constantly and over several years
- 2500 cameras selected at the locations above(red dots)

Lifelong Place Recognition | ongoing work at V4RL

Dataset examples: diversity of scenes

Lifelong Place Recognition | ongoing work at V4RL

Large condition variations in each scene

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

EHzürich

Lifelong Place Recognition | ongoing work at V4RL

Network Training

Feeds from different cameras:

Hzürich

Lifelong Place Recognition | conclusion

- Currently, the use of deep learning-based approaches onboard a UAV is unrealistic due to their:
 - High computational cost cannot run in real-time on a typical UAV processor
 - High power consumption
 - Need for bigger onboard memory to host most existing deep learning models
 - Open research questions:
 - How can we compress deep learning models?
 - Could we reuse image features that are typically extracted onboard UAVs in combination with deep learning approaches e.g. via the help of a ground station?

Vision-based Robotic Perception | the challenges

Challenge IV: Collaborative robot sensing & mapping

Exploit presence of multiple UAVs (occlusions, accuracy, time efficiency)

Vision-based Robotic Perception | the challenges

Challenge IV: Collaborative robot sensing & mapping

Exploit presence of multiple UAVs (occlusions, accuracy, time efficiency)

- Flight-critical tasks on client
- Computationally expensive tasks on server
- What information needs to be shared?

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart Work with Patrik Schmuck & Marco Karrer

Variable-baseline stereo from 2 UAVs [Achtelik et al, IROS 2011]

[Schmuck & Chli, ICRA 2017]

Loop Closure: map optimization

Top view

Vision-based Robotic Perception | the challenges

- Challenge V: Navigation Strategies obstacle avoidance & path planning
- Complete the navigation loop
- Existing: mostly off-board solutions

[Alvarez et al, ISER 2014]

Collision avoidance with a camera and offboard GPU processing

[Achtelik et al, JFR 2014]

Intermediate & final paths computed in simulation

Develop onboard local obstacle avoidance & comprehensive path planning

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

UAV path planning with VI-SLAM in the loop [Alzugaray et al., ICRA 2017]

V

Master/Semester Projects @ V4RL

Long-Term Place Recognition with Generative Adversarial Nets (Tianshu Hu)

Current results

Summer

Winter

Real-time pose tracking with an external camera (Marco Moos)

Proposed method

Faessler et al. ICRA 2014 ++edited with our adaptive marker size

Scene Reconstruction from a DVS camera (Wilko Schwarting)

Dense-3D Reconstruction for Aeriah Mañipulation (Marco Karrer) visual, inertial and RGBD data

depth image res.: 480x360 average time per frame: 21ms time horizon: 3s

Conclusion & Impact

Vision-based SLAM:

- has come a long way: from handheld to vision-stabilised flights of UAVs
- key to spatial awareness of robots ⇒ bridges the gap between Computer Vision and Robotics

Perception + Collaboration are central to Robotics today:

Large sums of research funds in the area (e.g. SHERPA €11M, ICARUS €17.5M)

- Still work to be done before robots are ready for real missions
- Potential for great impact in the way we perceive/employ robots today