Midterm Review

Course web page:
http://goo.gl/EB3aA

March 20, 2012 < Lecture 11 e R IAWARE

Midterm Notes

e Focus on lecture material (up to & including z buffers

from today)

— Use readings for depth and understanding, but I won't go
there for new topics (some topics, like clipping algorithms,
are NOT IN TEXTBOOK)

e Readings include everything in “Readings” column of Course
Page schedule

e Question types: Mostly definitions, explanations;
some calculations (e.g., transformations)

— Sample exams from 2003, 2004

— A few OpenGL-related questions will be on it. For example,
“What is gluLookAt () 's place and function in the

geometry pipeline?”

= P)ELAARE

Midterm topics

e 2-D texturing, blending
e Simulation/particle systems

e Geometry
— Transformations
— Projections

e Clipping

e Hidden surface elimination e

Simple OpenGL program

void main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT RGB | GLUT DOUBLE) ;
glutInitWindowSize (100, 100) ;
glutCreateWindow (“hello”) ;
init () ; // set OpenGL states, variables

glutDisplayFunc (display) ; // register callback routines
glutKeyboardFunc (keyboard) ;
glutIdleFunc (idle) ;

glutMainLoop () ; // enter event-driven loop

*

2

GL _POINTS GL_LINES

o O

GL_LINE STRIP

]

7
GL LINE_LOOP GL_POLYGON GL_QUADS
3 5 3 8
0
C ;2 A
7 ,.-_" "_n.,
0 3 7
2~y o] .
GL QUAD STHRIP GL_TRIANGLES
1
q
2 4
" 1@
5
2] 1]

GL_TRIANGLE_STHIP

GL_THIANGLE_FAN

- RSITY or
EIAWARE.

2-D Transformations: OpenGL

— glScale(sx, sy, 0)
— glRotate (theta, 0, 0, 1) (anglein
degrees; direction is counterclockwise)

e No shear, no reflection built into OpenGL

e Using glPushMatrix ()/glPopMatrix ()
to isolate transformations

= Py

Rasterization: What is it?

pixels on screen 1

o Geometric primitives ,

— Points: Round vertex location in /
coordinates

— Lines: Can do this for endpoints, =T

[

what about in between?
— Polygons: How to fill area bounded by edges?

DDA/Parametric Line Drawin

= dy/dx f §af
— b is where the line intersects the Y axis !

e DDA’s basic idea: If we increment the xX /

coordinate by 1 pixel at each step, the P
slope of the line tells us how to much

iIncrement y per step Br
- lLe,m = dy/dx,sofordx = 1, dy
— This only works if m <= 1—otherwise there are gaps

e Solution: Reverse axes and step in Y direction. Since now
dy = 1,wegetdx = 1/m

from Angel

= P)ELAARE

Midpoint line drawing: Line equation

Ox -2y =0
e Fis:

— Zero for points on the line
— Positive for points below the line
(right if slope > 1)
— Negative for points above the line
(left if slope > 1)
e Examples: (0, 1), (1, 0), etc.

e [[
S
ENAEEEEEEE
HEFEEEEEEEE
]
HiEEEEEEEE

Midpoint line drawing: The Decision

e We want to draw the one closest to the line

P = [Jr_;]

o-—--o-—--@—-

Rasterizing triangles

— Exactly two active edges at all times

¢ One method:

— Fill scanline table between top and bottom
vertex with leftmost and rightmost side by
using DDA or midpoint algorithm to follow
edges

— Traverse table scanline by scanline, fill run
from left to right

= Py

What is Texture Mapping?

appearance at the pixel leve

e Characteristics
— Color
— Shininess
— Transparency
— Bumpiness
— Etc.

e “Sprite” when on polygon with no 3-D

Texture mapping applications: Billboards

EY

from Akenine-Moller & Haines

from www.massal.net/projects

Also called "impostors”: Image aligned polygons in 3-D wi

OpenGL texturing steps (Red book)

texture for that object

2. Indicate how the texture is to be
applied to each pixel

3. Enable texture mapping with
glEnable (GL TEXTURE 2D)

4. Draw the scene, supplying both
texture and geometric coordinates

= Py

Robins’ texture tutor (aka details of
Sprite class)

Screen-space view Cormand maniputaton window

GLfloat border_color{] = {
GLfloat env_color|] = {

glEnable(GL_TE

Iec-:&ng-t-;m:e Vew SUBuldZOM pnapsiGL_TEXTURE_20
giColordf{ 060 ,0.60 , 0.60
giBeqgin{GL_POLYGON);
giTexCoord2f{ 0.0 ,00) glVertex3f(-1.0,-10,00
giTexCoord2f(1.0 ; glVertex3f(10 ,-10,00
giTexCoord2zff 1.0 0) glVertex3f{ 1.0
giTexCoord2f{ 0.0 . 1.0) glVertex3f(-1.0,1.0
glEnd().

