
| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

SLAM I: The problem of SLAM 
 
Autonomous Mobile Robots  
 
Margarita Chli 
Martin Rufli, Roland Siegwart 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

Section 5.8 + some extras… 
§  SLAM: what is it? 

 
§  Approaches to SLAM: 

§  Bundle Adjustment 
§  Filtering (UKF/EKF/Particle Filter SLAM) 
§  Keyframes 

§  EKF SLAM in detail 
§  EKF SLAM case study: MonoSLAM  
§  Components for a scalable SLAM system 

SLAM I 2 
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The SLAM problem:  
 

 

How can a body navigate in a previously unknown environment while constantly building 
and updating a map of its workspace using onboard sensors & onboard computation 

only? 
 

 

 

 

 

 

§  When is SLAM necessary? 
§  When a robot must be truly autonomous (no human input) 

§  When there is no prior knowledge about the environment 

§  When we cannot place beacons and cannot use external positioning systems (e.g. GPS) 

§  When the robot needs to know where it is 
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SLAM | Simultaneous Localization And Mapping 
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§  The backbone of spatial awareness of a robot 

§  One of the most challenging problems in probabilistic robotics 

§  An unbiased map is necessary for localizing the robot 
Pure localization with a known map.  
 

SLAM: no a priori knowledge of the  
robot’s workspace 

§  An accurate pose estimate is necessary  
for building a map of the environment 

Mapping with known robot poses.  
 

SLAM: the robot poses have to be  
estimated along the way 
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SLAM | Simultaneous Localization And Mapping 

Robot localization using Satellite images 
[Senlet and Elgammal, ICRA 2012] 

Helicopter position given by Vicon tracker 
ETH Zurich Flying Machine Arena, IDCS & NCCR DF, 2013 

SLAM I 
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Surveying for Mapping---part 1, http://www.icsm.gov.au/mapping/surveying1.html!

Surveyed points on the ground 

Image points in common 
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§  Originated from efforts to formalize 
production of topographic maps from 
aerial imagery 

§  “Photogrammetry” – the practice of 
determining the geometric properties 
of objects from images 
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P. Collier. The impact on topographic mapping of developments in land and air survey: 1900-1939. Cartography and Geographic 
Information Science, 29(3):155–174, 2002.!

170 Cartography and Geographic Information Science Vol. 29, No. 3 171 
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Service Géographique de l’Armée 1912-13. Paris: 
Imprimerie du Service Géographique de l’Armée (2e 
Tirage, Édition de 1920). pp. 1-23. 
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Journal 38: 143-54.

Colonial Survey Committee. 1906. The surveys and explo-
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Colonial Survey Committee. 1911. The surveys of British 
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U.K.: His Majesty’s Stationery Office.
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Figure 4. Slotted templets being laid at the Soil Conservation Service, U.S. Department of Agriculture. 
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NATMAP EARLY DAYS, MAP 
COMPILATION FROM 
AERIAL PHOTOGRAPHS 1948 
‑1970S  David R. Hocking

SLAM I 
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C. Burnside. The photogrammetric society analogue instrument project: a second extract. The Photogrammetric Record, 
14(83):769–782, 1994.!

FIG. F3. Seven projector Williamson Multiplex 

poor resolution of the stereoscopic images produced even at the centre of the model 
area. Away from the centre, the illumination and resolution were reduced still further 
and when working towards the far side of the model the operator was presented with 
an oblique view of the model and floating mark, a characteristic of many types of 
optical projection instrument that operators found disturbing. However, for certain 
types of small scale mapping, a satisfactory result was possible and this, together with 
the comparatively low cost, made the use of such equipment attractive to many organ- 
isations. However, it was probable that this type of instrument really excelled as 
an initial training instrument and, in this era of photogrammetric development, 
photogrammetrists in many parts of the world had their first introduction to stereo- 
photogrammetry and analogue plotting using such an instrument. 

Using the longer bar, it was possible to set up a strip model generated simul- 
taneously by a number of projectors, a unique feature in analogue instrumentation. This 
was a particularly useful attribute in activities such as road and rail route surveys and 
similar reconnaissance investigations. Long bar equipment could also be used for aerial 
triangulation by the cantilevering or bridging technique. Using this process six (or even 
more) models of a strip could be brought into a common orientation using successive 
one projector relative orientations of adjacent models. By this means a common scale 
and orientation were carried forward from one model to the next, although not without 
the accumulation of small errors. However, given a suitable distribution of control 
points along the strip, this build up of errors in the absolute orientations of successive 
models could be monitored and hence removed by graphical methods (Trorey, 1952). 
Fig. F3 shows a long bar seven projector instrument with the large blower unit situated 
under the plotting table. 

