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Abs t r ac t  

We present a rendering method designed to provide 
accurate, general simulation of global illumination for re- 
alistic image synthesis. Separating surface interaction into 
diffuse plus specular, we compute the specular component 
on the fly, as in ray tracing, and store the diffuse compo- 
nent (the radiosity) for later-reuse, similar to a radiosity 
algorithm. Radiosities are stored in adaptive radiosity tez- 
lures (fezes) that record the pattern of light and shadow 
on every diffuse surface in the scene. They adaptively sub- 
divide themselves to the appropriate level of detail for the 
picture being made, resolving sharp shadow edges auto- 
matically. 

We use a three-pass, bidirectional ray tracing algorithm 
that traces rays from both the lights and the eye. The "size 
pass" records visibility iufornmtion on diffuse surfaces; the 
"light pass" progressively traces rays from lights and bright 
surfaces to deposit photons on diffuse surfaces to construct 
the radiosity textures; and the "eye pass" traces rays from 
the eye, collecting light from diffuse surfaces to make a 
picture. 

CtL Categories: 1.3.3 [ C o m p u t e r  G r a p h i c s l :  Pic ture/ Image 
Genera t ion -  display algorithms; 1.3.7 [ C o m p u t e r  Graph i c s ] :  
Three-Dimensional Graphics and ReMism - visible line~surface 
algorithms. 

General Terms: algorithms. 

Additional Key Words and Phrases: global illumination, den- 
sity estimation, texture mapping, quadtree, adaptive subdivision, 
sampling. 

1 I n t r o d u c t i o n  

The presentat ion is divided into four sections. We first discuss 
previous work on the global illumination problem. Then we out- 
line our bidirectional ray tracing approach in an intuitive way. 
Next we describe our implementation and some early results. We 
conclude with a summary of the method and of our experiences 
to date. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

2 T h e  G l o b a l  I l l u m i n a t i o n  P r o b l e m  

The primary goal of realistic image synthesis is the develop- 
ment  of methods for modeling and realistically rendering three- 
dimensional scenes. One of the most chMlenging tasks of realistic 
image synthesis is the accurate and efficient simulation of global 
illumination effects: the illumination of surfaces in a scene by 
other surfaces. Early rendering programs treated the visibility 
(hidden surface) and shading tasks independently, employing a 
local illumination model which assumed that  the shading of each 
surface is independent  of the shading of every other surface. Lo- 
cal illumination typically assumes that  light comes from a finite 
set of point light sources only. Global illumination models, on the 
other hand~ recognize that  the visibility and shading are interre- 
lated: the shade of a sm'face point is determined by the shades 
of all of the surfaces visible fl'om that  point. 

The intensity of light traveling in a given outgoing direction 
o~t from a surface point is the integral of the incident inten- 
sity times the bidirectional distribution function (BDF) over all 
possible incoming directions in: 

intensity(oWl) = fphere intensity(i~) BDF(in,  o~t) d(in) 

The bidirectional distribution function is the fraction of energy 
reflected or t ransmit ted from the incoming direction in = (¢i, Oi) 
to the outgoing direction out = (¢o, 0o); it is the sum of the 
bidirectional reflectance distribution function (BRDF) and the 
bidirectional t ransmit tance distribution function (BTDF).  See 
[Hall89] for a more detailed discussion of the physics of illumina- 
tion. We will characterize previous global illumination algorithms 
by the approximations they make to the above integral. 

Because of the superposition properties of electromagnetic ra- 
diatlon, we can segregate surface reflectance into two types: dif- 
fuse and specular. We define diffuse interaction (both reflection 
and transmission) to be the portion of interaction that  scatters 
fight equally in all directions, and specular interaction to be the 
remaining portion. BDF = BDFdilf + BDF~pee. For many ma- 
terials, specular interaction scatters light in only a small cone of 
directions. When this cone includes just a finite number of direc- 
tions, each a cone with solid angle zero, we call the interaction 
ideal specular, otherwise, when the cone(s) have a positive finite 
angle, we call it rough specular. Two examples of ideal specular 
surfaces are: (1) a perfect mirror that  reflects in one direction, 
and (2) a perfect t ransmit ter  that  refracts in one direction and 
reflects in another. An ideal specular surface with micro-bumps 
behaves statistically like a rough specular surface. Oar  three 
classes of interaction are diagrammed in figure 1. 
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diffuse rough specular ideal specular 

Figure 1: Three classes of reflectance: diffuse, rough specular, 
and ideal specular; showing a polar plot of the reflectance coeffi- 
cient for fixed incoming direction and varying outgoing direction. 
Transmittance is similar. 

A diffuse surface appears equally bright from all viewing di- 
rections, but  a specular surface's brightness varies with viewing 
direction, so we say that  diffuse interaction is view-independent 
while specular interaction is view-dependent. The simplest ma- 
terials have a position-invariant, isotropic BDF consisting of a 
linear combination of diffuse and ideal specular interaction, but 
a fully-general BDF can simulate textured, anisotropic, diffuse 
and rough specular surfaces. 

2 .1  R a y  T r a c i n g  vs .  l : t a d i o s i t y  

The two most popular algorithms for global illumination are ray 
tracing and radiosity. Ray tracing is both a visibility algorithm 
and a shading algorithm~ but radiosity is just a shading algo- 
rithm. 

