
~ Computer Graphics, Volume 24, Number 4, August 1990

Adaptive Radiosity Textures for Bidirectional Ray Tracing

Paul S. Heckbert

Dept. of Electrical Engineering and Computer Science
University of California, Berkeley, CA 94720

Abs t r ac t

We present a rendering method designed to provide
accurate, general simulation of global illumination for re-
alistic image synthesis. Separating surface interaction into
diffuse plus specular, we compute the specular component
on the fly, as in ray tracing, and store the diffuse compo-
nent (the radiosity) for later-reuse, similar to a radiosity
algorithm. Radiosities are stored in adaptive radiosity tez-
lures (fezes) that record the pattern of light and shadow
on every diffuse surface in the scene. They adaptively sub-
divide themselves to the appropriate level of detail for the
picture being made, resolving sharp shadow edges auto-
matically.

We use a three-pass, bidirectional ray tracing algorithm
that traces rays from both the lights and the eye. The "size
pass" records visibility iufornmtion on diffuse surfaces; the
"light pass" progressively traces rays from lights and bright
surfaces to deposit photons on diffuse surfaces to construct
the radiosity textures; and the "eye pass" traces rays from
the eye, collecting light from diffuse surfaces to make a
picture.

CtL Categories: 1.3.3 [C o m p u t e r G r a p h i c s l : Pic ture/ Image
Genera t ion - display algorithms; 1.3.7 [C o m p u t e r Graph i c s] :
Three-Dimensional Graphics and ReMism - visible line~surface
algorithms.

General Terms: algorithms.

Additional Key Words and Phrases: global illumination, den-
sity estimation, texture mapping, quadtree, adaptive subdivision,
sampling.

1 I n t r o d u c t i o n

The presentat ion is divided into four sections. We first discuss
previous work on the global illumination problem. Then we out-
line our bidirectional ray tracing approach in an intuitive way.
Next we describe our implementation and some early results. We
conclude with a summary of the method and of our experiences
to date.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

2 T h e G l o b a l I l l u m i n a t i o n P r o b l e m

The primary goal of realistic image synthesis is the develop-
ment of methods for modeling and realistically rendering three-
dimensional scenes. One of the most chMlenging tasks of realistic
image synthesis is the accurate and efficient simulation of global
illumination effects: the illumination of surfaces in a scene by
other surfaces. Early rendering programs treated the visibility
(hidden surface) and shading tasks independently, employing a
local illumination model which assumed that the shading of each
surface is independent of the shading of every other surface. Lo-
cal illumination typically assumes that light comes from a finite
set of point light sources only. Global illumination models, on the
other hand~ recognize that the visibility and shading are interre-
lated: the shade of a sm'face point is determined by the shades
of all of the surfaces visible fl'om that point.

The intensity of light traveling in a given outgoing direction
o~t from a surface point is the integral of the incident inten-
sity times the bidirectional distribution function (BDF) over all
possible incoming directions in:

intensity(oWl) = fphere intensity(i~) BDF(in, o~t) d(in)

The bidirectional distribution function is the fraction of energy
reflected or t ransmit ted from the incoming direction in = (¢i, Oi)
to the outgoing direction out = (¢o, 0o); it is the sum of the
bidirectional reflectance distribution function (BRDF) and the
bidirectional t ransmit tance distribution function (BTDF). See
[Hall89] for a more detailed discussion of the physics of illumina-
tion. We will characterize previous global illumination algorithms
by the approximations they make to the above integral.

Because of the superposition properties of electromagnetic ra-
diatlon, we can segregate surface reflectance into two types: dif-
fuse and specular. We define diffuse interaction (both reflection
and transmission) to be the portion of interaction that scatters
fight equally in all directions, and specular interaction to be the
remaining portion. BDF = BDFdilf + BDF~pee. For many ma-
terials, specular interaction scatters light in only a small cone of
directions. When this cone includes just a finite number of direc-
tions, each a cone with solid angle zero, we call the interaction
ideal specular, otherwise, when the cone(s) have a positive finite
angle, we call it rough specular. Two examples of ideal specular
surfaces are: (1) a perfect mirror that reflects in one direction,
and (2) a perfect t ransmit ter that refracts in one direction and
reflects in another. An ideal specular surface with micro-bumps
behaves statistically like a rough specular surface. Oar three
classes of interaction are diagrammed in figure 1.

© 1 9 9 0 ACM-O-89791-344-2/90/O0810145 $00.75 145

O SIGGRAPH '90, Dallas, August 6-10, 1990

diffuse rough specular ideal specular

Figure 1: Three classes of reflectance: diffuse, rough specular,
and ideal specular; showing a polar plot of the reflectance coeffi-
cient for fixed incoming direction and varying outgoing direction.
Transmittance is similar.

A diffuse surface appears equally bright from all viewing di-
rections, but a specular surface's brightness varies with viewing
direction, so we say that diffuse interaction is view-independent
while specular interaction is view-dependent. The simplest ma-
terials have a position-invariant, isotropic BDF consisting of a
linear combination of diffuse and ideal specular interaction, but
a fully-general BDF can simulate textured, anisotropic, diffuse
and rough specular surfaces.

2 .1 R a y T r a c i n g vs . l : t a d i o s i t y

The two most popular algorithms for global illumination are ray
tracing and radiosity. Ray tracing is both a visibility algorithm
and a shading algorithm~ but radiosity is just a shading algo-
rithm.

2.1.1 R a y T r a c i n g

Classic ray tracing generates a picture by tracing rays from the
eye into the scene, reeursively exploring specularly reflected and
transmitted directions, and tracing rays towaxd point light sources
to simulate shadowing [Whitted80]. It assumes that the BDF
contains no rough specular, and that the incident light relevant
to the diffuse computation is a sum of delta functions in the di-
rection of each light source. This latter assumption implies a
local illumination model for diffuse.