Many attempts were made in the UK to carry out aerial triangulation using the 
short bar equipment with just two or three projectors (Hutchins, 1958). However the 
most successful of these methods was probably that using inclinometers by which the 
4 and (I_) elements of absolute orientation of successive projectors could be recorded and 

776 
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1940s: Opto-mechanical 
systems: aerial images 
set on glass plates, 
arranged in a series of 
projectors 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

Paul Furgale 

Motivation | Maps from Aerial Imagery 

May 3, 2014 Bundle Adjustment 7 

i94 air survey: the modern aspect 

to the Multiplex the task which it does best, of extending height control and 
providing control contours. In hilly country, however, the Multiplex is fre? 
quently used in conjunction with slotted templates. After approximate 
absolute orientation, slotted templates are cut to the rectified projections, thus 
enabling scale and azimuth to be held much more accurately than by the 
Multiplex alone. 

The Multiplex was used extensively during the recent war, and many 
thousands of square miles were mapped with its aid in areas where ground 
control was limited. For instance, it was used in connection with the tactical 

Datum plane is parcdlel to this reference plane 

Fig. 10. Theory of Multiplex 

mapping of southern France and Yugoslavia, the work being divided between 
the U.S.A. and the brigaded British and U.S. survey services in the Mediter? 
ranean. The Multiplex mapping project for the Rhdne Valley advance was 
carried out successfully against time in the U.S.A. It was also used for special 
projects, such as large-scale contoured surveys of prospective landing fields 
for the airborne "D" day landings. 

For certain purposes, particularly for amplifying limited control and for 
large-scale mapping, more elaborate and expensive instruments are employed. 
An example is the Swiss Wild Autograph A.5. This and all similar machines 
work either approximately or exactly to the principle of setting laid down by 
Fourcade in South Africa some forty years ago. 

C. Hart. Air survey: The modern aspect. The Geographical Journal, 108(4/6):179–198, 1946!
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Brown, D.C., A Solution to the General Problem of Multiple Station Analytical Stereo triangulation, RCA Technical Report No. 43, 
February 1958!
!

 
 

 
Center for Photogrammetric Training            History of Photogrammetry  Page 30  

 

many different areas of 
photogrammetry and geodesy.  
 

 
Figure 48.  Duane Brown with the 
CRC-1 camera [from Brown, 2005]. 

 
In 1961, Duane Brown joined the 
Instrument Corporation of Florida and 
two years later purchased the Research 
and Analysis Division, where he was 
the Director, and formed DBA (Duane 
Brown and Associates).  DBA soon 
established itself as a leader in close-
range photogrammetry and analytical 
photogrammetry.  Brown continued to 
refine the bundle adjustment for large 
photogrammetric blocks to include self-
calibration.  The importance of self-
calibration is that the accuracy and 
reliability of the photogrammetric 
adjustment improved.  He recognized 
that the environment has an effect on 
the process and by calibrating the 
camera to extract the camera 
parameters in the environment in 
which the photography was acquired, 
the new camera parameters were a 
better representation than those 
derived from conventional calibration 
procedures.  In 1962 he was able to 

apply his principles to the survey of the 
radio telescope at Greenbank, WV.  
Using a modified ballistic camera, 
Brown was able to achieve accuracies 
at around the 1:50,000 level, or about 2 
mm [Brown, 2005].  
 

 
Figure 49.  BC4 Satellite 
Triangulation Camera station 
operated by the U.S. Coast and 
Geodetic Survey. 
 
During his stay at DBA, the company 
developed a number of high-accuracy, 
large-format, close-range 
photogrammetric cameras.  His work in 
photogrammetry also included 
adjusting for decentering distortion, 
principal point calibration, and film 
unflatness where he was able to show 
considerable deformation of glass 
plates.  Some of the work undertaken 
by DBA involved mapping the moon for 
the Apollo program.  In 1977 he 
founded Geodetic Services, Inc (GSI) 
through his purchase of the 
Photogrammetric and Geodetic 
Services Division from DBA Systems.  
In 1979 he was given a patent for the 
reseau platen that he developed.  
Duane Brown was also involved in 

D.C. Brown 

“A rigorous least squares adjustment, 
believed to be of unprecedented 
universality, is given for the 
simultaneous adjustment of the entire 
set of observations arising from a general 
m-station photogrammetric net. 
… 
A computing program for automatic 
electronic computers is outlined.” 

Bundle Adjustment 
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Michael J. Broxton, Ara V. Nefian, Zachary Moratto, Taemin Kim, Michael Lundy, and Aleksandr V. Segal, "3D Lunar Terrain Reconstruction 
from Apollo Images", International Symposium on Visual Computing 2009!

Lecture Notes in Computer Science 7

(a) (b)

Fig. 4. Hadley Rille and the Apollo 15 landing site derived from Apollo Metric Camera
frames AS15-M-1135 and AS15-M-1136. (a) superimposed over the USGS Clementine
base map, (b) oblique view.

– Step 5: If the norm of (�
x

, �

y

) vector falls below a fixed threshold the iter-
ations converged. Otherwise, go to step 1.

Like the computation of the integer DSI, we adopt a multi-scale approach
for sub-pixel refinement. At each level of the pyramid, the algorithm is initialized
with the disparity determined in the previous lower resolution level of the pyra-
mid. This allows the subpixel algorithm to shift the results of the integer DSI

by many pixel if a better match can be found using the a�ne, noise-adapted
window.