2.1.1 R a y  T r a c i n g  

Classic ray tracing generates a picture by tracing rays from the 
eye into the scene, reeursively exploring specularly reflected and 
transmitted directions, and tracing rays towaxd point light sources 
to simulate shadowing [Whitted80]. It  assumes that  the BDF 
contains no rough specular, and that  the incident light relevant 
to the diffuse computation is a sum of delta functions in the di- 
rection of each light source. This latter assumption implies a 
local illumination model for diffuse. 

A more realistic illumination model includes rough specular 
BDF's  and computes diffuse interaction globally. Exact  simu- 
lation of these effects requires the integration of incident light 
over cones of finite solid angle. Ray tracing can be generalized 
to approximate  such computations using distribution ray trac- 
ing [Cook84], ILee85], [Dippe85], [Cook86], [Kajiya86]. (We pro- 
pose the name "distribution ray tracing" as an alternative to 
the current name, "distributed ray tracing", which is confusing 
because of its parallel hardware connotations.) In distribution 
ray tracing, rays are distributed, either uniformly or stochasti- 
cally, throughout any distributions needing integration. Many 
rays must be traced to accurately integrate the broad reflectance 
distributions of rough specular and diffuse surfaces: often hun- 
dreds or thousands per surface intersection. 

2.1.2 R a d i o s i t y  

The term radiosity is used in two senses. First, radiosity is a 
physical quanti ty equal to power per unit area, which determines 
the intensity of light diffusely reflected by a surface, and second, 
radiosity is a shading algorithm. The meaning of each use should 
be clear by context. 

The Classic radiosity algorithm subdivides each surface into 
polygons and determines the fraction of energy diffusely radi- 
ated from each polygon to every other polygon: the pair's form 
]actor. From the form factors, a large system of equations is 
constructed whose solution is the radiosities of each polygon 
[SiegelS1], [Gora184], [Nishita85]. This system can be solved ei- 
ther with Gauss-Seidel i teration or, most conveniently, with pro- 
gressive techniques that  compute the matrix and solve the sys- 
tem a piece at a time [Cohen88]. Form factors can be determined 
analytically for simple geometries [Siege181], [Baum89], but  for 
complex geometries a numerical approach employing a visibility 
algorithm is necessary. The  most popular visibility method for 
this purpose is a hemicube computed using a z-buffer [Cohen85], 
but  ray tracing has recently been promoted as an alternative 
[Wallace89], [Sillion89]. Classic radiosity assumes an entirely dif- 
fuse reflectance, so it does not simulate specular interaction at 
all. 

The output of the radiosity algorithm is one radiosity value 
per polygon. Since diffuse interaction is by definition view-inde- 
pendent,  these radiosities are valid from any viewpoint. The 
radiosity computat ion must be followed by a visibility algorithm 
to generate a picture. 

The radiosity method can be generalized to simulate specu- 
lar interaction by storing not just a single radiosity value with 
each polygon, but  a two-dimensional array [Imme186], [Shao88], 

[Buckalew89]. The resulting algorithm, which we call directional 
radiosity, simulates both diffuse and specular interaction globally, 
but the memory requirements are so excessive as to be impracti- 
cal. 

2.1.3 H y b r i d  M e t h o d s  

Ray tracing is best at speculax and radiosity is best at diffuse, 
and the above at tempts to generalize ray tracing to diffuse and 
to generalize radiosity to specular stretch the algorithms beyond 
the reflectance realms for which each is best suited, making them 
less accurate and less efficient. Another class of algorithms is 
formed by hybridizing the methods, using a two-pass algorithm 
that  applies a radiosity pass followed by the ray tracing pass. 
This is the approach used by [Wallace87] and [Sillion89]. 

The  first pass of Wallace's algorithm consists of classic radios- 
i ty extended to include diffuse-to-diffuse interactions that  bounce 
off planar mirrors. He follows this with a classic ray tracing pass 
(implemented using a z-buffer). Unfortunately, the method is 
limited to planar surfaces (because of the polygonization involved 
in the radiosity algorithm) and to perfect planar mirrors. 

Sillion's algorithm is llke Wallace's but it computes its form 
factors using ray tracing instead of hemicubes. This eliminates 
the restriction to planar mirrors. The method still suffers from 
the polygonization inherent in the radiosity step, however. 

2 .2  S a m p l i n g  R a d l o s i t l e s  

Many of the sampling problems of ray tracing have been solved 
by recent adaptive algorithms [WhittedS0], [Cook86], [Lee85], 
[Dippe85], [Mitchel187], [Painter89], particularly for the simula- 
tion of specular interaction. The sampling problems of the radios- 
ity algorithm are less well studied, probably because its sampling 
process is less explicit than that of ray tracing. 
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We examine four data structures for storing radiosities: light 
images, polygons, samples in 3-D, and textures. Several different 
algorithms have been used to generate these data structures: ra- 
diosities have been generated analytically, with hemicubes at the 
receiver (gathering), with hemieubes at the sender (shooting), 
and by tracing rays from the eye or from the light. 