A more realistic illumination model includes rough specular
BDF's and computes diffuse interaction globally. Exact simu-
lation of these effects requires the integration of incident light
over cones of finite solid angle. Ray tracing can be generalized
to approximate such computations using distribution ray trac-
ing [Cook84], ILee85], [Dippe85], [Cook86], [Kajiya86]. (We pro-
pose the name "distribution ray tracing" as an alternative to
the current name, "distributed ray tracing", which is confusing
because of its parallel hardware connotations.) In distribution
ray tracing, rays are distributed, either uniformly or stochasti-
cally, throughout any distributions needing integration. Many
rays must be traced to accurately integrate the broad reflectance
distributions of rough specular and diffuse surfaces: often hun-
dreds or thousands per surface intersection.

2.1.2 R a d i o s i t y

The term radiosity is used in two senses. First, radiosity is a
physical quanti ty equal to power per unit area, which determines
the intensity of light diffusely reflected by a surface, and second,
radiosity is a shading algorithm. The meaning of each use should
be clear by context.

The Classic radiosity algorithm subdivides each surface into
polygons and determines the fraction of energy diffusely radi-
ated from each polygon to every other polygon: the pair's form
]actor. From the form factors, a large system of equations is
constructed whose solution is the radiosities of each polygon
[SiegelS1], [Gora184], [Nishita85]. This system can be solved ei-
ther with Gauss-Seidel i teration or, most conveniently, with pro-
gressive techniques that compute the matrix and solve the sys-
tem a piece at a time [Cohen88]. Form factors can be determined
analytically for simple geometries [Siege181], [Baum89], but for
complex geometries a numerical approach employing a visibility
algorithm is necessary. The most popular visibility method for
this purpose is a hemicube computed using a z-buffer [Cohen85],
but ray tracing has recently been promoted as an alternative
[Wallace89], [Sillion89]. Classic radiosity assumes an entirely dif-
fuse reflectance, so it does not simulate specular interaction at
all.

The output of the radiosity algorithm is one radiosity value
per polygon. Since diffuse interaction is by definition view-inde-
pendent, these radiosities are valid from any viewpoint. The
radiosity computat ion must be followed by a visibility algorithm
to generate a picture.

The radiosity method can be generalized to simulate specu-
lar interaction by storing not just a single radiosity value with
each polygon, but a two-dimensional array [Imme186], [Shao88],

[Buckalew89]. The resulting algorithm, which we call directional
radiosity, simulates both diffuse and specular interaction globally,
but the memory requirements are so excessive as to be impracti-
cal.

2.1.3 H y b r i d M e t h o d s

Ray tracing is best at speculax and radiosity is best at diffuse,
and the above at tempts to generalize ray tracing to diffuse and
to generalize radiosity to specular stretch the algorithms beyond
the reflectance realms for which each is best suited, making them
less accurate and less efficient. Another class of algorithms is
formed by hybridizing the methods, using a two-pass algorithm
that applies a radiosity pass followed by the ray tracing pass.
This is the approach used by [Wallace87] and [Sillion89].

The first pass of Wallace's algorithm consists of classic radios-
i ty extended to include diffuse-to-diffuse interactions that bounce
off planar mirrors. He follows this with a classic ray tracing pass
(implemented using a z-buffer). Unfortunately, the method is
limited to planar surfaces (because of the polygonization involved
in the radiosity algorithm) and to perfect planar mirrors.

Sillion's algorithm is llke Wallace's but it computes its form
factors using ray tracing instead of hemicubes. This eliminates
the restriction to planar mirrors. The method still suffers from
the polygonization inherent in the radiosity step, however.

2 .2 S a m p l i n g R a d l o s i t l e s

Many of the sampling problems of ray tracing have been solved
by recent adaptive algorithms [WhittedS0], [Cook86], [Lee85],
[Dippe85], [Mitchel187], [Painter89], particularly for the simula-
tion of specular interaction. The sampling problems of the radios-
ity algorithm are less well studied, probably because its sampling
process is less explicit than that of ray tracing.

146

~ ' Computer Graphics, Volume 24, Number 4, August 1990

We examine four data structures for storing radiosities: light
images, polygons, samples in 3-D, and textures. Several different
algorithms have been used to generate these data structures: ra-
diosities have been generated analytically, with hemicubes at the
receiver (gathering), with hemieubes at the sender (shooting),
and by tracing rays from the eye or from the light.

2.2.1 Light Images

The simplest data structure, the light image, simulates only shad-
ows, the first order effects of diffuse interreflection. Light images
are pictures of the scene from the point of view of each light
~ource. They are most often generated using the z-buffer shadow
algorithm, which saves the z-buffers of these light images and
uses them while rendering from the point of view of the eye to
test if visible points are in shadow [Wilhams78], [Reeves87]. This
shadow algorithm is more flexible than most, since it is not lim-
ited to polygons, but i t is difficult to tune. Choosing the resolu-
tion for the light images is critical, since aliasing of shadow edges
results if the light images are too. coarse.

2.2.2 P o l y g o n l z e d l~ad ios l ty

The Atherton-Weiler algorithm is another method for comput-
ing shadows that renders from the point of view of the lights
[Atherton78]. It uses the images rendered from the lights to gen-
erate "surface detail polygons", modifying the scene description
by splitting all polygons into shadowed and unshadowed portions
that are shaded appropriately in the final rendering from the eye.
Surface detail polygons are an example of polygonized radiosity,
the storage of radiosity as polygons. The shadows computed by
the Atherton-Weiler algorithm are a first-approximation to the
interrefiection simulated by radiosity algorithms.

The most common method for computing polygonized radios-
ity is, of course, the classic radiosity algorithm. A major prob-
lem with this Mgorithm is that surfaces are polygonized before
radiosities are computed. Difficulties result if this polygonization
is either too coarse or too fine.

Sharp shadow edges caused by small light sources can be un-
dersampled if the polygonization is too coarse, resulting in blur-
ring or abasing of the radiosities. Cohen developed the "sub-
structuring" technique in response to this problem [Cohen86].
It makes an initial pass computing radiosities at low resolution,
then splits polygons that appear to be in high-variance regions
and recomputes radiosities. Substructuring helps, but it is not
fully automatic, as the subdivision stopping criterion appears to
be a polygon size selected in some ad hoc manner. The limi-
tations of the method are further demonstrated by the absence
to date of radiosity pictures in published work exhibiting sharp
shadow edges.

