

Clipping,
Hidden Surface Elimination

Course web page:

http://goo.gl/EB3aA

March 15, 2012 Lecture 10

Outline

• Clipping

– Line clipping (from last time)

– Polygon clipping

• Hidden surface elimination

– Backface culling

– BSP trees

– Z-buffering

Polygon clipping

• Simply clipping lines independently loses
connectivity information

• Must clip in order and interpolate missing
edges

from Hill

Sutherland-Hodgman 2-D polygon clipping

• Algorithm for clipping polygon S (convex or not)
against a convex clip polygon C

• Basic approach: Clip S against each side (ci, cj) of C
in sequence
– Traverse vertex list of S

& build new clipped vertex list
– For each old edge (si, sj) of S:

• If both inside (ci, cj): Output new sj
• If both outside: Output nothing
• If si inside, sj outside: Output intersection of (si, sj)

with (ci, cj)
• If si outside, sj inside: Output intersection of (si, sj)

with (ci, cj), then sj

from E. Angel

from E. Angel

Example: Sutherland-Hodgman

from Hill

Example: Sutherland-Hodgman

1. If both inside (ci, cj): Output new sj

2. If both outside: Output nothing

3. If si inside, sj outside: Output intersection of (si, sj) with (ci, cj)

4. If si outside, sj inside: Output intersection of (si, sj) with (ci, cj), then sj

from Hill

Example: Sutherland-Hodgman

1. If both inside (ci, cj): Output new sj

2. If both outside: Output nothing

3. If si inside, sj outside: Output intersection of (si, sj) with (ci, cj)

4. If si outside, sj inside: Output intersection of (si, sj) with (ci, cj), then sj

only these lines
should be dashed

from Hill

Example: Sutherland-Hodgman

from Hill

1. If both inside (ci, cj): Output new sj

2. If both outside: Output nothing

3. If si inside, sj outside: Output intersection of (si, sj) with (ci, cj)

4. If si outside, sj inside: Output intersection of (si, sj) with (ci, cj), then sj

Example: Sutherland-Hodgman

• Note extraneous line segments introduced at (3, 6) and
(9, 10)—these can be removed with post-processing

from Hill

1. If both inside (ci, cj): Output new sj

2. If both outside: Output nothing

3. If si inside, sj outside: Output intersection of (si, sj) with (ci, cj)

4. If si outside, sj inside: Output intersection of (si, sj) with (ci, cj), then sj

e

Sutherland-Hodgman: S is Triangle

• Simple case: S is a triangle, C a rectangle: S-H’s
general procedure for stepping through polygon
vertices reduces to four cases for the whole triangle:

• Can convert arbitrary polygon to set
of triangles via tesselation (e.g.,
gluTess*() functions)

courtesy of L. McMillan

Sutherland-Hodgman: S is Triangle

• Dealing with non-trivial cases:

courtesy of L. McMillan

Polygon clipping: Notes

• Sutherland-Hodgman also extends to
3-D straightforwardly

• Often more efficient to fit bounding
areas (e.g., boxes, spheres) to
complex polygons and test those before
clipping

from E. Angel

Hidden Surfaces: Why care?

• Hidden surfaces are objects inside the viewing
volume that should not be seen

• Occlusion: Closer (opaque) objects along same
viewing ray obscure more distant ones

• Reasons to remove

– Efficiency: As with clipping,
avoid wasting work on
invisible objects

– Correctness: The image will
look wrong if we don’t model
occlusion properly

– Clarity: useful for wireframes

from Angel

Backface Culling

• Basic idea: We don’t have to draw
polygons that face away from the
viewer, since front-facing polygons will
occlude them

• A back-facing polygon’s normal forms
an acute angle with the view vector

from
Hill

n

Backface Culling on wireframe

from geometricalgebra.org

Polygon normals

• Let polygon vertices v0, v1, v2,..., vn - 1

be in counterclockwise order and co-planar

• Calculate normal with cross product:

 n = (v1 - v0) x (vn - 1 - v0)

• Normalize to unit vector with n/|n|

v0
v1

v2

v3

v4

Polygon normals

• Let polygon vertices v0, v1, v2,..., vn - 1

be in counterclockwise order and co-planar

• Calculate normal with cross product:

 n = (v1 - v0) x (vn - 1 - v0)

• Normalize to unit vector with n/|n|

v0
v1

v2

v3

v4

n

Backface culling: Test

• Polygon with normal n is back-facing relative to view

direction vector v (the Z-axis) if n  v > 0
(because that means angle is less than 90 degrees)