2.2.1 Light Images 

The simplest data  structure, the light image, simulates only shad- 
ows, the first order effects of diffuse interreflection. Light images 
are pictures of the scene from the point of view of each light 
~ource. They are most often generated using the z-buffer shadow 
algorithm, which saves the z-buffers of these light images and 
uses them while rendering from the point of view of the eye to 
test if visible points are in shadow [Wilhams78], [Reeves87]. This 
shadow algorithm is more flexible than most, since it is not lim- 
ited to polygons, but  i t  is difficult to tune. Choosing the resolu- 
tion for the light images is critical, since aliasing of shadow edges 
results if the light images are too. coarse. 

2.2.2 P o l y g o n l z e d  l~ad ios l ty  

The Atherton-Weiler algorithm is another method for comput-  
ing shadows that  renders from the point of view of the lights 
[Atherton78]. It uses the images rendered from the lights to gen- 
erate "surface detail polygons", modifying the scene description 
by splitting all polygons into shadowed and unshadowed portions 
that  are shaded appropriately in the final rendering from the eye. 
Surface detail polygons are an example of polygonized radiosity, 
the storage of radiosity as polygons. The shadows computed by 
the Atherton-Weiler algorithm are a first-approximation to the 
interrefiection simulated by radiosity algorithms. 

The most common method for computing polygonized radios- 
ity is, of course, the classic radiosity algorithm. A major prob- 
lem with this Mgorithm is that surfaces are polygonized before 
radiosities are computed. Difficulties result if this polygonization 
is either too coarse or too fine. 

Sharp shadow edges caused by small light sources can be un- 
dersampled if the polygonization is too coarse, resulting in blur- 
ring or abasing of the radiosities. Cohen developed the "sub- 
structuring" technique in response to this problem [Cohen86]. 
It makes an initial pass computing radiosities at low resolution, 
then splits polygons that appear to be in high-variance regions 
and recomputes radiosities. Substructuring helps, but it is not 
fully automatic,  as the subdivision stopping criterion appears to 
be a polygon size selected in some ad hoc manner. The limi- 
tations of the method are further demonstrated by the absence 
to date of radiosity pictures in published work exhibiting sharp 
shadow edges. 

The other extreme of radiosity problems is oversampling of 
radiosities due to polygonization that  is too fine for the hemicube. 
The resulting quantization can be cured by adaptive subdivision 
of the hemicube or of the light rays [Wallace89], [Baum89]. 

We conclude that polygonization criteria remain a difficult 
problem for the radiosity method. 

It is interesting to note the similaxities between radiosity al- 
gorithms and the Atherton-Weiler algorithm. Conceptually, the 
original radiosity method gathers light to each polygon by ren- 

dering the scene from the point of view of each receiver, but 
the progressive radiosity algorithm shoots light by rendering the 
scene from the point of view of each sender (a light source). A 
progressive radiosity algorithm using a hemicube is thus much 
like repeated application of the Atherton-Weiler shadow algo- 
rithm. 

2.2.3 S a m p l e s  in 3-D 

l~adiosities can be computed using brute force distribution ray 
tracing [Kajiya86], but the method is inefficient because it sam- 
ples the slowly-varying radiosity function densely. To exploit the 
coherence of radiosity values, Ward sampled the diffuse compo- 
nent sparsely, and saved this information in a world space octree 
[Ward88]. Because his algorithm shot rays from the eye toward 
the lights, and not vice-versa, i t  had difficulty detecting light 
sources reflected by specular surfaces. 

2.2.4 R a d i o s i t y  T e x t u r e  

The fourth data  structure for radiosities is the radiosity texture. 
Instead of polygonizing each surface and storing one radiosity 
value per polygon, radiosity samples are stored in a texture on 
every diffuse surface in the scene [Arvo86]. Arvo called his tex- 
tures "illumination maps". He computed them by tracing rays 
from the light sources. 

2 .3  L i g h t  R a y  Tracing 

Rays traced from the eye we call eye rays and rays traced from the 
lights we call light rays. We avoid the terms "forward ray tracing" 
and "backward ray tracing" because they are ambiguous: some 

people consider photon motion ~'forward', while others consider 
Whit ted 's  rays "forward". 

Light ray tracing was originally proposed by Appel [Appe168], 
who "stored" his radiosities on paper with a plotter. Light ray 
tracing was proposed for beams in previous work with Hanra- 
han [Heckbert84] where we stored radiosities as surface detail 
polygons like Atherton-Weiler. This approach was modified by 
Strauss, who deposited light directly in screen pixels when a dif- 
fuse surface was hit by a beam, rather than store the radiosities 
with the surface [Strauss88]. Wat t  has recently implemented light 
beam tracing to simulate refraction at water surfaces [Wattg0]. 
Arvo used light ray tracing to compute his radiosity textures 
[Arvo86]. Light ray tracing is often discussed but has been little 
used, to date. 

3 Bidirectional Ray Tracing Using Adap- 
tive Radiosity Textures  

In quest of realistic image synthesis, we seek efficient algorithms 
for simulating global illumination that can accommodate curved 
surfaces, complex scenes, and arbitrary surface characteristics 
(BDF's),  and generate pictures perceptually indistinguishable 
from reality. These goals are not realizable at present, but  we 
can make progress if we relax our requirements. 
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We make the  following assumptions:  

(1) Only surfaces are relevant.  The  scat ter ing or absorp- 
t ion of volumes can be ignored. 