The other extreme of radiosity problems is oversampling of
radiosities due to polygonization that is too fine for the hemicube.
The resulting quantization can be cured by adaptive subdivision
of the hemicube or of the light rays [Wallace89], [Baum89].

We conclude that polygonization criteria remain a difficult
problem for the radiosity method.

It is interesting to note the similaxities between radiosity al-
gorithms and the Atherton-Weiler algorithm. Conceptually, the
original radiosity method gathers light to each polygon by ren-

dering the scene from the point of view of each receiver, but
the progressive radiosity algorithm shoots light by rendering the
scene from the point of view of each sender (a light source). A
progressive radiosity algorithm using a hemicube is thus much
like repeated application of the Atherton-Weiler shadow algo-
rithm.

2.2.3 S a m p l e s in 3-D

l~adiosities can be computed using brute force distribution ray
tracing [Kajiya86], but the method is inefficient because it sam-
ples the slowly-varying radiosity function densely. To exploit the
coherence of radiosity values, Ward sampled the diffuse compo-
nent sparsely, and saved this information in a world space octree
[Ward88]. Because his algorithm shot rays from the eye toward
the lights, and not vice-versa, i t had difficulty detecting light
sources reflected by specular surfaces.

2.2.4 R a d i o s i t y T e x t u r e

The fourth data structure for radiosities is the radiosity texture.
Instead of polygonizing each surface and storing one radiosity
value per polygon, radiosity samples are stored in a texture on
every diffuse surface in the scene [Arvo86]. Arvo called his tex-
tures "illumination maps". He computed them by tracing rays
from the light sources.

2 .3 L i g h t R a y Tracing

Rays traced from the eye we call eye rays and rays traced from the
lights we call light rays. We avoid the terms "forward ray tracing"
and "backward ray tracing" because they are ambiguous: some

people consider photon motion ~'forward', while others consider
Whit ted 's rays "forward".

Light ray tracing was originally proposed by Appel [Appe168],
who "stored" his radiosities on paper with a plotter. Light ray
tracing was proposed for beams in previous work with Hanra-
han [Heckbert84] where we stored radiosities as surface detail
polygons like Atherton-Weiler. This approach was modified by
Strauss, who deposited light directly in screen pixels when a dif-
fuse surface was hit by a beam, rather than store the radiosities
with the surface [Strauss88]. Wat t has recently implemented light
beam tracing to simulate refraction at water surfaces [Wattg0].
Arvo used light ray tracing to compute his radiosity textures
[Arvo86]. Light ray tracing is often discussed but has been little
used, to date.

3 Bidirectional Ray Tracing Using Adap-
tive Radiosity Textures

In quest of realistic image synthesis, we seek efficient algorithms
for simulating global illumination that can accommodate curved
surfaces, complex scenes, and arbitrary surface characteristics
(BDF's), and generate pictures perceptually indistinguishable
from reality. These goals are not realizable at present, but we
can make progress if we relax our requirements.

147

O SIGGRAPH '90, Dallas, August 6-10, 1990

We make the following assumptions:

(1) Only surfaces are relevant. The scat ter ing or absorp-
t ion of volumes can be ignored.

(2) Curved surfaces are impor tan t . The world is not
polygonal.

(3) Shadows, penumbras , texture, diffuse interreflection,
specular reflection, and refraction are all impor tant .

(4) We can ignore the phenomena of fluorescence (light
wavelength crosstalk), polarization, and diffraction.

(5) Surface propert ies can be expressed as a l inear com-
b ina t ion of diffuse and specular reflectance and trans-
mission functions:

BDF =kd~BRDFdity + ksrB1~DF~pec+

kdtBTDFdi// + kstBTDFspec

The coet-ficients klj are not assumed constant .

(6) Specular surfaces are not rough; all specular interac-
t ion is ideal.

3.1 A p p r o a c h

Our approach is a hybr id of radiosity and ray t racing ideas.
Ra ther t han pa tch together these two Mgorithms, however, we
seek a simple, coherent , hybr id algori thm. To provide the great-
est generali ty of shape primitives and optical effects, we choose
ray t racing as the visibility algorithm. Because ray t racing is
weak at s imulat ing global diffuse interact ion, the principal task
before us is therefore to determine an etficient method for calcu-
la t ing radiosities using ray tracing.

To exploit the view-independence and coherence of radiosity,
we store radioslty with each diffuse surface, using an adaptive
radiosity texture, or rex. A rex records the pa t t e rn of l ight and
shadow and color bleeding on a surface. We store radiosity as
a texture, r a ther than as a polygonization, in order to decouple
the da t a s tructures for geometry and shading, and to facili tate
adapt ive subdivision of radiesl ty information; and we store i t
wi th the surface, rat l ier than in a global octree [Ward88], or in a
l ight image, based on the in tui t ion t ha t radiosities are intrinsic
propert ies of a surface. We expect tha t the memory required for
rexes will not be excessive, since dense sampling of radiosity will
be necessary only where it has a high gradient , such as at shadow
edges.

Next we need a general technique for comput ing the rexes.
The paths by which photons t ravel th rough a scene can motivate
our a lgor i thm (figure 2). We can characterize each interact ion
along a photon ' s pa th from light (L) to eye (E) as ei ther diffuse
(D) or specular (S). Each pa th can therefore be labeled with
some str ing in the set given by the regular expression L(D]S)*E.
Classic ray t racing simulates only LDS*E [LS*E paths, while
classic radioslty simulates only LD*E. Eye ray tracing has dif-
ficulty finding paths such as LS+DE because it doesn ' t know
where to look for specularly reflected light when in tegra t ing the
hemisphere. Such paths are easily s imulated by light ray tracing,
however.

We digress for a moment to discuss units. Light rays carry
power (energy/ t ime) and eye rays carry intensi ty (energy / (t ime
* projected area * solid angle)). Each light ray carries a fract ion

Figure 2: Selected photon paths from light (L) to eye (E) by
way of diffuse (D) and specular (S) surfaces. For simplicity, the
surfaces shown are entirely diffuse or entirely specular; normally
each surface would be a mixture.