5 Results

The 3D surface reconstruction system described in this paper was tested by
processing 71 Apollo Metric Camera images from Apollo 15. Specifically, we
chose frames from orbit 33 of the mission, which includes highly overlapping
images that span approximately 90 degrees of longitude in the lunar equatorial
region. This exercised our algorithms across a wide range of di↵erent terrain
and lighting conditions. Figure 4 shows the final results in the vicinity of Hadley
Rille: the Apollo 15 landing site.

Tests were carried out on a 2.8-GHz, 8-core workstation with 8-GB of RAM.
Stereo reconstruction for all 71 stereo pairs took 2.5 days. In the end, the results
were merged into a DEM at 40-m/pixel that contained 73,000 x 20,000 pixels.

5.1 Bundle Adjustment

Bundle adjustment was carried out as described in Section 3. Initial errors and
results after one round of adjustment are shown in columns two and three of
Table 1, respectively. Subsequently, any tie-point measurements with image-
plane residual errors that were greater than 2 standard deviations from the
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(a) (b)

Fig. 4. Hadley Rille and the Apollo 15 landing site derived from Apollo Metric Camera
frames AS15-M-1135 and AS15-M-1136. (a) superimposed over the USGS Clementine
base map, (b) oblique view.
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) vector falls below a fixed threshold the iter-
ations converged. Otherwise, go to step 1.

Like the computation of the integer DSI, we adopt a multi-scale approach
for sub-pixel refinement. At each level of the pyramid, the algorithm is initialized
with the disparity determined in the previous lower resolution level of the pyra-
mid. This allows the subpixel algorithm to shift the results of the integer DSI

by many pixel if a better match can be found using the a�ne, noise-adapted
window.

5 Results

The 3D surface reconstruction system described in this paper was tested by
processing 71 Apollo Metric Camera images from Apollo 15. Specifically, we
chose frames from orbit 33 of the mission, which includes highly overlapping
images that span approximately 90 degrees of longitude in the lunar equatorial
region. This exercised our algorithms across a wide range of di↵erent terrain
and lighting conditions. Figure 4 shows the final results in the vicinity of Hadley
Rille: the Apollo 15 landing site.

Tests were carried out on a 2.8-GHz, 8-core workstation with 8-GB of RAM.
Stereo reconstruction for all 71 stereo pairs took 2.5 days. In the end, the results
were merged into a DEM at 40-m/pixel that contained 73,000 x 20,000 pixels.

5.1 Bundle Adjustment

Bundle adjustment was carried out as described in Section 3. Initial errors and
results after one round of adjustment are shown in columns two and three of
Table 1, respectively. Subsequently, any tie-point measurements with image-
plane residual errors that were greater than 2 standard deviations from the

Bundle Adjustment | Unprecedented Universality 

May 3, 2014 Bundle Adjustment 11 

Michael J. Broxton, Ara V. Nefian, Zachary Moratto, Taemin Kim, Michael Lundy, and Aleksandr V. Segal, "3D Lunar Terrain Reconstruction 
from Apollo Images", International Symposium on Visual Computing 2009!
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R. Li, J. Hwangbo, Y. Chen, and K. Di. Rigorous photogrammetric processing of hirise stereo imagery for mars topographic mapping. 
Geoscience and Remote Sensing, IEEE Transactions on, (99):1–15, 2008.!

2568 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 7, JULY 2011

Fig. 11. Tie points, check points, and interstrip tie points shown against
HiRISE mosaics. (a) (Red) Tie points and (blue) check points. (b) (Red)
Interstrip tie points and (blue) their corresponding points.

the fitted polynomials. These terms are then added on to the
BA pointing angles to compensate for the effect discussed in
Section II-C and to determine the improved ground positions
of the measured tie points. Unlike the situation on Earth,
no absolute ground truth is available on the Martian surface.
Therefore, the image network is a free network and has to
be solved by a generalized inverse method that minimizes the
changes in orbital positions and altitudes as well as the tie-point
ground coordinates. Furthermore, to evaluate the performance
of BA, 460 matched interest points not participating in the
BA are selected as check points [blue points in Fig. 11(a)].
The ground coordinates of the check points, obtained by space

Fig. 12. Residuals of check points onto HiRISE image mosaics before and
after BA. (a) Before BA (exaggerated 50 times). (b) After BA (exaggerated
200 times).

intersection using bundle-adjusted orientation parameters, are
backprojected on each stereo image. The differences between
the backprojected image coordinates and the original image
coordinate measurements are used to evaluate the performance
of the BA.

