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SLAM Il | today’s lecture

Last time: how to do SLAM?
Today: what to do with SLAM?

= Vision-based SLAM — state of the art

= Vision-based Robotic Perception:

= Current Challenges
= Qverview of Research Activities in V4RL

= Lifelong Place Recognition (Dr Zetao Chen)
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Computer Vision meets Robotics| the SLAM problem QyvarL

SLAM (SIMULTANEOUS LOCALIZATION AND MAPPING):
“How can a body navigate in a previously unknown environment,
while constantly building & updating a map of its workspace using |
onboard sensors & onboard computation only?”

= The backbone of spatial awareness of a robot

= One of the most challenging problems in
probabilistic robotics

= Pure localization with a known map.
SLAM: no a priori knowledge of the robot’s workspace

= Mapping with known robot poses.
SLAM: the robot poses have to be estimated along

the way
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Autonomous Mobile Robots Helicopter position given by Vicon tracker
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SLAM | how does it work?

= (Can we track the motion of a camera/robot while
it is moving?

= Traditional SLAM:
Pick natural scene features as landmarks, observe their
motion & reason about robot motion

= Research into:

= “Good” features to track, sensors, trackers, representations,
assumptions

= Ways of dealing with uncertainty in the processes
involved
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Monocular SLAM | milestone systems
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position

MonoSLAM
[Davison et al. 2003, 2007]

v revolutionary in the Vision & Robotics communities, but...
X not ready to perform tasks in general, uncontrolled environments
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ORB-SLAM ur-artal et al., TRO 2015] QrvarL

Code available on http://webdiis.unizar.es/~raulmur/orbslam/

= The most powerful monocular
SLAM approach today

= Uses ORB features (binary) in a
keyframe-based approach

= Binary place recognition
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Computer Vision meets Robotics | a very short history QyvarL

2007: [MonoSLAM,
Davison et al., PAMI]

2009: EU FP7, sFly
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sFly | swarm of micro flying robots QrVaRL

Z

, SFly

aim: oo . 75
Fully autonomous UAVs* to operate in and map
an unknown environment in a search & rescue

scenario.

*UAV= Unmanned Aerial Vehicle
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Small UAVs | properties & challenges QrvanL

Weight
= Lightweight & safe(r) = easily deployable than larger robots

= Limited payload (<5009): 10g needs approx. 1W in hovering mode
=» Limited computational power onboard =» choose sensors with high information density
Autonomy Agility

= Low bandwidth / unreliable data links = Highly agile (up to 8m/s)
= onboard processing

= Fast, unstable dynamics
= Limited battery life (~10mins)

= High-rate real-time state estimation.
R The UAV cannot “stop”

Platform Y gi
dynamics 1fj§9\

o

control speed




> sFly|enabling UAV navigation
» sFly

aim: autonomous vision-based flights in unknown
environments

approach: minimal sensor setup
- essentially fuse visual & inertial cues

= Downward-looking camera: bearing only measurements £
- Monocular SLAM (based on PTAM) ;

= |[MU: Acceleration & angular velocity

= Loosely-coupled visual-inertial fusion

Failure detection

unscaled
[ Monocular SLAM  —5ss 7 cov EKF

State: pose, scale, biases
acc
gyro Complexity = constant

[IMU readings:
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Vision-based UAV navigation QyvarL

= First UAV system capable of vision-based flights in such real scenarios
= Publicly available framework used by NASA JPL, UPenn, MIT, TUM,...

Are we there yet?

Photo credit: Francois Pomerleau



SLAM | current challenges Q}VaRL

* Fast motion * Rich maps
» Large scales » Low computation for embedded apps
* Robustness « Combination of multiple agents

& dynamic scenes, motion blur, lighting, ...

= Handle larger amounts of data more effectively

. 1ms Target Tracking Vision Chip
=  Competing goals: by Ishikawa Komuro University

EFFICIENCY

PRECISION

key: agile manipulation
of information
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Robotic Perception | what next? QAL

VISION FOR ROBOTICS LAB

= Employ team of aerial robots equipped with cameras
= Develop visual perception & intelligence to:

= Navigate autonomously

= Collaboratively build a 3D reconstruction of the
surrounding area

UAVs : Unmanned Aerial Vehicles
= Agile, easy access to scene overview & remote areas

= Dynamics hard to track, limited payload AR
= collaboration is key to efficient sensing & processing TR e
= Extension to additional platforms -
™ Nwn

Autonomous Mobile Robots : i R ¢ )
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- 4
"AERO  AEROWORKS | EU project

= Team of small UAVs: each equipped with visual & inertial
sensors and a manipulator

= Aim: collaboratively perceive the environment, develop
autonomy in navigation and coordination to perform a
common manipulation task