D

° /

Figure 3: Left: first level light ray tracing propagates photons
from the light to the first diffuse surface on a path (e.g. LD
and LSD); higher levels of progressive light ray tracing simulate
indirect diffuse interaction (e.g. LDD). Right: eye ray trac-
ing shoots rays from the eye, extracting radiosities from diffuse
surfaces (e.g. it traces DE and D S E in reverse).

of the to ta l power emit ted by the light.

We can simulate pa ths of the form LS*D by shooting light
rays (photons) into the scene, deposit ing the photon ' s power into
the rex of the first diffuse surface encountered (figure 3, left).
Such a l ight ray tracing pass will compute a first approximat ion
to the radiosities. This can be followed by an eye ray tracing pass
in which we trace DS*E paths in a backward direction, extract-
ing in tensi ty from the rex of the first diffuse surface encountered
(figure 3, right). The net effect of these two passes will be the
s imulat ion of all LS*DS*E paths. The rays of the two passes
"meet in the middle" to exchange information. To simulate dif-
fuse interreflection, we shoot progressively from bright surfaces
[Cohen88] dur ing the light ray t racing pass, thereby accounting
for all paths: L(S*D)*S*E = L(D[S)*E. We call these two
passes the light pass and eye pass. Such bidirectional ray tracing
using adapt ive radiosity textures can thus simulate all pho ton
paths , in principle.

Our bidirect ional ray tracing a lgor i thm is thus a hybrid. From
radiosity we borrowed the idea of saving and reusing the diffuse
component , whicil is view-independent , and from ray tracing we
borrowed the idea of discarding and recomput ing the specular
component , which is view-dependent.

148

~ Computer Graphics, Volume 24, Number 4, August 1990

3 .2 A l l S a m p l i n g is A d a p t i v e

There are three separate mult idimensional sampling processes
involved in this approach: sampling of directions from the light,
sampling of directions from the eye (screen sampling), and sam-
pling of radiosity on each diffuse surface.

3 . 3 A d a p t i v e R a d i o s i t y T e x t u r e s (R e x e s)

Rexes are textures indexed by surface parameters u and v, as in
s tandard texture mapping [Blinn76], [Heckbert86]. We associate
a rex with every diffuse or partially-diffuse surface. By using
a texture and reta ining the initial geometry, instead of polygo-
nizing, we avoid the polygonized silhouettes of curved surfaces
common in radiosity pictures.

In the bidirectional ray tracing algorithm, the rexes collect
power from incident photons during the light pass, and this in-
formation is used to est imate the t rue radiosity function during
the eye pass (figure 4). Our rexes thus serve much like den-
sity estimators tha t es t imate the probabil i ty density of a random
variable from a set of samples of tha t random variable [Silver-
man86]. Densi ty can be es t imated using either his togram meth-
ods, which subdivide the domain into buckets; or kernel estima-
tors, which store every sample and reconstrnct the density as a
sum of weighted kernels (similar to a spline).

The resolution of a rex should be related to its screen size.
Ideally, we want to resolve shadow edges sharply in the final
picture, which means tha t rexes should store details as fine as
the preimage of a screen pixel. On the other hand, resolution
of details smaller than this is unnecessary, since subpixel detail
is beyond the Nyquist l imit of screen sampling. Cohen's sub-
s t ructur ing technique is adaptive, bu t its criteria appear to be
independent of screen space, so i t cannot adap t and optimize the
radiosity samples for a par t icular view.

To provide the l ight pass with information about rex resolu-
t ion we precede the l ight pass with a size pass in which we trace
rays from the eye, labeling each diffuse surface with the min imum
rex feature size.

3.8.1 Adaptive Light Sampling

Adapt ive sampling of l ight rays is desirable for seYeral reasons.
Sharp resolution of shadow edges requires rays only where the
l ight source sees a silhouette. Also, i t is only necessary to trace
l ight pa ths t ha t hi t surfaces visible (directly or indirectly) to the
eye. Thirdly, omnidirect ional lights disperse photons in a sphere
of directions, bu t when such lights are far from the visible scene,
as is the sun, the light ray directions tha t affect the final picture
sub tend a small solid angle. Finally, stratified sampling should be
used for directional lights to effect their goniometric distr ibution.
Thus, to avoid tracing irrelevant rays, we sample the sphere of
directions adaptively [Sillion89], [Wallace89].

For area l ight sources, we use stratified sampling to dis t r ibute
the ray origins across the surface with a density proport ional to
the local radiosity. Stratified sampling should also be used to
shoot more l ight rays near the normal, since it is intensi ty t ha t
is constant with outgoing angle, while power is proport ional to
the cosine of the angle with the normal. If the surface has bo th a
s tandard texture and a rex mapped onto it, then the rex should
be modula ted by this s tandard texture before shooting. Wi th

Figure 4: Photons incident on a rex (shown as spikes with height
proportional to power) are samples from the true, piecewise-
continuous radiosity function (the curve). We try to estimate
the function from the samples.

area l ight sources, the dis t r ibut ion to be integrated is thus four-
dimensional: two dimensions for surface parameters u and v,

and two dimensions for ray direction. For best results, a 4-D
da ta s t ructure such as a k-d tree should be used to record and
adapt the set of light rays used.

3.3.2 A d a p t i v e E y e S a m p l i n g

Eye rays (screen pixels) are sampled adaptively as well. Tech-
niques for adapt ive screen sampling have been covered well by
others [Warnock69], [Whitted80], [Mitchell87], [Painter89].

3 . 4 T h r e e P a s s A l g o r i t h m

Our bidirectional ray tracing algori thm thus has three passes.
We discuss these passes here in a general way; the details of a
par t icular implementa t ion are discussed in §4. The passes are:

s ize p a s s - record screen size information in each rex

light pas s - progressively trace rays from lights and bright
surfaces, depositing photons on diffuse surfaces to
construct radiosity textures

eye p a s s - t race rays from eye, extract ing light from dif-
fuse surfaces to make a picture

Specular reflection and transmission bounces are followed on all
three passes. Distr ibut ion ray t racing can be used in all passes
to simulate the broad distr ibutions of rough specular reflections
and other effects.