After BA, the refined EO parameters are compared with
those in telemetry data. The differences of the camera positions
are smaller than 3 m, and the changes of pointing angles are
less than 20 arcseconds. The quality of BA is evaluated using
the backprojection residuals of check points in the images.
In Fig. 12, the backprojection residuals as error vectors are
displayed on the PSP_001777_1650 image. Fig. 12(a) shows
the residuals before the BA with the error vectors exaggerated
by 50 times for legibility. The residuals are predominately in
the along-track direction. Fig. 12(b) shows the residuals after
the BA that are 200 times exaggerated. Table IV presents the
statistical results from the check points. The residuals are
summarized in three columns: before BA, BA without the high-
frequency-term correction, and BA with the high-frequency-
term correction. Either with or without jitter correction, BA
reduces the mean residuals from 1.56 pixels to zero. After BA,
there are significant improvements on the maximum residuals
and the standard deviation of the residuals, particularly after
the high-frequency-term correction. Consequently, the incon-
sistencies existed in the stereo image pair and further in the 3-D
stereo model are significantly reduced, if not removed, by the
BA, and the incorporation of the high-frequency terms renders
better results in this BA based on the rigorous sensor model.

In analyzing HiRISE jitter, Kirk et al. [14] found that there is
great variability in the severity of the actual jitter. They also
found that much of the rapid variation in the camera angle
histories is merely noise. They noted that including the high-
frequency portion of the camera angles may help in some cases
and hurt in others; the high-frequency-term correction approach

14 
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R. Li, J. Hwangbo, Y. Chen, and K. Di. Rigorous photogrammetric processing of hirise stereo imagery for mars topographic mapping. 
Geoscience and Remote Sensing, IEEE Transactions on, (99):1–15, 2008.!

2570 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 7, JULY 2011

Fig. 14. HiRISE orthophoto draped on corresponding DEM with vertical
exaggeration of two times.

the image. Using the row number, the EO parameters can be
calculated from (4).

Subsequently, its image coordinates (x, y) in the left image
can be calculated. Because the DEM is a full coverage of the
stereo pair, given known ground coordinates of the point, the
ID of the CCD that covers the point can be found. Furthermore,
the specific offset of the CCD in the x direction (Xoffset

CCD-ID) is
known from the calibration data. The difference ∆x between
the image coordinate x and the CCD offset should be zero
or within a tolerance or otherwise indicate that the current
image line is not correct. In the latter case, a line up and a
line down from the current line that is one search step away
will be tested. The search moves in the direction in which ∆x
becomes smaller, until it is within the tolerance. The grayscale
at the image point of (x, y) using the final EO parameters is
assigned to the image point of the orthophoto corresponding to
the known ground point (X, Y, Z). This process repeats itself
for all the orthophoto points.

A 1-m-resolution orthophoto (3500 by 4050 pixels) was
generated. Fig. 14 shows the orthophoto draped onto the
corresponding DEM with a vertical exaggeration factor of
two. To take full advantage of the high resolution of HiRISE
imagery, a 0.25-m-resolution orthophoto was also generated.
The DEM was resampled from a 1-m grid to a 0.25-m grid for
data processing.

To check the quality of our DEM, we performed a cross-
comparison with USGS topographic products generated from
the same HiRISE stereo images, which were also used for
supporting the MER mission. For topographic mapping with
HiRISE images, USGS used both the USGS ISIS system and
the commercial photogrammetric software SOCET SET [14].
USGS products cover a longer area and are referenced to
the MOLA data. The topographic height is referenced to the
MOLA areoid. For comparison, a spatial registration between
the two DEMs is performed by a 2-D similarity transformation
using ten evenly distributed control points that are manually
selected on the orthophotos (Fig. 15).

After this horizontal registration, a vertical registration was
conducted using the same ten control points. The OSU DEM
was transformed by a shift and a rotation. Differences at each
grid point between the two DEMs were then calculated and
are shown in Fig. 16. It shows that most areas have elevation
differences of much less than 1 m. The standard deviation of
elevation differences is 0.4 m. In Fig. 16, there are vertical

Fig. 15. Control points for registration of our orthophoto with the USGS
orthophoto.

Fig. 16. Differences in elevation between the OSU DEM and USGS DEM.

edges at the places where the HiRISE CCDs cross each other.
The discontinuities are 1–2 m. These inconsistencies caused
by such CCD boundaries are handled by the tie points in the
overlapping areas from adjacent image strips in the OSU BA
system. A new improved method of treating jitter used by the
USGS in processing the Spirit site imagery is described by
Kirk et al. [14]. There are two red “spots” indicating obvious
differences between the two DEMs where these are shadows in-
side the craters cast by the rims. Due to the change of sun angle
between the two stereo images, image correlation in this case is
either low or not reliable. Furthermore, our automatic matching
software accepts only highly correlated points. The individual
ways of handling this special case by the two institutions may
cause the differences. However, overall, the two DEMs showed
a high level of consistency.

15 

SLAM | a short history of photogrammetry 

SLAM I 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

Paul Furgale 

Bundle Adjustment | Unprecedented Universality 

May 3, 2014 Bundle Adjustment 14 

K. Di, F. Xu, J. Wang, S. Agarwal, E. Brodyagina, R. Li, and L. Matthies. Photogrammetric processing of rover imagery of the 2003 mars 
exploration rover mission. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2):181–201, 2008.!