Click on the arguments and move the mouse to modify values.

JERSITYor
&Y JEIAWARE

Compositing

e Normally, we just overwrite...
but there are more options

e Different operations
— Blending: Use alpha channel to
transparency vs. opacity
e alpha = 1 -> Perfect opacity (default)
e alpha = 0 -> Perfect transparency
e In between, pixel is a mix of source and destination colors

e We did not cover details of glBlendFunc (), SO
it won't be on exam

Particle Systems

A C V

IS M

“swarm” ore apparent than internal agent

motion
e Applications
— Water, snow
— Smoke, fire
— Cloth
— “Creatures”

e Basic loop:
1 . Create, k| II pa rt|C|eS courtesy of S. Dunn

2. Update pOSitiOI’]S based on: Fire: Each particle is a blended sprite
e Previous positions, velocities, accelerations
e Exterior and interior forces

3. Render particles

JERSITY or
™ WYEIAWARE

Particle/Agent Motion Factors

— Friction
o Physical interactions with each other
— Gravity, electrical attraction/repulsion
— Spring connections
— Collisions
e Interior “self determination”
— Randomness

— Al-like perception-action feedback
* Flocking, seeking with collision avoidance, etc.

Smoke movie (turbulence...):
Convection + invisible
container = smoke in a bottle

/ERSITY o1
Initial upward and outward velocity + gravity = water fountain = P)risware

Particle Update

e Typically, we don't have an explicit parametric
function x(t) that we can just evaluate for any t

— E.qg., a spline curve

e Rather, we have a set of forces and an initial
value for the particle state

e \We have to simulate the action of the forces on
the particle to “"see what happens™!

e In practice, this means numerical methods for
solving ordinary differential equations (ODESs)

= EIAWARE

Ordinary Differential Equations

derivatives (i.e.,
tangents) f(x, t)

ox(t)
ot

different ways of writing derivative

= x(1) = f(x,1)

Euler Integration

y(x) @ a-=T o

X1 2 3 1)

Midpoint/RK2 method: Steps

step) A N
X

fmia = f(x(t) 5 , T 2)

3. Take full step using midpoint derivative
X(t + At) = x(t) + At f

= Py

a

N-ary Forces: Springs

ment from resting length r of spring

e Assuming time t, let AxX = x_— x,,
d = Ax/|Ax|, and Av = v_-v,. Then the
force on ais (where f, = —f):

fo = — [ks(|| AX][—) + kaAv - d]d

spring constant damplng constant
(“stiffness”) (like “spring drag”)

See molecule examples at http://www.myphysicslab.com —
B[ﬁ‘mwmm

Collisions

F = —(kd,

|

$pa dsurface <0

urface)

penetratlon dlstance

— 3

pushes particle out
object interior

e Hard collisions

— Detect intersection point explicitly, treat
like a reflection (note that initial velocity

vector points toward surface):

vV=v—-2(n-v)n

See collision examples at http://www.myphysicslab.com e G

Spring systems

elastic properties
— 1-D: Rope, hair, grass

— 2-D: Cloth

— 3-D: Deformable (aka rubber) objects

4}*}
%‘*&i’*&

IVERSITY o
F’[ﬁm\\m

Flocking (C. Reynolds, SIGGRAPH 1987)

o Not passive—forces are internally generated
— Can be combined with external forces

e “Intentions” of each boid depend on characteristics of
local environment

= P)ELAARE

2-D & 3-D Transformations

— Translation

— Scaling

— Rotation

— Shear, reflection

e Mathematical representation as
matrices when points are in
homogeneous coordinates

= Py

Homogeneous Coordinates

space
e Change to homogeneous coordinates:

X --> (xT,)T

o Defined up to scale (think of as all points on a ray
and w as how far along the ray):

(xT, 1)T = (wxT, w)T
e (Can go back to non-homogeneous representation by
normalizing as follows:

(xT, W) --> x/w

= P)ELAARE

3-D Rotation Matrices

constant
e E.g., a rotation about the X axis of O radians:

(1 0 0 0)
0 cosf —sinf 0
0 sin@ cosf@ O
\ 0 0 0 Iy

= Py

3-D Rigid Transformations

translation, without scaling, etc.
e "Moves” an object from one 3-D pose to

another
1 0 0 Ax r11 12 13 O r11 T12 r13 Az
O 1 O Ay ro1 T22 T23 0 — ro1 T2 T23 Ay
O 0 1 Az 31 T32 T33 0 r31 T332 T33 Az
O 0 0O 1 0 0 O 1 0 0 O 1
T R M

= Py

3-D Transformations:
Arbitrary Change of Coordinates

gluLookAt () : Details

1. Compute vectors u, v, n defining new camera axes in world
coordinates

e “Old”axesareu=(1,0,0),v=(0,1,0T,n=(0,0,-1)