3.4.1 S ize P a s s

As previously described, the size pass traces rays from the eye,
recording information about the mapping between surface pa-
rameter space and screen space. This information is used by each
rex during the l ight pass to te rminate its adapt ive subdivision.

3 .4.2 L i g h t P a s s

Indirect diffuse interact ion is simulated during the llght pass by
regarding br ight diffuse surfaces as l ight sources, and shooting
light rays from them~ as in progressive radiosity. The rex records
the shot and unshot power.

149

@ SIGGRAPH '90, Dallas, August 6-10, 1990

The adapt ive a lgor i thm for light ray t racing mus t ensure that :
(a) a min imum level of l ight sampling is achieved; (b) more rays
are devoted near silhouettes, shadows, and high curvature areas;
(c) sharp radiosity gradients are resolved to screen pixel size; and
(d) light rays and rexes are subdivided cooperatively.

3 . 4 . 3 E y e P a s s

The eye pass is like a s tandard ray t racing a lgor i thm except tha t
the diffuse in tensi ty is extracted out of the text instead of from a
shadow ray. The radiosi ty of a surface pa tch is its power divided
by its world-space surface area.

After the three passes are run, one could move the eye point
and re-run the eye pass to generate other views of the seen% but
the results would be inferior to those made by recomput ing the
rexes adap ted to the new viewpoint.

3 .4 .4 O b s e r v a t i o n s

Because l ight rays are concent ra ted on visible port ions of the
scene and radlosity is resolved adapt ive to each surface~s projec-
t ion in screen space, the radiosity calculation performed in the
l ight pass is view-dependent . Bu t this is as it should be: al-
though the exact radiosi ty values are view-independent , the ra-
diosity sample locations needed to make a picture are not. When
comput ing moving-camera animation~ one could prime the rexes
by runn ing the size pass for selected key frames to achieve more
view-independent sampling.

4 I m p l e m e n t a t i o n and Resu l t s

The current implementa t ion realizes many, but not all, of the
ideas proposed here. It performs bidirectional ray tracing using
adapt ive sampl ing for light~ eyed and rex. It has no size pass e
jus t a l ight pass and an eye pass. The program can render scenes
consist ing of CSG combinat ions of spheres and polyhedra. Spec-
ular in terac t ion is assumed ideal, and diffuse transmission is not
simulated. The light pass shoots photons from omnidirect ional
point l ight sources, and does not implement progressive radios-
ity. The implementa t ion thus simulates only i S * D S * E paths at
present. We trace ray trees, not jus t ray paths [Kajiya86].

4 .0.5 D a t a S t r u c t u r e s

Quadtrees were used for each of the 2-D sampling processes
[Samet90]: one for the outgoing directions of each light, one for
the pa ramete r space of each radiosity texture, and one for the
eye.

The l ight and eye quadtrees are quite similar; their records
are shown below in pseudocode. Each node contains pointers to
its child nodes (if not a leaf) and to its parent node. Light space
is parameter ized by (r , s) , where r is la t i tude and s is longitude.
and eye space (screen space) is parameterized by (x , y) . Each
node represents a square region of the pa ramete r space whose
corner is given by (to, so) or (x0, y0) and whose size is propor-
t ional to 2 -level.

low

Figure 5: I~ex quadtree on a surface. Adap t i ve f e z subd iv i s ion
tr ies to subdivide m o r e f inely near a shadow edge.

The l ight quadtree sends one light ray per node at a locat ion
uniformly dis t r ibuted over the square. Also stored in each light
quadt ree node is the ID of the surface hi t by the l ight ray, if any,
and the surface parameters (u, v) at the intersect ion point . This
informat ion is used to determine the dis tance in parameter space

between rex hits.

Eye quadtrees are simpler. Each node has pointers to the
intensit ies at its corners. These are shared wi th neighbors and
children. Eye ray t rac ing is current ly uniform, not stochastic.

A rex quadt ree node represents a square r e , o n of (u, v) pa-
rameter space on a diffuse surface (figure 5). Leaves in the rex
quadt ree act as h is togram buckets~ accumulat ing the n u m b e r of
photons and their power. Rex nodes also record the world space
surface area of their surface patch.

lisht_node: type =
record

leaf: boolean;
mark: boolean;

level: int;
parent: "lisht_node;
nw, ne , s e , s s : " l i g h t _ n o d e ;
tO, sO: real;
r~ e: real;
surfnc: int;
u, v: real;

end;

eye_node: type =
record

leaf: boolean;

mark: boolean;

level: int;
parent: "eye_node;
nw, ne. se, sw: "eye_node;

xO. yO: real;
inw. ine. ise. is,: "color;

end;

{LIGHT QUADTREE NODE>

{is this a leaf?>
{should node be split?}
{level in tree (rook=O)}
{parent node. if any}
{four child/sn, if not a leaf}
{params of corner of square}

{dir. params o2 ray (lat.lon)}
{id of surface hit. if any}
{surf params of surface hit}

{EYE QUADTREE NODE}

{is this a leaf?}
{should node be split?}

{level in t r e e (root=O)}
{parent node. if any}
{four children, if not a leaf}
{coords of corner of square}
{intensity samples at corners}

rex_node: type =
record

leaf: boolean;

mark: boolean;
level: int;
parent: "rex_node;

nw, ne, se, sw: "rex_node;

nO. vO: real;
area: real;
count: int;
power: color;

end;

{REX QUADTREE NODE}

{is this a leaf?}
{should node be split?}
{level in tree (root=O)}
{parent node. if any}
{four children, if not a leaf}
{surf params of square corner}
{surface area of this bucket}
{~photon~ in bucket, if leaf}
{accumulated power of bucket}

150

~ Computer Graphics, Volume 24, Number 4, August 1990

1/16 1/16...