– Can also just use point on polygon p to define

v = p – eye in world coordinates

• Available in OpenGL with glCullFace()

from
Hill

n

Painter’s algorithm

• Idea: Sort primitives by
minimum depth, then rasterize
from furthest to nearest

• When there are depth overlaps,
do more tests of bounding
areas, etc. to see one actually
occludes the other

from Angel

• Cyclical overlaps are a problem

Painter’s algorithm

from Shirley

Draw primitives
from back to

front to avoid
need for depth

comparisons

BSP trees (a painter’s-like approach)

• Binary Space Partitioning
trees: Divide space into
visibility regions

– In 2-D, split with lines

– In 3-D, split with planes

• Each divider is node of binary tree; left
subtree has all objects on one side, right
subtree contains other side

• Creating BSP tree offline can make rendering
much faster

BSP trees: Creation

• We are just building a
binary search tree, but
with “which side of
divider” test taking place
of normal < test

– Objects that span divider
are split

• Use applet at http://
pauillac.inria.fr/~levy/bsp

• Balance does not affect
efficiency—minimizing
splitting is key

BSP trees: Rendering
• Follow painter’s algorithm: draw objects from farthest to nearest
• Note that every object is visited

void draw_tree(Point eye, bspTree *tree)
{
 if (!tree)
 return;
 if (in_front(eye, tree)) { // eye is on “front” side of divider
 draw_tree(eye, tree->back);
 draw_object(tree);
 draw_tree(eye, tree->front);
 }
 else if (in_back(eye, tree)) { // eye is on “back” side of divider
 draw_tree(eye, tree->front);
 draw_object(tree);
 draw_tree(eye, tree->back);
 }
 else { // eye is aligned with divider
 draw_tree(eye, tree->front);
 draw_tree(eye, tree->back);
 }
}

Z-Buffering

• Another hidden surface elimination technique

• Maintain an image-sized buffer d of the
nearest depth drawn at each pixel so far

• Only draw a pixel if it’s closer than what’s
been rendered already

from Hill

Z-buffer: Example

courtesy of DAM Entertainment

Color buffer Depth buffer

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

Z-buffer: another example

courtesy of Brent Haley

Z-buffer: Implementation

• Key implementation detail: It is generally
unnecessary to independently calculate the depth of
each pixel

• Instead, calculate depths of polygon vertices and
linearly interpolate depth across pixels in between

• E.g., for triangles:

– Interpolate vertex depths along edges to get zleft, zright for
a scanline

– Initialize z = zleft, increment along scanline by

Δ z = (zright - zleft) / (xright - xleft)
• Two stages --> bilinear interpolation

Linear Interpolation (aka lerp)

• Parametric definition of a line segment:

p(t) = p0 + t(p1 - p0), where t in [0, 1]

 = p0 - t p0 + t p1

 = (1 - t)p0 + t p1

from Akenine-Möller & Haines

like a “blend” of
the two endpoints

= lerp(p0, p1, t)

Bilinear interpolation for depths

m = lerp(mleft, mright, t)

mleft= lerp(m3, m4, tleft)
mright= lerp(m1, m2, tright)

Z-buffer precision

• Store depth before perspective division or
after?
– If before, constant precision over range of

depths
• E.g., 8 bits with near/far clip plane difference of

10 meters = ~4 cm depth resolution

– If after (most common), nonlinear function of
depth providing more precision closer to
viewer

• Z fighting: Objects closer to each other
than minimum z discrimination mean
interpenetration/improper display is
possible
– Example: piece of paper on a desk top
– Minimize with high-precision Z buffer, pushing

near clip plane out as far as possible, and/or
polygon offset (depth biasing) courtesy of SGI

Z fighting example

Z-buffering in OpenGL

• Create depth buffer by setting GLUT_DEPTH
flag in glutInitDisplayMode()

• Enable per-pixel depth testing with
glEnable(GL_DEPTH_TEST)

• Clear depth buffer by setting
GL_DEPTH_BUFFER_BIT in glClear()

Z-buffering: Notes

• Pros
– Interpolation of pixel values from vertex values is

easy to do and a key idea in graphics
– Nearly constant overhead

• Expensive for simple scenes but good for complex ones

• Cons
– Relatively late in pipeline
– Extra storage
– Precision of depth buffer limits accuracy of object

depth ordering for large scale scenes (i.e., nearest
to farthest objects)

– No perfect scheme for handling translucent
objects