= V4RL.: collaborative vision-based perception for navigation
& 3D reconstruction

= 2015-2018, 9 partners




ICARUS| EU project

= Integrated Components for Assisted Rescue and Unmanned Search operations (2012-2015),
budget: 17.5 M€, 24 partners

= Search-and-rescue combining robotics for land, sea and air
= ETHZ: map generation, people detection, ... from a UAV

Autonomous Mobile Robots
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SHERPA | EU project

Smart collaboratién between Humans and ground aErlaFRobots for imProving rescwhg
activities in Alpine environments i /

11 M€, 10 partners, 2013-2017

Sensor fusion (visible light and thermal cameras, IMU, )fgr robust SLAM, environfient
mﬁstructlon & victim localization \

" www.sherpa-project.eun



Vision-based Robotic Perception | the challenges @ \VarL

Challenge I: High-fidelity localization & mapping

= The backbone of perception of space & navigation autonomy
‘ 1:\ "5‘% R i3 ¢ DR
i # "‘ l;f""‘:‘;_f("ik‘; - g . ETTITT

y . N . A ‘ — : ~ —— —— e
. . EXTERNAL D A ONBOARD VIEW INTERNAL MAP

= Pioneering work in UAV navigation, but lacks scalability, robustness and deployability for
application in real scenarios
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Suitable keypoint detection/description ONCI T

Test Frame 1 | Test Frame 2

= Image keypoints suitable for robotics applications: for fas
& robust detection and matching

= Rotation-, scale-invariant keypoints
= Binary descriptor: e.g. BRISK, ORB, BRIEF & variants
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Descriptor  Run time [ms.] BRISK deSCI’IptOI’ l' —y.
'SURF 7.0 [1fofo[afa]a[wTolo[afolola]1]1]o] F
ST prasoonoosconooonnol 1§ 22,7
BRIEF 338 SURF descriptor -
BRISK 106 a]10]01] - 030407 ]0slo11] 2 | 5 |o1]o7
ORB an 041r0]o 3|04 |07 060 1] 0.

BRISK:

= Precision-Recall: comparable to SIFT & SURF
= ~10x faster than SURF
= Open-source, features in OpenCV

Autonomous Mobile Robots [Leutenegger et al., ICCV 2011]
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I

"/ Sensor fusion for SLAM @Vl

= Visual-Inertial sensor:
HW-synced stereo camera (global shutter) + IMU

“OKVIS”: visual-inertial SLAM

= Tight visual & inertial fusion: replace motion
model with IMU constraints on the actual motion

= Visual cues: very descriptive, but sensitive to
motion blur, lighting conditions...

= |nertial cues: accurate estimates for short-term
motions, unsuitable for longer-term

= Open-source: http://ethz-asl.github.io/okvis_ros/

[Leutenegger et al.; RSS 2013]
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Margarita Chli, Martin Rufli, Roland Siegwart SLAMII | 20



Robust VI SLAM for repetitive flights isumeretal. icra2017, ONEtmin

-

- TN
o -«

>

w Cround Truth
w— Teoretcal CPS Error 1955 Uncerta nty
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& Event-based Cameras for Robot Navigation

-inil.abs
= Similar to the human retina: 'i »

captures intensity changes asynchronously instead of
capturing image frames at a fixed rate

= Dynamic Vision Sensor (DVS)

v" Low power
v High temporal resolution =» tackle motion blur

v High dynamic range

Effects of motion blur

’Vl"lﬂﬂ FOR RODOTICS LAD

Work with Ignacio Alzugaray




Vision-based Robotic Perception | the challenges @yvarL
II

Challenge lI: Dense scene reconstruction

= Vital for robot interaction with its environment

= Trade-off: level of detail vs.
computational cost

= Work towards both
(a) online onboard and
(b) scalable offboard functionality LSD-SLAM [Engel et al, ECCV 2014]

Autonomous Mobile Robots
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d
M. Towards low-cost, denser QrvazL
3D reconstruction with a single camera

[Teixeira & Chli, ICRA 2017]
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-
N Towards low-cost, denser QrvaL

(»"‘*7/7 4 i : : -

. /IJ 3D reconstruction with a single camera

-

Leica Theodolite

. : Total Station
Aim: global, accurate, dense reconstruction

Work with Lucas Teixeira
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I

Towards low-cost, denser 3D reconstruction
with a single camera from a small UAV

VIEW FROM UAV
' . :

[Teixeira & Chli, IROS 2016]

Monocular-inertial
SLAM (OKVIS)

|solate reliable SLAM
points =» form regular,
“smooth” mesh

Denser representation
in < 8ms per frame

Datasets & Code on
www.v4rl.ethz.ch
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Real-time Dense Surface Reconstruction for PrvanL

