Clipping,
Hidden Surface Elimination
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Outline

— Line clipping (from last time)
— Polygon clipping
e Hidden surface elimination

— Backface culling
— BSP trees
— Z-buffering



Polygon clipping
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from Hill

e Simply clipping lines independently loses
connectivity information

e Must clip in order and interpolate missing
edges



Sutherland-Hodgman 2-D polygon clipping

In sequence @ -

— Traverse vertex list of S A g F
& build new clipped vertex list .

— For each old edge (s, s;) of S: o F} ‘h

e If both inside (c;, ¢;): Output new s;
e If both outside: Output nothing

e If 5, inside, s; outside: Output intersection of (s, s;)
with (c, c)

o If s outS|de s; inside: Output intersection of (s, s;)
with (c, cJ), then S

T |
= P



Example: Sutherland-Hodgman

= Py



Example: Sutherland-Hodgman
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from Hill

1. If both inside (C;, C;): Output new S;

2. If both outside: Output nothing

3. If S; inside, S; outside: Output intersection of (S;, S;) with (C;, C;)

4. If S; outside, S; inside: Output intersection of (S;, S;) with (C;, C;), then's;




Example: Sutherland-Hodgman
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only these lines
should be dashed

1. If both inside (C;, C;): Output new S;
2. If both outside: Output nothing
3. If S; inside, S; outside: Output intersection

4. If S; outside, S; inside: Output intersection

of (Si’ Sj) with (Ci’ CJ)’ then Sj




Example: Sutherland-Hodgman
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1. If both inside (C;, C;): Output new S;

2. If both outside: Output nothing

3. If S; inside, S; outside: Output intersection of (S;, S;) with (C;, C;)

4. If S; outside, S; inside: Output intersection of (S;, S;) with (C;, C;), then's;




Example: Sutherland-Hodgman

d

VIS SIS SIS IS SIS IS IS S
D
o -1 o

from Hill

1. If both inside (C;, C;): Output new S;

2. If both outside: Output nothing

3. If S; inside, S; outside: Output intersection of (S;, S;) with (C;, C;)

4. If S; outside, S; inside: Output intersection of (S;, S;) with (C;, C;), then's;




Sutherland-Hodgman: S'is Triangle
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courtesy of L. McMillan

e Can convert arbitrary polygon to set
of triangles via tesselation (e.g., F — F
gluTess* () functions)
= PR



Sutherland-Hodgman: S'is Triangle
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Polygon clipping: Notes

-D straightforwardly

e Often more efficient to fit bounding
areas (e.g., boxes, spheres) to
complex polygons and test those before
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Hidden Surfaces: Why care?

e Reasons to remove

— Efficiency: As with clipping,
avoid wasting work on
invisible objects

— Correctness: The image will
look wrong if we don’t model
occlusion properly

— Clarity: useful for wireframes
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Backface Culling

VAleh'A'A @ —

occludé them

e A back-facing polygon’s normal forms
an acute angle with the view vector

= Py




Backface Culling on wireframe

ERGeometric Algebra, Chapter 2, Example 2: Hidden Surfa... [lj[=] E3 EAGeometric Algebra, Chapter 2, Example Z: Hidden Surfa... Jlj=]

e

from geometricalgebra.org



Polygon normals

e Calculate normal with cross product:
n = (v;-Vg) X(Vy_4- V)

e Normalize to unit vector with n/|n|



Polygon normals

e Calculate normal with cross product:
n = (v;-Vg) X(Vy_4- V)

e Normalize to unit vector with n/|n|

= Py



Backface culling: Test

— Can also just use point on polygon P to define
V = P — €Yye in world coordinates

e Available in OpenGL with glCullFace()