(2) Curved surfaces are impor tan t .  The world is not 
polygonal. 

(3) Shadows, penumbras ,  texture,  diffuse interreflection, 
specular reflection, and refraction are all impor tant .  

(4) We can ignore the phenomena  of fluorescence (light 
wavelength crosstalk), polarization, and diffraction. 

(5) Surface propert ies can be expressed as a l inear com- 
b ina t ion  of diffuse and specular reflectance and trans- 
mission functions: 

BDF =kd~BRDFdity + ksrB1~DF~pec+ 

kdtBTDFdi// + kstBTDFspec 

The  coet-ficients klj are not assumed constant .  

(6) Specular  surfaces are not  rough; all specular interac- 
t ion is ideal. 

3.1 A p p r o a c h  

Our approach is a hybr id  of radiosity and ray t racing ideas. 
Ra ther  t han  pa tch  together  these two Mgorithms, however, we 
seek a simple, coherent ,  hybr id  algori thm. To provide the  great- 
est generali ty of shape primitives and optical effects, we choose 
ray t racing as the  visibility algorithm. Because ray t racing is 
weak at s imulat ing global diffuse interact ion,  the  principal task 
before us is therefore to determine an etficient method for calcu- 
la t ing radiosities using ray tracing. 

To exploit the  view-independence and coherence of radiosity, 
we store radioslty with  each diffuse surface, using an adaptive 
radiosity texture, or rex. A rex records the  pa t t e rn  of l ight  and 
shadow and color bleeding on a surface. We store radiosity as 
a texture,  r a ther  than  as a polygonization, in order to decouple 
the da t a  s tructures for geometry and shading, and to facili tate 
adapt ive  subdivision of radiesl ty information;  and we store i t  
wi th  the  surface, rat l ier  than  in a global octree [Ward88], or in a 
l ight image, based on the in tui t ion t ha t  radiosities are intrinsic 
propert ies of a surface. We expect tha t  the  memory required for 
rexes will not  be excessive, since dense sampling of radiosity will 
be necessary only where it has a high gradient ,  such as at  shadow 
edges. 

Next we need a general technique for comput ing the rexes. 
The  paths  by which photons t ravel  th rough a scene can motivate  
our a lgor i thm (figure 2). We can characterize each interact ion 
along a photon ' s  pa th  from light  (L) to eye ( E )  as ei ther diffuse 
(D) or specular (S). Each pa th  can therefore be labeled with 
some str ing in the  set given by the regular expression L(D]S)*E. 
Classic ray t racing simulates only LDS*E [ LS*E paths,  while 
classic radioslty simulates only LD*E. Eye ray tracing has dif- 
ficulty finding paths  such as LS+DE because it  doesn ' t  know 
where to look for specularly reflected light when in tegra t ing  the  
hemisphere.  Such paths  are easily s imulated by light ray tracing, 
however. 

We digress for a moment  to discuss units.  Light rays carry 
power (energy/ t ime)  and eye rays carry intensi ty (energy / ( t ime 
* projected area * solid angle)). Each light ray carries a fract ion 

Figure 2: Selected photon paths from light (L) to eye (E) by 
way of diffuse (D ) and specular (S ) surfaces. For simplicity, the 
surfaces shown are entirely diffuse or entirely specular; normally 
each surface would be a mixture. 

D 

° / 

Figure 3: Left: first level light ray tracing propagates photons 
from the light to the first diffuse surface on a path (e.g. LD 
and LSD);  higher levels of progressive light ray tracing simulate 
indirect diffuse interaction (e.g. LDD). Right: eye ray trac- 
ing shoots rays from the eye, extracting radiosities from diffuse 
surfaces (e.g. it traces DE and D S E  in reverse). 

of the  to ta l  power emit ted by the  light. 

We can simulate pa ths  of the  form LS*D by shooting light 
rays (photons)  into the  scene, deposit ing the  photon ' s  power into 
the  rex of the first diffuse surface encountered (figure 3, left). 
Such a l ight  ray tracing pass will compute  a first approximat ion 
to the  radiosities. This  can be followed by an eye ray tracing pass 
in which we trace DS*E paths in a backward direction, extract-  
ing in tensi ty  from the  rex of the first diffuse surface encountered 
(figure 3, right).  The  net effect of these two passes will be the 
s imulat ion of all LS*DS*E paths.  The  rays of the two passes 
"meet  in the  middle" to exchange information.  To simulate dif- 
fuse interreflection, we shoot  progressively from bright  surfaces 
[Cohen88] dur ing the light ray t racing pass, thereby accounting 
for all paths:  L(S*D)*S*E = L(D[S)*E. We call these two 
passes the  light pass and eye pass. Such bidirectional ray tracing 
using adapt ive  radiosity textures can thus simulate all pho ton  
paths ,  in principle. 