ERROR [mm]
25

= Datasets &
ground truth on
www.v4rl.ethz.ch

Autonomous Mobile Robots [ Ka rrer et d I 4 I ROS 2 O 1 6]
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Vision-based Robotic Perception | the challenges @yvanL

Challenge lli: Place recognition

= Recognising when the robot visits a “known” location for:

= Drift Correction = Trajectory / map merging

origin @ —————m)

o~
-

real trajectory

revre e
-l
O

correction *

estimated traje«




So=ah. Vision-based Place recognition: ONEinin
P fE3]Y common problems

» Seasonal / lllumination changes
;’_‘1| - Lx : by
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ONC 1N

SION FOR RODO

Towards lifelong place recognition

Dr Zetao Chen

Postdoctoral Research Fellow, VA4RL, ETH Zurich

Autonomous Mobile Robots
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What is “Lifelong Place Recognition”?

Lifelong Place Recognition is the process of identifying
previously visited locations over long time spans, where the
same location can undergo dramatic condition variations
caused by illumination, seasons or weather.

SLAMII | 31



Lifelong Place Recognition | current systems @IVaRL

Current systems have come far, but are not there yet

Google car is no match for snow and ice

Driverless vehicle can't yet detect winter road conditions, say experts who believe
Google is decades away from a solution

n G 12 Y redan wr

Autonomous Mobile Robots
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Lifelong Place Recognition | spot the similarities QrvaL

Is this the same place? Why?

Winter Image | Summer Image

obots
in Rufli, Roland Siegwart SLAMII | 33



Lifelong Place Recognition | spot the similarities QrvaL

Extract SIFT features in each image & match them

= Many false matches, because SIFT only looks at local patch gradients, which are not robust under
strong condition variations.

Autonomous Mobile Robots
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Lifelong Place Recognition | spot the similarities QvanL

=  We look for the underlying, basic scene structure, e.g. buildings, railways, vegetation
= + We instinctively predict Conditional Changes, e.g. green trees in the summer may turn white in winter

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart SLAMII | 35



Lifelong Place Recognition | how to do it? Q}VanL

= |n order to localize against strong condition
variations, we need high-level semantic
context, such as what the scene is about,
for example, via image segmentation to
assign a class-label to each pixel in the
scene, efc.

SRl N ESSTETER
§

BUILDING

o
TRUCK

PEOPLE

Autonomous Mobile Robots
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Semantic Context | | scene type recognition Q) VanL

City street
\i

lightning storm

forest fire

fountain

ocean

railway rushing river

sky-clouds ~ snowing
" a

waterfall A white patch in context:

A white patch in a rocky scene can be a
waterfall, while in a sky scene it can
represent a cloud

Autonomous Mobile Robots
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Semantic Context Il | scene segmentation

bullding

Image from [Yao et al., CVPR 2012]

= Scene segmentation can be used to predict the class label for each pixel in the image

Autonomous Mobile Robots
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Obtaining Semantic Context | the deep learning approach  ®va=L

= Deep learning models have achieved state-of-the-art performance in various image semantic tasks,
such as scene recognition, object detection, scene segmentation, etc.

= Use of deep learning enables end-to-end training directly on the task, without manual tuning on
system parameters.

ILSVRC Top 5 Error on ImageNet

s
o

B Computer Vision

o
-

Deep Learning approaches have Deep Lesrming

i
<

been dominating the top scoring -
Fuman

performances in the ongoing
“ImageNet” image recognition

Top-S Error Rate (%)
P 7

challenge over the last 4 years!

o

o

2010 2011 2012 2013 2014 Human 2015 2016
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building

bike

Input: x Output: y

= \We need a model in the middle, which takes the input image on the left and generates the semantic
segmentation & labeling of each pixel in that image as shown on the right.

Autonomous Mobile Robots
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Obtaining Semantic Context | an illustrative example ONCI T

sk
building
car
‘ ‘ boa
W, water
Input: x —f(hI,WJ h,=f(h,,w,) Output: y

forward/mference

= The 1t model layer, which is parameterized by w,, takes x as input and outputs h,=f(x,w,)

= Th 2" model layer, which is parameterized by w,, takes h, as input and outputs h,=f(h,, w,)
= The 3 model layer, which is parameterized by w;, takes h, as input and outputs h,=f(h,, w,)
= The last model layer, which is parameterized by w,, takes h; as input and outputs y=f(h; w,)

= Aforward inference stage completes!

Autonomous Mobile Robots
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Obtaining Semantic Context | an illustrative example

h,=f(h,w,) h;=f(hpw;)

forward/inference

= The parameter set W={w,, w,, w,, w,} encodes the mapping from x to y. How does it
learn that?