Painter’s algorithm

Distance from CQOP

e When there are depth overlaps,
do more tests of bounding y— -

areas, etc. to see one actually
occludes the other

e Cyclical overlaps are a problem



Painter’s algorithm

Draw primitives
from back to
front to avoid
need for depth
comparisons

} '.RSTTY(_)»‘
from Shirley @ EIAWARE




BSP trees (a painter’s-like approach)
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— In 2-D, split with lines L
— In 3-D, split with planes

e Each divider is node of binary tree; left
subtree has all objects on one side, right
subtree contains other side

e Creating BSP tree offline can make rendering
much faster




BSP trees: Creation

N TN
LYk

divider” test taking place o e d. x N

of normal < test Eagﬂm
— Objects that span divider
are split

e Use applet at http://
pauillac.inria.fr/~levy/bsp

e Balance does not affect H

effi Cie ncy_m i n i m iZi ng BEP Tree Visualizer 1.1 heta 3 Copyright @ 1996-19594 Paton J. Lewis.
splitting is key Te—




BSP trees: Rendering

void draw_tree(Point eye, bspTree *tree)
{
if ('tree)
return;
if (in_front(eye, tree)) { // eye is on “front” side of divider
draw_tree(eye, tree->back);
draw_object(tree);
draw_tree(eye, tree->front);
¥
else if (in_back(eye, tree)) { // eye is on “back” side of divider
draw_tree(eye, tree->front);
draw_object(tree);
draw_tree(eye, tree->back);
¥
else { // eye is aligned with divider
draw_tree(eye, tree->front);
draw_tree(eye, tree->back);

}
}

e
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/-Buffering

e Only draw a pixel if it's closer than what’s
been rendered already

for (each face F)
for (each pixel (x.y) covering the face)
I
I
depth = depth of F at (x,y),
if(depth < d[x][v]) //F is closest =so far
[

c = colorof Fat(x, v
set the pixel color at (x, v)to ¢
d[x] [yv] = depth: // update the depth buffer

RSITY or
from Hill @ EIAWARE,



/-buffer: Example
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courtesy of DAM Entertainment

Color buffer Depth buffer
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http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

/-buffer: another example

courtesy of Brent Haley
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/-buffer: Implementation

each pixel
o Instead, calculate depths of polygon vertices and
linearly interpolate depth across pixels in between

e E.g., for triangles:

— Interpolate vertex depths along edges to get Z ¢, Zright for
a scanline

— Initialize Z = Z,of, increment along scanline by

AZ = (Zight = Ziest) /| Kright = Xieft)
e Two stages --> bilinear interpolation

= P)ELAARE



Linear Interpolation (aka lerp)

=Po - tPo T P4
=(1-tpy+tp; = lerp(p0, pl, t)
\Iike a “blend” of
p(7) 2 the two endpoints
P



Bilinear interpolation for depths




/-buffer precision

— If before, constant precision over range o
depths

e E.g., 8 bits with near/far clip plane difference of
10 meters = ~4 cm depth resolution

— If after (most common), nonlinear function of
depth providing more precision closer to

viewer
o Z fighting: Objects closer to each other
than minimum z discrimination mean

interpenetration/improper display is
possible

— Example: piece of paper on a desk top

— Minimize with high-precision Z buffer, pushing
near clip plane out as far as possible, and/or
polygon offset (depth biasing) courtesy of SGI

/ERSITY o
8 WYELAWARE



Z fighting example
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Z-buffering in OpenGL

flag in glutInitDisplayMode ()

e Enable per-pixel depth testing with
glEnable (GL DEPTH TEST)

e Clear depth buffer by setting
GL DEPTH BUFFER BIT in glClear ()

= Py



/-buffering: Notes

easy to do and a key idea in graphics
— Nearly constant overhead
e Expensive for simple scenes but good for complex ones
e Cons
— Relatively late in pipeline
— Extra storage

— Precision of depth buffer limits accuracy of object
depth ordering for large scale scenes (i.e., nearest
to farthest objects)

— No perfect scheme for handling translucent
objects

= P)ELAARE