Our  bidirect ional  ray tracing a lgor i thm is thus  a hybrid.  From 
radiosity we borrowed the idea of saving and reusing the  diffuse 
component ,  whicil is view-independent ,  and from ray tracing we 
borrowed the  idea of discarding and recomput ing the specular 
component ,  which is view-dependent.  
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3 .2  A l l  S a m p l i n g  is A d a p t i v e  

There  are three separate mult idimensional  sampling processes 
involved in this approach: sampling of directions from the  light, 
sampling of directions from the  eye (screen sampling), and sam- 
pling of radiosity on each diffuse surface. 

3 . 3  A d a p t i v e  R a d i o s i t y  T e x t u r e s  ( R e x e s )  

Rexes are textures indexed by surface parameters  u and v, as in 
s tandard  texture mapping [Blinn76], [Heckbert86]. We associate 
a rex with every diffuse or partially-diffuse surface. By using 
a texture and reta ining the initial geometry, instead of polygo- 
nizing, we avoid the polygonized silhouettes of curved surfaces 
common in radiosity pictures. 

In the bidirectional ray tracing algorithm, the rexes collect 
power from incident  photons during the light pass, and this in- 
formation is used to est imate the t rue radiosity function during 
the eye pass (figure 4). Our rexes thus serve much like den- 
sity estimators tha t  es t imate  the  probabil i ty  density of a random 
variable from a set of samples of tha t  random variable [Silver- 
man86]. Densi ty can be es t imated using either his togram meth- 
ods, which subdivide the  domain into buckets; or kernel estima- 
tors, which store every sample and reconstrnct  the density as a 
sum of weighted kernels (similar to a spline). 

The  resolution of a rex should be related to its screen size. 
Ideally, we want  to resolve shadow edges sharply in the final 
picture, which means tha t  rexes should store details as fine as 
the preimage of a screen pixel. On the  other hand,  resolution 
of details smaller than  this is unnecessary, since subpixel detail  
is beyond the Nyquist  l imit of screen sampling. Cohen's  sub- 
s t ructur ing technique is adaptive,  bu t  its criteria appear  to be 
independent  of screen space, so i t  cannot  adap t  and optimize the  
radiosity samples for a par t icular  view. 

To provide the  l ight pass with information about  rex resolu- 
t ion we precede the  l ight pass with a size pass in which we trace 
rays from the eye, labeling each diffuse surface with the min imum 
rex feature size. 

3.8.1 Adaptive Light Sampling 

Adapt ive  sampling of l ight  rays is desirable for seYeral reasons. 
Sharp resolution of shadow edges requires rays only where the  
l ight source sees a silhouette. Also, i t  is only necessary to trace 
l ight pa ths  t ha t  hi t  surfaces visible (directly or indirectly) to the 
eye. Thirdly, omnidirect ional  lights disperse photons in a sphere 
of directions, bu t  when such lights are far from the  visible scene, 
as is the  sun, the  light ray directions tha t  affect the final picture 
sub tend  a small  solid angle. Finally, stratified sampling should be 
used for directional lights to effect their goniometric distr ibution.  
Thus,  to avoid tracing irrelevant rays, we sample the  sphere of 
directions adaptively [Sillion89], [Wallace89]. 

For area l ight sources, we use stratified sampling to dis t r ibute  
the  ray origins across the surface with a density proport ional  to 
the  local radiosity. Stratified sampling should also be used to 
shoot  more l ight  rays near the  normal,  since it is intensi ty t ha t  
is constant  with outgoing angle, while power is proport ional  to 
the cosine of the angle with the normal. If the  surface has bo th  a 
s tandard  texture  and a rex mapped onto it, then the  rex should 
be modula ted  by this s tandard  texture before shooting. Wi th  

Figure 4: Photons incident on a rex (shown as spikes with height 
proportional to power) are samples from the true, piecewise- 
continuous radiosity function (the curve). We try to estimate 
the function from the samples. 

area l ight sources, the dis t r ibut ion to be integrated is thus  four- 
dimensional: two dimensions for surface parameters  u and v, 

and two dimensions for ray direction. For best  results, a 4-D 
da ta  s t ructure  such as a k-d tree should be used to record and 
adapt  the  set of light rays used. 

3.3.2 A d a p t i v e  E y e  S a m p l i n g  

Eye rays (screen pixels) are sampled adaptively as well. Tech- 
niques for adapt ive screen sampling have been covered well by 
others [Warnock69], [Whitted80], [Mitchell87], [Painter89]. 

3 . 4  T h r e e  P a s s  A l g o r i t h m  

Our  bidirectional ray tracing algori thm thus has three passes. 
We discuss these passes here in a general way; the  details of a 
par t icular  implementa t ion are discussed in §4. The passes are: 

s ize  p a s s  - record screen size information in each rex 

light pas s  - progressively trace rays from lights and bright  
surfaces, depositing photons on diffuse surfaces to 
construct  radiosity textures 

eye p a s s  - t race rays from eye, extract ing light from dif- 
fuse surfaces to make a picture 

Specular reflection and transmission bounces are followed on all 
three passes. Distr ibut ion ray t racing can be used in all passes 
to simulate the broad distr ibutions of rough specular reflections 
and other  effects. 

3.4.1 S ize  P a s s  

As previously described, the size pass traces rays from the eye, 
recording information about  the  mapping between surface pa- 
rameter  space and screen space. This  information is used by  each 
rex during the  l ight pass to te rminate  its adapt ive subdivision. 