O 0 i ! 0

• • 0 o

Figure 6: Light quadtree shown schematically (left) and in light
direction parameter space (right). When a light quadtree node is
split, its power is redistributed to its four sub-nodes, which each
send a ray in a direction (r ,s) jittered ~oithin their parameter
square. The fractional power of each light ray is shown next to

the leaf node that sends it.

The current implementa t ion uses the following algorithm.

4.1 Light Pass

First , rex quaxitrees are initialized to a chosen s tar t ing level (level
3, say, for 8x8 subdivision), and the counts and powers of all
leaves are zeroed.

For each light, light ray tracing proceeds in breadth first order
within the l ight quadtree, at level 0 t racing a single ray carrying
the total power of the light, at level 1 t racing up to 4 rays, at level
2 t racing up to 16 rays, etc (figure 6). At each level, we adaptively
subdivide bo th the l ight quadtree and the rex quadtrees. Chang-
ing the rex quadtrees in the midst of light ray shooting raises
the his togram redistr ibut ion problem, however: if a his togram
bucket is split during collection, it is necessary to redistr ibute
the paren t ' s mass among the children. There is no way to do this
reliably without a priori knowledge, so we clear the rex at the
beginning of each level and reshoot.

Processing a given level k of light rays involves three steps:
(1) rex subdivision to split rex buckets containing a high density
of photons, (2) light marking to mark light quadtree nodes where
more light rays should be sent, and (3) light subdivision to split
marked light nodes.

Rex subdivision consists of a sweep through every rex quadtree
in the scene, spl i t t ing all rex buckets whose photon count exceeds
a chosen limit. All counts and powers are zeroed at the end of
this sweep.

Light marking traverses the light quadtree, marking all level
k nodes tha t meet the subdivision criteria listed below.

(1) Always subdivide unti l a min imum level is reached.

(2) Never subdivide beyond a maximum level (if a size
pass were implemented, it would determine this max-
imum level locally).

Otherwise, look at the light quadtree neighbors above, below,
left, and right, and subdivide if the following is true:

(3) The ray hit a diffuse surface, and one of the four
neighbors of the rex node hit a different surface or
was beyond a threshold distance in (u, v) parameter
space from the center ray's.

To help prevent small feature neglect, we also mark for subdi-
vision all level k - 1 leaves t ha t neighbor on level k leaves tha t
are m ~ k e d for subdivision. This last rule guarantees a restricted
quadtree [Von Herzen87] where each leaf node's neighbors are at
a level within plus or minus one of the center node's.

Light subdivision traverses the light quadtree split t ing the
marked nodes. Subdividing a node splits a ray of power p into
four rays of power p/4 (figure 6). When a light node is cre-
ated (during initialization or subdivision) we select a point a t
r andom within its square (r, s) domain to achieve j i t tered sam-
pling [Cook86] and trace a ray in tha t direction. Marked nodes
thus shoot four new rays, while unmarked nodes re-shoot their
rays. During light ray tracing we follow specular bounces, split-
t ing the ray tree and subdividing the power according to the re-
f lec tance / t ransmi t tance coefficients kij, and deposit their power
on any diffuse surface tha t are hit. When a diffuse surface is hit,
we determine (u ,v) of the intersection point, and descend the
surface's rex quadtree to find the rex node containing t ha t point.
The power of tha t node is incremented by the power of the ray
times the cosine of the incident angle.

4 . 2 E y e Pass

The eye pass is a fairly s tandard adapt ive supersampling ray
tracing algorithm: nodes are split when the intensi ty difference

between the four corners exceeds some threshold. To generate a
picture, nodes larger than a pixel perform bilinear interpolat ion
to fill in the pixels they cover, while nodes smaller than a pixel
are averaged together to compute a pixel. The picture is stored
in floating point format initially, then scaled and clamped to the
range [0,255] in each channel.

4 . 3 Resul t s

Figures 7-12 were generated with this program. Figures 7, 8, and
9 show the importance of coordinating the l ight ray sampling pro-
cess with the rex resolution. Sending too few light rays results
in a noisy radiosity est imate from the rex, and too coarse a rex
results in blocky appearance. When the rex buckets are approxi-
mately screen pixel size and the light ray density deposits several
photons per bucket (at least 10, s~y), the results are satisfac-
tory. We est imate the radiosity using a function tha t is constant
within each bucket; this simple es t imator accounts for the blocki-
ness of the images. If bilinear interpolat ion were used, as in most
radiosity algorithms, we could t rade off blockiness for blurriness.

Figure 10 shows adapt ive subdivision of a rex quadtree, split-
t ing more densely near shadow edges (the current spl i t t ing cri-
teria cause unnecessary spli t t ing near the border of the square).
Its rex quadtree is shown in figure 11.

Figure 12 shows off some of the effects tha t are simulated by
this algorithm.

151

SIGGRAPH '90, Dallas, August 6-10, 1990

.7~:~" Z :" : •
I • " : J ' g

Lgm":+ z2q " .4:!

Figure 7: Noisy appearance results when too few light rays are
received in each rex bucket (too few light rays or too fine a rex).
Scene consists o f a diffuse sphere above a diffuse f loor both illu-
minated by an overhead light source.

Figure 8: Blocky or blurry appearance results when rex buckets
are much larger than a screen pixel (too coarse a rex).

Figure 9: Proper balance o f light sampling and rex sampling
reduces both noise and blockiness.

Figure 10: R ez with adaptation: the rex o f the f loor is initially a
single bucket, but it splits adaptively near the edges of the square
and near the shadow edge.

Statistics for these images are listed below, including the
number of light rays, the percentage of light rays striking an ob-
ject, the resolution of the rex, the resolution of the final picture,
the number of eye rays, and the CPU time. All images were com-
puted on a MIPS R2000 processor. The lens image used about 20
megabytes of memory~ mostly :for the light qu~dtree. Ray trees
were traced to a depth of 5.

