Clipping,
Hidden Surface Elimination

Course web page:
http://goo.gl/EB3aA

March 15,2012 Lecture 10 [ﬁm&%

Outline

— Line clipping (from last time)
— Polygon clipping
e Hidden surface elimination

— Backface culling
— BSP trees
— Z-buffering

Polygon clipping

, /
subject clipped
polygon polygons

window

from Hill

e Simply clipping lines independently loses
connectivity information

e Must clip in order and interpolate missing
edges

Sutherland-Hodgman 2-D polygon clipping

In sequence @ -

— Traverse vertex list of S A g F
& build new clipped vertex list .

— For each old edge (s, s;) of S: o F} ‘h

e If both inside (c;, ¢;): Output new s;
e If both outside: Output nothing

e If 5, inside, s; outside: Output intersection of (s, s;)
with (c, c)

o If s outS|de s; inside: Output intersection of (s, s;)
with (c, cJ), then S

T |
= P

Example: Sutherland-Hodgman

= Py

Example: Sutherland-Hodgman

b)

> o
i

i

from Hill

1. If both inside (C;, C;): Output new S;

2. If both outside: Output nothing

3. If S; inside, S; outside: Output intersection of (S;, S;) with (C;, C;)

4. If S; outside, S; inside: Output intersection of (S;, S;) with (C;, C;), then's;

Example: Sutherland-Hodgman

T Iy y s
% f
|
.

b
r=]

3145def b

I ST IIIII IS

from Hill

TII;
I
I

only these lines
should be dashed

1. If both inside (C;, C;): Output new S;
2. If both outside: Output nothing
3. If S; inside, S; outside: Output intersection

4. If S; outside, S; inside: Output intersection

of (Si’ Sj) with (Ci’ CJ)’ then Sj

Example: Sutherland-Hodgman

S ,4 10 7

Il 7777 AT IEL. LI 7777y
- |~

3 0.4,7,8¢e 9. 10,6

from Hill

1. If both inside (C;, C;): Output new S;

2. If both outside: Output nothing

3. If S; inside, S; outside: Output intersection of (S;, S;) with (C;, C;)

4. If S; outside, S; inside: Output intersection of (S;, S;) with (C;, C;), then's;

Example: Sutherland-Hodgman

d

VIS SIS SIS IS SIS IS IS S
D
o -1 o

from Hill

1. If both inside (C;, C;): Output new S;

2. If both outside: Output nothing

3. If S; inside, S; outside: Output intersection of (S;, S;) with (C;, C;)

4. If S; outside, S; inside: Output intersection of (S;, S;) with (C;, C;), then's;

Sutherland-Hodgman: S'is Triangle

Negative Positive Negative Positive Negative Positive Negative Positive
Half-space Ilalf-sp:ice Ha.lf-spa%e Half-space Half-space vo Half-space Half-space Half-space
)‘z ‘z
vl M
¥l
Two Vertices One Vertex
Entirely Inside Entirely Outside Outside Outside

courtesy of L. McMillan

e Can convert arbitrary polygon to set
of triangles via tesselation (e.g., F — F
gluTess* () functions)
= PR

Sutherland-Hodgman: S'is Triangle

Positive
Half-space

Negative
Half-space v

Two Vertices

Outside
Negative Positive
Half-space Half-space

i

vl
One Vertex
Outside

courtesy of L. McMillan

Positive
Half-space

Negative
Half-space w

_ Split into
Two Ve_rtlces 2 triangles
Outside & output 1
Negative Positive
Half-space Half-space

i

vl

v Split into
One Vertex 3 triangles
Outside & output 2

e

'ERSITY or
EIAWARE

Polygon clipping: Notes

-D straightforwardly

e Often more efficient to fit bounding
areas (e.g., boxes, spheres) to
complex polygons and test those before

b J OF
(O) (frc)>m E. Angel g[ﬁwﬂ\i{m

Hidden Surfaces: Why care?

e Reasons to remove

— Efficiency: As with clipping,
avoid wasting work on
invisible objects

— Correctness: The image will
look wrong if we don’t model
occlusion properly

— Clarity: useful for wireframes

[/

COP

[/ S)
[/

from Angel

= P)ELAARE

Backface Culling

VAleh'A'A @ —

occludé them

e A back-facing polygon’s normal forms
an acute angle with the view vector

= Py

Backface Culling on wireframe

ERGeometric Algebra, Chapter 2, Example 2: Hidden Surfa... [lj[=] E3 EAGeometric Algebra, Chapter 2, Example Z: Hidden Surfa... Jlj=]

e

from geometricalgebra.org

Polygon normals

e Calculate normal with cross product:
n = (v;-Vg) X(Vy_4- V)

e Normalize to unit vector with n/|n|

Polygon normals

e Calculate normal with cross product:
n = (v;-Vg) X(Vy_4- V)

e Normalize to unit vector with n/|n|

= Py

Backface culling: Test

— Can also just use point on polygon P to define
V = P — €Yye in world coordinates

e Available in OpenGL with glCullFace()