2. Compute location COW of old camera position in terms of new location’s
coordinate system

3. Fill'in rigid transform matrix

CM

v

bt

eve /‘ &‘

o
T =7

Transformations vs. Projections

dimensional subspace

— E.g., point in 3-D space to point on plane (a 2-D entity) in that

space

— We will be interested in such 3-D to 2-D projections where the

plane is the image

viewplane -

-

q

P

from Hill

VERSITYor
Parallel projection along direction d onto a plane ™ P)EAWARE

Orthographic Projection

— Not the same as image size

e No perspective effects—distant objects look
same as near ones, so camera (X, Yy, Z) = image

(X, ¥)
viewplane
- -
" camera w
view volume
/ far plane £

Perspective with a Pinhole Camera (i.e., no lens)

image T = .

_,_o—'_'_'_'_'_'_'_'_’ I : : : |
plane _— e
| T T
/;/pinhnlec ' .-~ virtual

image

from Forsyth & Ponce

Instead of single direction d characteristic of parallel projections,
rays emanating from single point C define perspective projection

=)i

Perspective Projection

Perspective Projection Matrix

1 0 0 0 x x —fx/z
01 0 O y | _ Y | /=
0O O 1 0 z z —f
0 0 —1/f O 1 —2/f 1

Last step accomplishes distance-dependent scaling by the
rule for converting between homogeneous and reqular
coordinates. This is called the perspective division

e Actual matrix has additional terms to scale everything to CVV

e Now just do orthographic projection to image coordinates
— After any steps that require depth information

JERSITY or
™ WYEIAWARE

Geometry pipeline

Camera coordinates

Clip coordinates

Normalized device coordinates

Window coordinates

Screen coordinates @Wm

EIAWARE

Clipping

— Optimization that saves computation which
would otherwise be wasted on lighting,
texturing, etc.

e (Cases
— Trivial acceptance: Complete inside VV

— Trivial rejection: Completely outside VV

— Crossing clip plane(s): Partially outside,
so must trim to fit

e Different primitives require different
methods
— Points: Only trivial accept/reject
— Lines: Chop at intersection with clip plane
— Polygons: Must trim so as to maintain connectivity

courtesy of L. McMillan

JERSITY or
™ WYEIAWARE

Cohen-Sutherland clipping

FTFF

FFFF

rivial lin€ Clipping CaSes window
TFFT FFFT FFTT
— Accept line (p;, p,): Both endpoints
are inside the rectangle
e In terms of outcodes, this means window (W) C
o(p,) = FFFFand o(p,) = FFFF |- N P | \

— Reject line: Both endpoints outside /
rectangle on same side A
e This means both points’ outcodes havea |-

T at the same bit position—e.g.,
o(p,) = FTTF and o(p,) = FFTF

Sutherland-Hodgman 2-D polygon clipping

— Traverse vertex list of S s T F

clipped vertex list |
— For each old edge (s, s;) of S 5%
e If both inside (c;, ¢;): Output new s;
e If both outside: Output nothing

e If s, inside, s; outside: Output intersection of (s, s;)
with (c, c)

o If s outS|de s; inside: Output intersection of (s;, s;
with (c, C), then S,
e Simple case: Sis a trlangle C a rectangle _’

— Can convert arbitrary polygon to set of triangles Ve
tesselation (e.g., gluTess* () functions) PR

Hidden Surfaces: Why care?

e Occlusion: Closer (opaque) objects along same
viewing ray obscure more distant ones

e Reasons to remove

— Efficiency: As with clipping,
wasting work on

— Correctness: The image will
we don‘t model occl

COP

[/

[/ S)
[/

Backface Culling

VAledA'A'l @ -

occludé them

e A back-facing polygon’s normal forms
an acute angle with the view vector

= Py

Painter’s algorithm

Draw primitives
from back to
front to avoid
need for depth
comparisons

} '.RSTTY(_)»‘
from Shirley @ EIAWARE

Binary Space Partitioning (BSP) trees

e See applet at http://paduillac.inria.fr/~levy/bsp

positive
\;
negative

g

®

= Py

/-Buffering

e Only draw a pixel if it's closer than what's
been rendered already

for (each face F)
for (each pixel (x.y) covering the face)

]
1}

depth = depth of F at (x,y),
if(depth < d[x][v]) //F is closest =so far
[
c = colorof Fat(x, v
set the pixel color at (x, v)to ¢
d[x] [yv] = depth: // update the depth buffer

——

RSITY or
from Hill @ EIAWARE,

/-buffer: Example

Z / .,w .%\a ‘Q.‘ R NL Y
o< WNE
Seh v»«r-*&s. '
5 \ e.\ “'
b’ Q‘ :&O L’

/ERSITY o
= FIAWARE

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