3 .4.2 L i g h t  P a s s  

Indirect  diffuse interact ion is simulated during the llght pass by 
regarding br ight  diffuse surfaces as l ight sources, and shooting 
light rays from them~ as in progressive radiosity. The  rex records 
the shot and unshot  power. 
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The  adapt ive  a lgor i thm for light ray t racing mus t  ensure that :  
(a) a min imum level of l ight  sampling is achieved; (b) more rays 
are devoted near  silhouettes,  shadows, and high curvature  areas; 
(c) sharp radiosity gradients  are resolved to screen pixel size; and 
(d) light rays and rexes are subdivided cooperatively. 

3 . 4 . 3  E y e  P a s s  

The  eye pass is like a s tandard  ray t racing a lgor i thm except tha t  
the  diffuse in tensi ty  is extracted out  of the text instead of from a 
shadow ray. The  radiosi ty of a surface pa tch  is its power divided 
by its world-space surface area. 

After  the three passes are run, one could move the  eye point  
and re-run the  eye pass to generate  other  views of the seen% but  
the  results would be inferior to those made  by recomput ing the  
rexes adap ted  to the  new viewpoint.  

3 .4 .4  O b s e r v a t i o n s  

Because l ight  rays are concent ra ted  on visible port ions of the  
scene and radlosity is resolved adapt ive to each surface~s projec- 
t ion in screen space, the  radiosity calculation performed in the  
l ight  pass is view-dependent .  Bu t  this is as it should be: al- 
though the  exact radiosi ty values are view-independent ,  the  ra- 
diosity sample locations needed to make a picture are not.  When  
comput ing  moving-camera  animation~ one could prime the  rexes 
by runn ing  the size pass for selected key frames to achieve more 
view-independent  sampling. 

4 I m p l e m e n t a t i o n  and Resu l t s  

The  current  implementa t ion  realizes many, but  not  all, of the  
ideas proposed here. It  performs bidirectional ray tracing using 
adapt ive  sampl ing for light~ eyed and rex. It  has no size pass e 
jus t  a l ight  pass and an  eye pass. The  program can render scenes 
consist ing of CSG combinat ions of spheres and polyhedra.  Spec- 
ular  in terac t ion is assumed ideal, and diffuse transmission is not  
simulated. The  light pass shoots photons  from omnidirect ional  
point  l ight sources, and does not implement  progressive radios- 
ity. The  implementa t ion  thus simulates only i S * D S * E  paths  at  
present.  We trace ray trees, not  jus t  ray paths  [Kajiya86]. 

4 .0.5 D a t a  S t r u c t u r e s  

Quadtrees were used for each of the 2-D sampling processes 
[Samet90]: one for the  outgoing directions of each light, one for 
the  pa ramete r  space of each radiosity texture,  and one for the  
eye. 

The  l ight  and eye quadtrees  are quite similar; their  records 
are shown below in pseudocode. Each node contains pointers to 
its child nodes (if not  a leaf) and to its parent  node. Light space 
is parameter ized by ( r , s ) ,  where r is la t i tude and s is longitude. 
and eye space (screen space) is parameterized by  ( x , y ) .  Each 
node represents  a square region of the  pa ramete r  space whose 
corner is given by (to, so) or (x0, y0) and whose size is propor- 
t ional  to 2 -level. 

low 

Figure 5: I~ex quadtree  on  a surface.  Adap t i ve  f e z  subd iv i s ion  
tr ies  to subdivide  m o r e  f inely  near  a shadow edge. 

The  l ight  quadtree  sends one light ray per  node at a locat ion 
uniformly dis t r ibuted over the  square. Also stored in each light 
quadt ree  node is the  ID of the  surface hi t  by the l ight  ray, if any, 
and the  surface parameters  (u, v) at  the intersect ion point .  This  
informat ion is used to determine the  dis tance in parameter  space 

between rex hits. 

Eye quadtrees  are simpler. Each node has pointers  to the  
intensit ies at  its corners. These  are shared wi th  neighbors and 
children. Eye ray t rac ing is current ly uniform, not  stochastic.  

A rex quadt ree  node represents a square r e , o n  of (u, v) pa- 
rameter  space on a diffuse surface (figure 5). Leaves in the rex 
quadt ree  act as h is togram buckets~ accumulat ing the n u m b e r  of 
photons  and  their  power. Rex nodes also record the world space 
surface area of their  surface patch.  

lisht_node: type  = 
record 

leaf: boolean; 
mark: boolean; 

level: int; 
parent: "lisht_node; 
nw, ne ,  s e ,  s s :  " l i g h t _ n o d e ;  
tO, sO: real; 
r~ e: real; 
surfnc: int; 
u, v: real; 

end; 

eye_node: type = 
record 

leaf: boolean; 

mark: boolean; 

level: int; 
parent: "eye_node; 
nw, ne. se, sw: "eye_node; 

xO. yO: real; 
inw. ine. ise. is,: "color; 

end; 

{LIGHT QUADTREE NODE> 

{is this a leaf?> 
{should node be split?} 
{level in tree (rook=O)} 
{parent node. if any} 
{four child/sn, if not a leaf} 
{params of corner of square} 