Painter’s algorithm

Distance from CQOP

e When there are depth overlaps,
do more tests of bounding y— -

areas, etc. to see one actually
occludes the other

e Cyclical overlaps are a problem

Painter’s algorithm

Draw primitives
from back to
front to avoid
need for depth
comparisons

} '.RSTTY(_)»‘
from Shirley @ EIAWARE

BSP trees (a painter’s-like approach)

B
|
positive
[3 AN
— et N - > — — - w W) W L I
f;>0 I e @
visibility regions s
g \\ G
\I \\ TZ
| ~
|
I N

— In 2-D, split with lines L
— In 3-D, split with planes

e Each divider is node of binary tree; left
subtree has all objects on one side, right
subtree contains other side

e Creating BSP tree offline can make rendering
much faster

BSP trees: Creation

N TN
LYk

divider” test taking place o e d. x N

of normal < test Eagﬂm
— Objects that span divider
are split

e Use applet at http://
pauillac.inria.fr/~levy/bsp

e Balance does not affect H

effi Cie ncy_m i n i m iZi ng BEP Tree Visualizer 1.1 heta 3 Copyright @ 1996-19594 Paton J. Lewis.
splitting is key Te—

BSP trees: Rendering

void draw_tree(Point eye, bspTree *tree)
{
if ('tree)
return;
if (in_front(eye, tree)) { // eye is on “front” side of divider
draw_tree(eye, tree->back);
draw_object(tree);
draw_tree(eye, tree->front);
¥
else if (in_back(eye, tree)) { // eye is on “back” side of divider
draw_tree(eye, tree->front);
draw_object(tree);
draw_tree(eye, tree->back);
¥
else { // eye is aligned with divider
draw_tree(eye, tree->front);
draw_tree(eye, tree->back);

}
}

e

RSITY or
EIAWARE

/-Buffering

e Only draw a pixel if it's closer than what’s
been rendered already

for (each face F)
for (each pixel (x.y) covering the face)
I
I
depth = depth of F at (x,y),
if(depth < d[x][v]) //F is closest =so far
[

c = colorof Fat(x, v
set the pixel color at (x, v)to ¢
d[x] [yv] = depth: // update the depth buffer

RSITY or
from Hill @ EIAWARE,

/-buffer: Example

— .~ —

"‘,3‘;4 9 "Q.‘ %

_"J \ -:"- (\) .-'/.'

5 ﬂ\un.v\{""-iﬁ BaY
*‘@- So v g S A

. e S

'3’ ‘:w’“’ SR |

o) .

PSS s

L
.

-—

courtesy of DAM Entertainment

Color buffer Depth buffer

/ERSITY o
8 WYELAWARE

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

/-buffer: another example

courtesy of Brent Haley

/ERSITY or
¥ WYEIAWARE

/-buffer: Implementation

each pixel
o Instead, calculate depths of polygon vertices and
linearly interpolate depth across pixels in between

e E.g., for triangles:

— Interpolate vertex depths along edges to get Z ¢, Zright for
a scanline

— Initialize Z = Z,of, increment along scanline by

AZ = (Zight = Ziest) /| Kright = Xieft)
e Two stages --> bilinear interpolation

= P)ELAARE

Linear Interpolation (aka lerp)

=Po - tPo T P4
=(1-tpy+tp; = lerp(p0, pl, t)
\Iike a “blend” of
p(7) 2 the two endpoints
P

Bilinear interpolation for depths

/-buffer precision

— If before, constant precision over range o
depths

e E.g., 8 bits with near/far clip plane difference of
10 meters = ~4 cm depth resolution

— If after (most common), nonlinear function of
depth providing more precision closer to

viewer
o Z fighting: Objects closer to each other
than minimum z discrimination mean

interpenetration/improper display is
possible

— Example: piece of paper on a desk top

— Minimize with high-precision Z buffer, pushing
near clip plane out as far as possible, and/or
polygon offset (depth biasing) courtesy of SGI

/ERSITY o
8 WYELAWARE

Z fighting example

—— RN
Hellshock \ ~é1b\’lﬁ
o

UD)

Mangorn Flintha...

\ |

"'"muhmmmumﬂ""w

=

/ERSITY or
¥ WYEIAWARE

Z-buffering in OpenGL

flag in glutInitDisplayMode ()

e Enable per-pixel depth testing with
glEnable (GL DEPTH TEST)

e Clear depth buffer by setting
GL DEPTH BUFFER BIT in glClear ()

= Py

/-buffering: Notes

easy to do and a key idea in graphics
— Nearly constant overhead
e Expensive for simple scenes but good for complex ones
e Cons
— Relatively late in pipeline
— Extra storage

— Precision of depth buffer limits accuracy of object
depth ordering for large scale scenes (i.e., nearest
to farthest objects)

— No perfect scheme for handling translucent
objects

= P)ELAARE