Fig. 6. Spirit rover traverse (Sol 154 to Sol 670) in the Husband Hill area where the rover experienced a great deal of slippage. Blue line is the traverse as computed from telemetry data and red line is
the traverse as corrected by the bundle adjustment method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Targeted Observations) image at the Gusev site on Sol 16
and a ROTO (Roll-Only Targeted Observation) image at
the Meridiani site on Sol 8 (Malin, 2004). Each lander can
be seen from the corresponding high-resolution images.
Through each lander's position, which is also its origin of
the LSL, the LSL can be linked to the Mars body-fixed
reference system that is used for orbital image mapping
(Kirk et al., 2003; Shan et al., 2005; Li et al., 2004, 2005).

3. Rover localization based on bundle adjustment of
the surface image network

As indicated above, onboard rover localization is
primarily performed by IMU, wheel-odometry, and sun-
sensing technologies. In cases where the rover experi-
ences slippage caused by traversing loose soil or steep
slopes, particularly in a crater, the onboard visual
odometry (VO) technique was applied (Biesiadecki and
Maimone, 2005; Olson et al., 2003; Li et al., 2005). In
this mission, VO has acquired consecutive Navcam
stereo pairs (step b0.75 m) within short traverse
distances (often b10 m). The VO algorithm estimates
the rover motion by tracking interest points between
consecutive stereo pairs both in the 2D image space and
3D ground space (Matthies, 1989; Olson et al., 2003;
Cheng et al., 2006). In the MER mission, the onboard
VO processing can take two to 3 min per image pair on
MER's 20 MHz RAD6000 CPU, which reduces the
amount of distance that can be driven each sol when
using VO (Cheng et al., 2006). So VO was only enabled
in the more slippery or uncertain terrains, e.g., on the
crater wall of Endurance Crater.

A typical drive distance within each sol is 20 m to
50 m, occasionally around 100 m. A long drive may
consist of a blind drive supported by priori visualization
and analysis of images offline on Earth and an autonav
drive supported by onboard rover navigation algorithms.
The blind drive allows the rover to drive a distance
efficiently without consecutive images taken along the
traverse. This made the onboard VO algorithm or other
sequence tracking algorithms inapplicable. The BA
method builds an image network containing all
panoramas and traversing images along the traverse to

achieve a high-accuracy solution of rover positions
along the entire traverse (Fig. 2). BA-based rover
localization is performed on Earth. Whenever the rover
moves, the rover localization results are reported to the
MER science and engineering teams and are used for
planning of next sol's rover traverse.

3.1. Image network construction

As shown in Fig. 2, panoramas and traversing stereo
images of Pancam and Navcam were taken at different
locations. Pancam panoramas were acquired mainly at
locations where substantial science exploration activi-
ties took place; Navcam panoramas were taken more
frequently for navigation and near-rover site character-
ization. For localization purpose, traversing images
(forward and backward stereo pairs) were often acquired
approximately at the midpoint of a long drive (e.g., over
70 m). The image network is constructed by linking the
panoramic and traversing images with automatically
and/or manually selected tie points. The key to the
success of BA is to select a sufficient number of high
quality well-distributed tie points that link the images to
form the network. A systematic approach to automatic
selection of tie points from the panoramic images taken
at one position was developed (Xu et al., 2002; Di et al.,
2002; Li et al., 2003; Xu, 2004). This tie point selection
method consists of four steps: interest point extraction
using the Förstner operator, interest point matching,
parallax verification, and, finally, tie point selection by
gridding. More details of the algorithms are presented in
Xu et al. (2002). Descriptions of interest point matching
and parallax verification will be given later in Section 5.
In matching interest points between adjacent stereo
pairs, an initial Digital Terrain Model (DTM) is
generated that can be used to predict the location of
conjugate points and to limit the search range in the
image space. Fig. 3 shows an example of automatically
selected tie points at two adjacent stereo pairs. Fig. 3(a)
and (b) are one stereo pair, and (c) and (d) are another
stereo pair adjacent to the first pair. The blue crosses are
intra-stereo tie points, which are the tie points within one
stereo pair. The red crosses are inter-stereo tie points,

Fig. 2. Illustration of a rover traverse and the image network built as the Pancam and Navcam panoramas and traversing images are taken.

184 K. Di et al. / ISPRS Journal of Photogrammetry & Remote Sensing 63 (2008) 181–201

16 

SLAM | a short history of photogrammetry 

SLAM I 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

17 

SLAM | from photogrammetry to SFM 

S. Agarwal, Y. Furukawa, N. Snavely, B. Curless, S. M. Seitz and R. Szeliski, 
“Reconstructing Rome”, IEEE Computer, 2010  SLAM I 
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SLAM | from photogrammetry to SFM to SLAM 
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§  Can we track the motion of a camera/robot while it is moving? 