{dir. params o2 ray (lat.lon)} 
{id of surface hit. if any} 
{surf  params of  surface hit} 

{EYE QUADTREE NODE} 

{is this a leaf?} 
{should node be split?} 

{level in t r e e  (root=O)} 
{parent node. if any} 
{four children, if not a leaf} 
{coords of corner of square} 
{intensity samples at corners} 

rex_node: type = 
record 

leaf: boolean; 

mark: boolean; 
level: int; 
parent: "rex_node; 

nw, ne, se, sw: "rex_node; 

nO. vO: real; 
area: real; 
count: int; 
power: color; 

end; 

{REX QUADTREE NODE} 

{is this a leaf?} 
{should node be split?} 
{level in tree (root=O)} 
{parent node. if any} 
{four children, if not a leaf} 
{surf params of square corner} 
{surface area of this bucket} 
{~photon~ in bucket, if leaf} 
{accumulated power of bucket} 
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Figure 6: Light quadtree shown schematically (left) and in light 
direction parameter space (right). When a light quadtree node is 
split, its power is redistributed to its four sub-nodes, which each 
send a ray in a direction (r ,s)  jittered ~oithin their parameter 
square. The fractional power of each light ray is shown next to  

the leaf node that sends it. 

The current  implementa t ion uses the following algorithm. 

4.1 Light Pass  

First ,  rex quaxitrees are initialized to a chosen s tar t ing level (level 
3, say, for 8x8 subdivision), and the counts and powers of all 
leaves are zeroed. 

For each light, light ray tracing proceeds in breadth  first order 
within the  l ight quadtree,  at  level 0 t racing a single ray carrying 
the  total  power of the light, at level 1 t racing up to 4 rays, at  level 
2 t racing up to 16 rays, etc (figure 6). At  each level, we adaptively 
subdivide bo th  the  l ight quadtree and the  rex quadtrees. Chang- 
ing the  rex quadtrees in the midst of light ray shooting raises 
the  his togram redistr ibut ion problem, however: if a his togram 
bucket is split during collection, it is necessary to redistr ibute 
the paren t ' s  mass among the children. There  is no way to do this 
reliably without  a priori knowledge, so we clear the rex at  the 
beginning of each level and reshoot. 

Processing a given level k of light rays involves three steps: 
(1) rex subdivision to split rex buckets containing a high density 
of photons, (2) light marking to mark light quadtree nodes where 
more light rays should be sent, and (3) light subdivision to split 
marked light nodes. 

Rex subdivision consists of a sweep through every rex quadtree 
in the  scene, spl i t t ing all rex buckets whose photon count exceeds 
a chosen limit. All counts and powers are zeroed at the end of 
this sweep. 

Light marking traverses the  light quadtree, marking all level 
k nodes tha t  meet  the  subdivision criteria listed below. 

(1) Always subdivide unti l  a min imum level is reached. 

(2) Never subdivide beyond a maximum level (if a size 
pass were implemented,  it would determine this max- 
imum level locally). 

Otherwise, look at the light quadtree neighbors above, below, 
left, and right, and subdivide if the following is true: 

(3) The  ray hit  a diffuse surface, and one of the  four 
neighbors of the  rex node hit  a different surface or 
was beyond a threshold distance in (u, v) parameter  
space from the center ray's. 

To help prevent  small  feature neglect, we also mark for subdi- 
vision all level k - 1 leaves t ha t  neighbor on level k leaves tha t  
are m ~ k e d  for subdivision. This last  rule guarantees a restricted 
quadtree [Von Herzen87] where each leaf node's neighbors are at  
a level within plus or minus one of the center node's. 

Light subdivision traverses the light quadtree split t ing the 
marked nodes. Subdividing a node splits a ray of power p into 
four rays of power p/4 (figure 6). When  a light node is cre- 
ated (during initialization or subdivision) we select a point  a t  
r andom within its square (r, s) domain to achieve j i t tered sam- 
pling [Cook86] and trace a ray in tha t  direction. Marked nodes 
thus shoot four new rays, while unmarked nodes re-shoot their  
rays. During light ray tracing we follow specular bounces, split- 
t ing the ray tree and subdividing the power according to the re- 
f lec tance / t ransmi t tance  coefficients kij, and deposit their  power 
on any diffuse surface tha t  are hit. When a diffuse surface is hit,  
we determine (u ,v )  of the intersection point,  and descend the 
surface's rex quadtree to find the rex node containing t ha t  point.  
The  power of tha t  node is incremented by the power of the  ray 
times the  cosine of the incident angle. 

4 . 2  E y e  Pass  

The eye pass is a fairly s tandard  adapt ive supersampling ray 
tracing algorithm: nodes are split when the intensi ty difference 

between the  four corners exceeds some threshold. To generate a 
picture, nodes larger than  a pixel perform bilinear interpolat ion 
to fill in  the  pixels they cover, while nodes smaller than  a pixel 
are averaged together to compute  a pixel. The picture is stored 
in floating point  format  initially, then scaled and clamped to the 
range [0,255] in each channel. 