Autonomous Mobile Robots
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Obtaining Semantic Context | an illustrative example ONCI T

?\ui:\lings"y
Car
waler
h,=f(h,w,) h;=f(hyw;) Output; y
Q difference

forward/inference

backward/learning buildinge SKY

The parameter set W={w,, w,, w;, w,} encodes the mapping from x to y. How does it
learn that?

Actually, at the 1st forward stage, the output may be quite different from the ground truth
A backward learning stage can then back-propagate their difference and update W to
minimize this difference gradually Ground truth

This process iterates until the difference between the output and the ground truth is
smaller than a pre-defined threshold

Autonomous Mobile Robots
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Lifelong Place Recognition | ongoing work at V4RL QyvanL

Construction of a condition-varying dataset to train a deep learning network

= \We gather images captured from static cameras around the world
= Each camera observes the same scene constantly and over several years
= 2500 cameras selected at the locations above(red dots)

Autonomous Mobile Robots
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Lifelong Place Recognition | ongoing work at V4RL @} VaRL

Dataset examples: diversity of scenes

Autonomous Mobile Robots
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Lifelong Place Recognition | ongoing work at V4RL @} VaRL

Large condition variations in each scene

Autonomous Mobile Robots
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Lifelong Place Recognition | ongoing work at V4RL ONEinin

Network Training

Feeds from different
cameras:

Autonomous Mobile Robots
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Input Layer

Deep Neural Network

Output Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3
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Lifelong Place Recognition | conclusion

= Currently, the use of deep learning-based approaches onboard a UAV is unrealistic 5&?; t £H :
due to their: |

= High computational cost - cannot run in real-time on a typical UAV processor
= High power consumption

= Need for bigger onboard memory to host most existing deep learning models

= Open research questions:
= How can we compress deep learning models?

= Could we reuse image features that are typically extracted onboard UAVs in combination with deep
learning approaches e.g. via the help of a ground station?

Autonomous Mobile Robots
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Vision-based Robotic Perception | the challenges
IV

Challenge IV: Collaborative robot sensing & mapping

= Exploit presence of multiple UAVs (occlusions, accuracy, time efficiency)

'V]'vl()“ FOR RODOTICS LAD
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Vision-based Robotic Perception | the challenges @yvanL
IV

Challenge IV: Collaborative robot sensing & mapping

= Exploit presence of multiple UAVs (occlusions, accuracy, time efficiency)
lg " g_._ —r’a,, -,.?ﬁ —

Variable-baseline stereo from 2 UAVs
_ - _ [Achtelik et al, IROS 2011]

= Flight-critical tasks on client

= Computationally expensive tasks on server

= \What information needs to be shared? Work with Patrik Schmuck

Autonomous Mobile Robots
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[Schmuck & Chli, ICRA 2017]

— A's trajectory
B's trajectory
@ Landmarks used for VO-tracking by both clients

3 3

Servér Map AB

Loop Closure: map optimization Top view




Vision-based Robotic Perception | the challenges @yvarL

\'J
ﬂq ﬂ;%,

Challenge V: Navigation Strategies — obstacle avoidance & path planning

= Complete the navigation loop

- EX|st|ng mostly off-board solutlons
[Alvarez et al, ISER 2014]

[Achtelik et al, JFR 2014]

= Develop onboard Iocal obstacle av0|dance & comprehenswe path planning

Autonomous Mobile Robots
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UAV path planning with VI-SLAM in the loop
[Alzugaray et al., ICRA 2017]
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Master/Semester Projects @ V4RL

Leng-Term Place Recognition with Generative Adversarial Nets (Tianshu Hu) Real-time pose tracking with an external camera (Marco Moos)
A AL QS =] AV ]} |

Current results

Faessler et al. ICRA 2014

Proposed method ++edited with our adaptive marker size

Dénse -3DReconstructiontforAeriabhManipulation iMarco Karrer)
visual, inertial and RGBD data
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depth image res.: 480x360 ..,
average time per frame: 21ms
time horizon: 3s




Conclusion & Impact

Vision-based SLAM:
= has come a long way: from handheld to vision-stabilised flights of UAVs
= key to spatial awareness of robots = bridges the gap between Computer Vision and

Robotics
Perception + Collaboration are central to Robotics today:
= Large sums of research funds in the area (e.g. SHERPA )
I I1 IV
I/}VX\ i Q .
K;‘é‘: | g | e D N
(“/ \7} N g HlﬂJ (v%“" 4 EE Bl% [
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= Still work to be done before robots are ready for real missions
= Potential for great impact in the way we perceive/employ robots today
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