 

§  Pick natural scene features to serve as landmarks (in most modern SLAM systems) 
§  Range sensing (laser/sonar): line segments, 3D planes, corners 
§  Vision: point features, lines, textured surfaces. 
§  Key: features must be distinctive & recognizable from different viewpoints 
 19 

SLAM | perceiving motion w.r.t. scene 

The videos are courtesy of 
Andrew J. Davison 
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§  Use internal representations for  
§  the positions of landmarks (: map)  
§  the camera parameters 

§  Assumption:  
Robot’s uncertainty at starting position is zero 

how to do SLAM | with a Gaussian Filter 

Start: robot has zero uncertainty 

A 

B C 

20 SLAM I 
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how to do SLAM | with a Gaussian Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

21 

First measurement of feature A 
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§  The robot observes a feature which is mapped with  
an uncertainty related to the measurement model 

how to do SLAM | with a Gaussian Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

22 SLAM I 
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§  As the robot moves, its pose uncertainty increases,  
obeying the robot’s motion model. 

how to do SLAM | with a Gaussian Filter 

Robot moves forwards: uncertainty grows 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot observes two new features.  

how to do SLAM | with a Gaussian Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Their position uncertainty results from the combination  
of the measurement error with the robot pose  
uncertainty. 

a map becomes correlated with the robot pose estimate.  

how to do SLAM | with a Gaussian Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot moves again and its uncertainty increases  
(motion model) 

how to do SLAM | with a Gaussian Filter 

Robot moves again: uncertainty grows more 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

26 SLAM I 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

§  Robot re-observes an old feature 
a Loop closure detection 

 

how to do SLAM | with a Gaussian Filter 

Robot re-measures A: “loop closure” 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

SLAM I |    27 
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§  Robot updates its position: the resulting pose estimate  
becomes correlated with the feature location  
estimates. 

§  Robot’s uncertainty shrinks and so does the  
uncertainty in the rest of the map 

how to do SLAM | with a Gaussian Filter 

Robot re-measures A: “loop closure” 
uncertainty shrinks 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

A 

B C 
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§  Using the notation of [Davison et al., PAMI 2007] 

§  Robot pose at time t : xt  a Robot path up to this time: {x0, x1,…, xt} 

§  Robot motion between time t-1 and t : ut (control inputs / proprioceptive sensor 
readings) a Sequence of robot relative motions: {u0, u1,…, ut} 

§  The true map of the environment: {m0, m1,…, mN}  

§  At each time t the robot makes measurements zi  
a Set of all measurements (observations): {z0, z1,…, zk}  
 

§  The Full SLAM problem:     estimate the posterior  p(x0:t ,m0:N | z0:k ,u0:t ) 

§  The Online SLAM problem: estimate the posterior  p(xt ,m0:N | z0:k ,u0:t ) 
29 
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SLAM | graphical representation 

z13 z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z12 z15 z14 z16 z10 z11 

m0 m1 m2 m3 m4 m5 m6 m7 m8 

x0 x1 x2 x3     . . .  

u0 u1 u2 u3 
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Full graph optimization (Bundle Adjustment) 

 

§  Eliminate observations & control-input nodes and solve for the constraints between poses and 
landmarks. 

§  Globally consistent solution, but infeasible for large-scale SLAM 
a If real-time is a requirement, we need to sparsify this graph 

31 

SLAM | approaches to SLAM 

m0 m1 m2 m3 m4 m5 m6 m7 m8 

x0 x1 x2 x3       
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Full graph optimization (Bundle Adjustment) 
§  Minimize the total least-squares cost function – the reprojection error 
§  Use a batch Maximum Likelihood approach 
§  Assume Gaussian noise densities 

§  Pros 
ü  Information can move backward in time 
ü Trajectories can be very smooth 
ü Best possible (most likely) estimate given the data  

and models 
ü Exploitation of matrix sparsity leads to more efficient  

solutions 

§  Cons 
x  Computationally demanding 
x  Difficult to provide the online estimates for a controller 

32 

SLAM | full graph optimization 
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m0 m1 m2 m3 m4 m5 m6 m7 m8 

x3 x0 x1 x2 

Filtering 

 

§  Eliminate all past poses: ‘summarize’ all experience with respect to the last pose, using a state 
vector and the associated covariance matrix 

33 

SLAM | approaches to SLAM 
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§  Gaussian Filtering (EKF, UKF) 

§  Tracks a Gaussian belief of the state/landmarks 
§  Assumes all noise is Gaussian 
§  Follows the “predict/measure/update” approach 

§  Pros 
ü Can run online 
ü Works well for problems experiencing expected 

perturbations/uncertainty 

§  Cons 
x  Unimodal estimate 
x  States must be well approximated by a Gaussian 
x  The vanilla implementation does not scale very well with larger maps 

34 

SLAM | filtering 

Courtesy of P. Furgale 
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§  Particle Filtering  
§  Represents belief by a series of samples 

§  Each Particle = a hypothesis of the state (= a suggested 
pose & map) with an associated weight  
(all weights should add up to 1) 

§  Follows the “predict/measure/update” approach 

35 

SLAM | filtering 
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§  Use internal representations for  
§  the positions of landmarks (: map)  
§  the camera parameters 

§  Assumption:  
Robot’s uncertainty at starting position is zero 

§  Initialize N particles at the origin, each with weight 1/N 

how to do SLAM | with a Particle Filter 

Start: robot has zero uncertainty 

A 

B C 
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how to do SLAM | with a Particle Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

37 

First measurement of feature A 
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§  The robot observes a feature which is mapped with  
an uncertainty related to the measurement model 

how to do SLAM | with a Particle Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  As the robot moves, its pose uncertainty increases,  
obeying the robot’s motion model. 