4 . 3  Resul t s  

Figures 7-12 were generated with this program. Figures 7, 8, and 
9 show the importance of coordinating the l ight ray sampling pro- 
cess with the  rex resolution. Sending too few light rays results 
in a noisy radiosity est imate from the rex, and too coarse a rex 
results in blocky appearance.  When  the rex buckets are approxi- 
mately screen pixel size and the light ray density deposits several 
photons per bucket (at  least 10, s~y), the results are satisfac- 
tory. We est imate the radiosity using a function tha t  is constant  
within each bucket; this simple es t imator  accounts for the blocki- 
ness of the  images. If bilinear interpolat ion were used, as in most  
radiosity algorithms, we could t rade off blockiness for blurriness. 

Figure 10 shows adapt ive subdivision of a rex quadtree,  split- 
t ing more densely near shadow edges ( the current  spl i t t ing cri- 
teria cause unnecessary spli t t ing near the border of the square). 
Its rex quadtree  is shown in figure 11. 

Figure 12 shows off some of the effects tha t  are simulated by 
this algorithm. 
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Figure 7: Noisy appearance results when too few light rays are 
received in each rex bucket (too few light rays or too fine a rex). 
Scene consists o f  a diffuse sphere above a diffuse f loor both illu- 
minated by an overhead light source. 

Figure 8: Blocky or blurry appearance results when rex buckets 
are much  larger than a screen pixel (too coarse a rex). 

Figure 9: Proper balance o f  light sampling and rex sampling 
reduces both noise and blockiness. 

Figure 10: R ez  with adaptation: the rex o f  the f loor is initially a 
single bucket, but it splits adaptively near the edges of  the square 
and near the shadow edge. 

Statistics for these images are listed below, including the 
number of light rays, the percentage of light rays striking an ob- 
ject, the resolution of the rex, the resolution of the final picture, 
the number  of eye rays, and the CPU time. All images were com- 
puted on a MIPS R2000 processor. The lens image used about 20 
megabytes of memory~ mostly :for the light qu~dtree. Ray trees 
were traced to a depth of 5. 

#LRAYS %HIT REX I EYE #ERAYS 
87,400 10% 128~ I 256~ 246,000 
87,400 10% 82 2562  139,000 

822,000 68% 1282 2562  146,000 
331,000 20% vbl 2562  139,000 

1,080,000 61% 256 ~ 5122  797,000 

TIME I FIG 1.0 min. fig. 7 
0.6 rain. fig. 8 
3.5 rain. fig. 9 
1.3 rain. fig. 10 
6.4 rain. fig. 12 
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Figure 11: Rex quadtree in (u, v) space of previous figure's floor. 
Each leaf node's square is colored randomly. Note the subdivision 
near the shadow edge and the quadtree restriction. 

5 Conclus ions  

The bidirectional ray tracing algori thm outlined here appears to 
be an accurate, general approach for global i l lumination of scenes 
consisting of diffuse and pure specular surfaces. It is accurate be- 
cause i t  can account for all possible light paths; and it is general 
because it supports  bo th  the radiosity and ray tracing realms: 
shapes bosh planar  and curved materials bo th  diffuse and spec- 
ular, and lights bo th  large and small. Distr ibution ray tracing 
can be used to simulate effects not directly supported by the 
algorithm. 

Adapt ive  radiosity textures (rexes) are a new da ta  struc- 
ture t ha t  have several advantages over previous radiosity storage 
schemes. They can adaptively subdivide themselves to resolve 
sharp shadow edges to screen pixel size, thereby eliminating vis- 
ible artifacts of radiosity sampling. Their  subdivision can be 
automatic ,  requiring no ad hoc user-selected parameters.  

The  current  implementat ion is young, however, and many 
problems remain. A terse fist follows: Good adaptive sampling 
of area l ight sources appears to require a 4-D data  structure.  Bet- 
ter methods are needed to determine the number  of light rays. 
The redistr ibut ion problems of histograms caused us to send each 
light ray multiple times. To avoid this problem we could store 
all (or selected) photon locations using kernel estimators [Sil- 
verman86]. Excessive memory is currently devoted to the light 
quadtree,  since one node is stored per light ray. Perhaps  the  
quadtree  could be subdivided in more-or-less scanline order, and 
the memory recycled (quadtree restriction appears to complicate 
this, however). Adapt ive subdivision algorithms tha t  compare 
the ray trees of neighboring rays do not mix easily with pa th  
tracing and dis t r ibut ion ray tracing, because the la t ter  obscure 
coherence. Last bu t  not least, the interdependence of light ray 
subdivision and rex subdivision is precarious. 

Figure 12: Light focusing and reflection from a lens and chrome 
ball. Scene is a glass lens formed by CSG intersection of two 
spheres, a chrome ball, and a diffuse floor~ illuminated by a light 
source off screen to the right. Note focusing of light through lens 
onto floor at center (an L S S D  path), reflection of  refracted light 
off ball onto floor (an L S S  SD path involving both transmission 
and reflection), the reflection of light off lens onto floor forming 
a parabolic arc (an L S D  path), and the reflection of the lens in 
the ball (a L S S D S S E  path, in full). 

In spite of these challenges, we are hopeful. The  approach 
of bidirectional ray tracing using adaptive radiosity textures ap- 
pears to  contain the mechanisms needed to simulate global illu- 
minat ion in a general way. 
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