#LRAYS %HIT REX I EYE #ERAYS
87,400 10% 128~ I 256~ 246,000
87,400 10% 82 2562 139,000

822,000 68% 1282 2562 146,000
331,000 20% vbl 2562 139,000

1,080,000 61% 256 ~ 5122 797,000

TIME I FIG 1.0 min. fig. 7
0.6 rain. fig. 8
3.5 rain. fig. 9
1.3 rain. fig. 10
6.4 rain. fig. 12

152

~ Computer Graphics, Volume 24, Number 4, August 1990

Figure 11: Rex quadtree in (u, v) space of previous figure's floor.
Each leaf node's square is colored randomly. Note the subdivision
near the shadow edge and the quadtree restriction.

5 Conclus ions

The bidirectional ray tracing algori thm outlined here appears to
be an accurate, general approach for global i l lumination of scenes
consisting of diffuse and pure specular surfaces. It is accurate be-
cause i t can account for all possible light paths; and it is general
because it supports bo th the radiosity and ray tracing realms:
shapes bosh planar and curved materials bo th diffuse and spec-
ular, and lights bo th large and small. Distr ibution ray tracing
can be used to simulate effects not directly supported by the
algorithm.

Adapt ive radiosity textures (rexes) are a new da ta struc-
ture t ha t have several advantages over previous radiosity storage
schemes. They can adaptively subdivide themselves to resolve
sharp shadow edges to screen pixel size, thereby eliminating vis-
ible artifacts of radiosity sampling. Their subdivision can be
automatic , requiring no ad hoc user-selected parameters.

The current implementat ion is young, however, and many
problems remain. A terse fist follows: Good adaptive sampling
of area l ight sources appears to require a 4-D data structure. Bet-
ter methods are needed to determine the number of light rays.
The redistr ibut ion problems of histograms caused us to send each
light ray multiple times. To avoid this problem we could store
all (or selected) photon locations using kernel estimators [Sil-
verman86]. Excessive memory is currently devoted to the light
quadtree, since one node is stored per light ray. Perhaps the
quadtree could be subdivided in more-or-less scanline order, and
the memory recycled (quadtree restriction appears to complicate
this, however). Adapt ive subdivision algorithms tha t compare
the ray trees of neighboring rays do not mix easily with pa th
tracing and dis t r ibut ion ray tracing, because the la t ter obscure
coherence. Last bu t not least, the interdependence of light ray
subdivision and rex subdivision is precarious.

Figure 12: Light focusing and reflection from a lens and chrome
ball. Scene is a glass lens formed by CSG intersection of two
spheres, a chrome ball, and a diffuse floor~ illuminated by a light
source off screen to the right. Note focusing of light through lens
onto floor at center (an L S S D path), reflection of refracted light
off ball onto floor (an L S S SD path involving both transmission
and reflection), the reflection of light off lens onto floor forming
a parabolic arc (an L S D path), and the reflection of the lens in
the ball (a L S S D S S E path, in full).

In spite of these challenges, we are hopeful. The approach
of bidirectional ray tracing using adaptive radiosity textures ap-
pears to contain the mechanisms needed to simulate global illu-
minat ion in a general way.

6 A c k n o w l e d g e m e n t s

Thanks to Greg Ward for discussions about the global illumina-
t ion problem, to Steve Omohundro for pointing me to the density

est imation l i terature, to Ken Turkowski and Apple Computer for
financial support , and to NSF grant CDA-8722788 for "Mam-
moth" time.

7 References

[Appe168] Arthur Appel, "Some Techniques for Shading Machine Render-
ings of Solids", AFIPS 1968 Spring Joint Computer Con]., col. 32,
1968, pp. 37-45.

[Arvo86] James Afro, "Backward Ray Tracing", SIGGRAPH '86 Develop-
ments in Ray Tracing seminar notes, Aug. 1986.

[Atherton?8] Peter R. Atherton, Kevin Weiler, Donald P. Greenberg, "Poly-
gon Shadow Generation°, Computer Graphics (SIGGRAPH '78 Pro-
ceedings), vol. 12, no. 3, Aug. 1978~ pp. 275-281.

[Baurn89] Daniel R. Baum, Holly E. Rushmeier, James M. Winget, "Im-
proving lqadiosity Solutions Through the Use of Analytically Deter-
mined Form Factors", Computer Graphics (SIGGRAPH '89 Proceed-
ings), col. 23, no. 3, July 1989, pp. 325-334.

[BlJnn76] James F. Blinn, Martin E. Newell, "Texture and Reflection in
Computer Generated Images", CACM, col. 19, no. 10, Oct. 1976,
pp. 842-547.

153

@ SIGGRAPH '90, Dallas, August 6-10, 1990

[Buckalew89] Chris Buckalew, Donald FusseU, "Illumination Networks: Fast
Realistic Rendering with General Reflectance Functions", Computer
Graphics (SIGGRAPH '89 Proceedings), vol. 23, no. 3, July 1989,
pp. 89-98.

[Cohengg] Michael F. Cohen, Donald P. Greenberg, "The Hemi-Cube: A
Radiosity Solution for Complex Environments", Computer Graphics
(SIGGRAPH '85 Proceedings), vol. 19, no. 3, July 1985, pp. 31-40.

[Cohen86] Michael F. Cohen, Donald P. Greenberg, David S.]rnmel, Philip
J. Brock, "An Efficient Radiosity Approach for Realistic Image Syn-
thesis", [EEE Computer Graphics and Applications, Mar. 1986, pp.
26-35.

[CohenS8] Michael F. Cohen, Shenehang Eric Chen, John R. Wallace, Don-
ald P. Greenberg, "A Progressive R.ellnement Approach to Fast R.~.-
diosity Image Generation", Computer Graphics (SIGGRAPH '88 Pro-
eeedings), vol. 22, no. 4, Aug. 1988, pp. 75-84.

[Cook84] Robert L. Cook, Thomas Porter, Loren Carpenter, "Distributed
Ray Tracing", Computer Graphics (SIGGRAPH '84 Proceedings), vol.
18, no. 3, July 1984, pp. 137-145.

[Cook86] P~obert L. Cook, "Stocha~stie Sampling in Computer Graphics",
ACM Transactions on Graphics, vol. 5, no. 1, Jan. 1986, pp. 51-72.