§  Apply motion model to each particle 

how to do SLAM | with a Particle Filter 

Robot moves forwards: uncertainty grows 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot observes two new features.  

how to do SLAM | with a Particle Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Their position uncertainty is encoded for each particle individually 
For each particle: 

§  Compare the particle’s predicted measurements with  
the obtained measurements 

§  Re-weigh such that particles with good predictions get  
higher weight & re-normalize particle weights 

§  Re-sample according to likelihood 

how to do SLAM | with a Particle Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot moves again and its uncertainty increases  
(motion model) 

§  Apply motion model to each particle 

how to do SLAM | with a Particle Filter 

Robot moves again: uncertainty grows more 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot moves again and its uncertainty increases  
(motion model) 

how to do SLAM | with a Particle Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

Localization | SLAM: a worked example SLAM I |    43 

x1 x0 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

A 

B C 

§  Robot re-observes an old feature 
a Loop closure detection 

 

how to do SLAM | with a Particle Filter 

Robot re-measures A: “loop closure” 

SLAM I |    44 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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For each particle: 
§  Compare the particle’s predicted measurements with  

the obtained measurements 
§  Re-weigh such that particles with good predictions get 

higher weight & re-normalize particle weights 
§  Re-sample according to likelihood 

how to do SLAM | with a Particle Filter 

Robot re-measures A: “loop closure” 
uncertainty shrinks 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

A 

B C 
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§  Particle Filtering  
§  Represents belief by a series of samples 
§  Each Particle = a hypothesis of the state with an  

associated weight (all weights should add up to 1) 
§  Follow the “predict/measure/update” approach 

§  Pros 
ü Noise densities can be from any distribution 
ü Works for multi-modal distributions 
ü Easy to implement 

§  Cons 
x  Does not scale to high-dimensional problems 
x  Requires many particles to have good convergence 

46 
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Courtesy of P. Furgale 

x1 x0 

Distribution in the robot’s position estimate:  
•  red dots – particle filtering 
•  red ellipse – EKF filtering 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

m0 m1 m2 m3 m4 m5 m6 m7 m8 

x0 x1 x2 x3   

Key-frames 

 

§  Retain the most ‘representative’ poses (key-frames) and their dependency links a optimize the 
resulting graph 

§  Examples: PTAM [Klein & Murray, ISMAR 2007]         ,  
                      ORB-SLAM [Mur-Artal et al., TRO 2015] 
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SLAM | approaches to SLAM 

SLAM I 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

§  Keyframe-based SLAM 

§  Minimizes the least-squares cost function 
§  Typically optimizes over a window of recent  

keyframes for efficiency 
§  Assumes Gaussian noise densities 

§  Pros 
ü Known to provide better balance between  

accuracy & efficiency than filtering 
ü Permits processing of many more features  

per frame than filtering 
§  Cons 
x  Size of optimization window affects scalability  

and convergence 
48 

SLAM | keyframes 

[PTAM, Klein & Murray, ISMAR 2007] 
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§  SLAM using an Extended Kalman Filter (EKF) 

49 

EKF SLAM | overview 
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§  EKF SLAM summarizes all past experience in an extended state vector yt comprising of the 
robot pose xt and the position of all the features mi in the map, and an associated covariance 
matrix Pyt

: 

 
 

§  If we sense 2D line-landmarks, the size of yt is 3+2n  (and size of Pyt
 : (3+2n)(3+2n) ) 

§  3 variables to represent the robot pose and  
§  2n variables for the n line-landmarks with state components  
Hence, 

§  As the robot moves and makes measurements, yt  and Pyt
 are updated using the standard 

EKF equations 
50 
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EKF SLAM | prediction step 

SLAM I 

§  The predicted robot pose      at time-stamp t is computed using the estimated pose          at time-stamp t-1 
and the odometric control input  

 

§  During this step, the position of the features remains unchanged. EKF Prediction Equations:  
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EKF LOCALIZATION 
§ The state      is only the robot configuration: 

 

§ The prediction function is: 

 EKF SLAM | vs. EKF localization  
 
EKF SLAM 
§ The state      comprises of the robot configuration     and 

that of each feature       :
 

§ The prediction function is: 
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§  The application of the measurement model is the same as in EKF localization. The predicted 
observation of each feature       is: 

§  After obtaining the set of actual observations z0:n-1 the EKF state gets updated: 

  
 

                                                                                  where 

 EKF SLAM | measurement prediction & update 
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The predicted new pose is used to predict  
where each feature lies in measurement space 

Jacobian of h Measurement 
noise

Kalman Gain Innovation 
Covariance
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MonoSLAM 

§  An example of EKF SLAM: MonoSLAM 

[Davison, Reid, Molton and Stasse, PAMI 2007]   

margaritachli.com 
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MonoSLAM | single camera SLAM 

§  Images = information-rich snapshots of a scene 
§  Compactness + affordability of cameras 
§  HW advances 