[Dippe851 Mark A. Z. Dippe, Erling Henry Wold, "Antiallaslng Through
Stochastic Sampling", Computer Graphics (SIGGRAPH '85 Proceed-
ings), vol. 19, no. 3, July 1985, pp. 69-78.

[Gora184] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg,
Bennett Battaile, "Modeling the Interaction of Light Between Diffuse
Surfaces", Computer Graphics (SIGGRAPH '84 Proceedings), vol. 18,
no. 3, July 1984, pp. 213-222.

[Hallg9] Roy Hall, Rlumination and Color in Computer Generated lmagery,
Springer Verlag, New York, 1989.

[I-Iockbert84] Paul S. Heekbert, Pat Hanrahan, "Beam Tracing Polygonal
Objects", Computer Graphics (SIGGRAPH '84 Proceedings), vol. 18,
no. 3, July 1984, pp. 119-127.

[Heckbert86] Paul S. Heckbezt, "Survey of Texture Mapping", 1EEE Com-
puter Graphics and Applications, vol. 6, no. 11, Nov. 1986, pp. 56-67.

[ImmelS6~ David S. Immel, Michael F. Cohen, Donald P. Greenherg, "A
Radiosity Method for Non-Diffuse Environments", Computer Graphics
(SIGGRAPH '86 Proceedings), vol. 20, no. 4, Aug. 1986, pp. 133-
142.

[Kajiya88] James T. Kajiya, "The Rendering Equation", Computer Graph-
ics (SIGGRAPH '86 Proceedings), vol. 20, no. 4, Aug. 1986, pp.
143-150.

[Lee85] Mark E. Lee, 1Lichard A. Redner, Samuel P. Uselton, "Statistically
Optimized Sampling for Distributed Ray Tracing", Computer Graph-
ics (SIGGRAPH '85 Proceedings), vol. 19, no. 3, July 1985, pp.
61-67.

[Mitchell87] Don P. Mitchell, "Generating Antialiased Images at Low Sam-
piing Densities", Computer Graphics (SIGGRAPH '87 Proceedings),
vol. 21, us. 4, July 1987, pp. 65-72.

[INishita85] Tomoyukilqishita, EihachiroNakamae, "Continuous Tone Rep-
resentation of 3-D Objects Taking Account of Shadows and lute,reflec-
tion", Computer Graphics (SIGGRAPH '85 Proceedings), voh 19, no.
3, July 1985, pp. 23-30.

[Painter89] James Painter, Kenneth S]oan, "Antialiased Ray Tracing by
Adaptive Progressive Refinement", Computer Graphics (SIGGRAPH
'89 Pxoceedings), vol. 23, no. 3, July 1989, pp. 281-288.

[Keeves87] William T. Reeves, David H. Salesin, Robert L. Cook, "Ren-
dering Antialiascd Shadows with Depth Maps", Computer Graphics
(SIGGRAPH '87 Proceedings), vol. 21, no. 4, July 1987, pp. 283-291.

[Samet90] Hanan Samet, The Design and Analysis of Spatial Data Struc-
tures, Reading, MA, Addison-Wesley, 1990.

[Shaog8] Min-Zhi ShaD, Qun-Slieng Peng, You-Dong Liang, "A New Ra-
diosity Approach by Procedural Refinements for Realistic Image Syn-
thesis", Computer Graphics (SIGGRAPH '88 Proceedings), vol. 22,
us. 4, Aug. 1988, pp. 93-101.

[Siegel81] Robert Siegel, John R. Howell, Thermal Radiation Heat Trans-
fer, Hemisphere Publishing Corp., Washington, DC, 1981.

[SiUion89] Francois Sillion, Claude Puech, ~A General Two-Pass Method
Integrating Specular and Diffuse ReflectionS, Computer Graphics(SIC-
GRAPH '89 Proceedings), vol. 23, no. 3~ July 1989~ pp. 335-344.

[Silvermang6] B.W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman and Hall, London, 1986.

[Strnuasg8] Paul S. Strauss, BAGS: The Brotvn Animation GenerationSys-
tern, PhD thesis, Tech. Report CS-88-2, Dept. of CS, Brown U, May
1988.

[Von Herren87] Brian Von Herren, Alan H. Burr, "Accurate Triangula-
tions of Deformed, Intersecting Surfaces", Computer Graphics (SIC-
GRAPH '87 Proceedings), vol. 21, no. 4, July 1987, pp. 103-110.

[WallaceS7] John R. Wallace, Michael F. Cohen, Donald P. Greenber8~ "A
Two-Pass Solution to the Rendering Equation: A Synthesis of Ray
Tracing and Radiosity Methods", Computer Graphics (SIGGRAPH
'87 Proceedings), vol. 21, no. 4, July 1987, pp. 311-320.

[Wallace89] John R. Wallace, Kells A. Elmquist, Eric A. Haines, "A Ray
Tracing Algorithm for Progressive Radiosity", Computer Graphics
(SIGGRAPH '89 Proceedings), vol. 23, no. 3, July 1989, pp. 315-324.

[Ward88] Gregory J. Ward, Francis M. Rubinstein, Robert D. Clear, "A
Ray Tracing Solution for Diffuse Interrefleetion", Computer Graphics
(SIGGRAPH '88 Proceedings), vol. 22, no. 4, Aug. 1988, pp. 85-92.

[Warnock69] John E. Warnoek, A Hidden Surface Algorithm for Computer
Generated Halftone Pictures, TR 4-15, CS Dept, U. of Utah, June
1969.

[Watt90] Mark Watt, "Light-Ware, interaction using Backward BeamTrae
ing', Computer Graphics (SIGGRAPH '90 Proceedings), Aug. 1990.

[Whlttedg0] Turner Whirred, "An Improved Illumination Model for Shaded
Display"~ CACM, voh 23, no. 6, June 1980, pp. 343-349.

[Wllllams78] Lance Williams, "Casting Curved Shadows on Curved Sur-
faces", Computer Graphics (SIGGRAPH '78 ProeeedingS)r voL 12,
no. 3, Aug. 1978, pp. 270-274.

154