Vision 
for SLAM 

§  SLAM using a single, handheld camera: 
§  Hard but … (e.g. cannot recover depth from 1 image) 
§  very applicable, compact, affordable, … 

Image Courtesy of G. Klein 
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MonoSLAM | from SFM to SLAM 

Structure from Motion (SFM): 

§  Take some images of the object/scene to reconstruct 

§  Features (points, lines, …) are extracted from all frames  
and matched among them 

§  Process all images simultaneously  

§  Optimization to recover both:  

§ camera motion and  

§ 3D structure 

up to a scale factor  

§  Not real-time 

P1 

P2 

P3 

San Marco square, Venice 
14,079 images, 4,515,157 points 

[Agarwal et al, IEEE Computer 2010] 
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MonoSLAM | problem statement 

§  Can we track the motion of a hand-held camera while it is moving? i.e. online 

scene view                                          camera view 
The videos are courtesy of Andrew J. Davison 57 SLAM I 
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MonoSLAM | problem statement 
§  SLAM using a single camera, grabbing frames at 30Hz  
§  Ellipses (in camera view) and Ellipsoids (in map view) represent uncertainty 

camera view                                           internal SLAM map 
The videos are courtesy of Andrew J. Davison 58 SLAM I 
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MonoSLAM | representation of the world 

§  The belief about the state of the world x is approximated with a single, multivariate Gaussian distribution: 

Mean 
(state vector) 

Covariance 
matrix 

Camera state 

: Position [3 dim.] 

: Orientation using quaternions [4 dim.] 

: Linear velocity [3 dim.] 

: Angular velocity [3 dim.] 

Landmark’s state 
e.g. 3D position for point-

features 
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MonoSLAM | motion & probabilistic prediction 

§  How has the camera moved from frame t-1 to frame t ? 

§  The camera is hand-held a no odometry or control input data 
a Use a motion model 

§  But how can we model the unknown intentions of a human carrier? 

§  Davison et al. use a constant linear velocity, constant angular velocity motion model:  
 

 

“we assume that the camera moves at a constant velocity over all time , […] but on 
average we expect undetermined accelerations occur with a Gaussian profile” 

),(ˆ 1 ttt uxfx −=
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At each time step, the unknown linear a and angular α accelerations (characterized by zero-
mean Gaussian distribution) cause an impulse of velocity: 
 
 
 
 
 
 
 
 
 
The constant velocity motion model,  
imposes a certain smoothness on  
the camera motion expected.  
 

MonoSLAM | constant linear & angular velocity model 
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MonoSLAM | motion & probabilistic prediction 

§  Based on the predicted new camera pose a predict which known features will be visible and where 
they will lie in the image 

§  Use measurement model h to identify the predicted location                            of each feature and an 
associated search region (defined in the corresponding diagonal block of                                     ) 

§  Essentially: project the 3D ellipsoids from the SLAM map onto the image space 

),ˆ(ˆ itii yxhz =
RHPH T

tIN +=Σ ˆ
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MonoSLAM | measurement & EKF update steps 

§  Search for the known feature-patches inside their corresponding search 
regions to get the set of all observations 

§  Update the state using the EKF equations 

where: 

xt = x̂t +Kt (z0:n−1 − h0:n−1(x̂t, y0:n−1))

Pt = P̂t −KtΣINKt
T
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MonoSLAM | applications 

The videos are courtesy of Andrew J. Davison 

§  MonoSLAM for Augmented Reality 

 

§  HPR-2 Humanoid at JRL, AIST, Japan 
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§  At start up: the robot makes the first measurements and the covariance matrix is populated 
assuming that these (initial) features are uncorrelated a off-diagonal elements are zero.  

 

 
§  When the robot starts moving & taking new measurements, both the robot pose and features 

start becoming correlated.  

§  Accordingly, the covariance matrix becomes dense. 
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EKF SLAM | a note on correlations 
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§  Correlations arise as  
§  the uncertainty in the robot pose is used to obtain the uncertainty of the observed features.   
§  the feature measurements are used to update the robot pose.  

§  Regularly covisible features become  
correlated and when their motion is  
coherent, their correlation is even stronger 

§  Correlations very important for convergence: 
The more observations are made, the more  
the correlations between the features will  
grow, the better the solution to SLAM. 
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EKF SLAM | a note on correlations 

SLAM I 

Chli & Davison, ICRA 2009 
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§  The state vector in EKF SLAM is much larger than the state vector in EKF localization 

§  Newly observed features are added to the state vector a The covariance matrix grows 
quadratically with the no. features a computationally expensive for large-scale SLAM. 

§  Approach to attack this: sparsify the structure of the covariance matrix (via approximations) 

67 

EKF SLAM | drawbacks 

SLAM I 

Chli & Davison, ICRA 2009 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

ASL  
Autonomous Systems Lab 

SLAM Challenges | components for scalable SLAM  

68 SLAM I 
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[Chli, PhD Thesis, 2009] 

Map management  
& optimisation 

3 2 

Mapping &  
loop-closure 

detection 
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Robust local motion estimation 


