
  

Midterm Review 

 
Course web page: 

http://goo.gl/EB3aA 

March 20, 2012  Lecture 11 



  

Midterm Notes 

• Thursday, Mar. 22 
• Worth 20% of your grade (like a homework+) 
• Closed book, no calculators, no notes 
• Focus on lecture material (up to & including z buffers 

from today) 
– Use readings for depth and understanding, but I won’t go 

there for new topics (some topics, like clipping algorithms, 
are NOT IN TEXTBOOK) 

• Readings include everything in “Readings” column of Course 
Page schedule  

• Question types: Mostly definitions, explanations; 
some calculations (e.g., transformations) 
– Sample exams from 2003, 2004 
– A few OpenGL-related questions will be on it.  For example, 

“What is gluLookAt()’s place and function in the 
geometry pipeline?”  



  

Midterm topics 

• Basic OpenGL/GLUT 

• Rasterization 

• 2-D texturing, blending 

• Simulation/particle systems 

• Geometry 

– Transformations 

– Projections 

• Clipping 

• Hidden surface elimination 

 



  

Simple OpenGL program 

#include <stdio.h> 

#include <GL/glut.h> 

 

void main(int argc, char** argv) 

{ 

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); 

glutInitWindowSize(100, 100); 

glutCreateWindow(“hello”); 

init();        // set OpenGL states, variables 

 

glutDisplayFunc(display);     // register callback routines 

glutKeyboardFunc(keyboard); 

glutIdleFunc(idle); 

 

glutMainLoop();       // enter event-driven loop 

} 

 

adapted from E. Angel 



  

OpenGL Geometric Primitives 



  

2-D Transformations: OpenGL 

• 2-D transformation functions 
– glTranslate(x, y, 0) 

– glScale(sx, sy, 0) 

– glRotate(theta, 0, 0, 1) (angle in 
degrees; direction is counterclockwise) 

• No shear, no reflection built into OpenGL 
 

• Using glPushMatrix()/glPopMatrix() 
to isolate transformations 



  

Rasterization: What is it? 

• How to go from real numbers of geometric 
primitives’ vertices to integer coordinates of 
pixels on screen  

• Geometric primitives 

– Points: Round vertex location in       screen 
coordinates 

– Lines: Can do this for endpoints,           but 
what about in between? 

– Polygons: How to fill area bounded by edges? 

 

from Angel 



  

DDA/Parametric Line Drawing 

• DDA stands for Digital Differential Analyzer, the name 
of a class of old machines used for plotting functions 

• Slope-intercept form of a line: y = mx + b 

– m = dy/dx 
– b is where the line intersects the Y axis 

• DDA’s basic idea: If we increment the x       
coordinate by 1 pixel at each step, the        
slope of the line tells us how to much           
increment y per step 

– I.e., m = dy/dx, so for dx = 1, dy = m 

– This only works if m <= 1—otherwise there are gaps 

• Solution: Reverse axes and step in Y direction.  Since now     

dy = 1, we get dx = 1/m 

from Angel 



  

Midpoint line drawing: Line equation 

• Recall that the slope-intercept form of the line is         
y = (dy/dx)x + b 

• Multiplying through by dx, we can rearrange this in 
implicit form: 

  

F(x, y) = dy x - dx y + dx b = 0 

 
• F is:  

– Zero for points on the line 
– Positive for points below the line                         (to 

(right if slope > 1) 
– Negative for points above the line                  

(left if slope > 1) 
• Examples: (0, 1), (1, 0), etc. from Angel 

2x - 9y = 0 

9x - 2y = 0 



  

Midpoint line drawing: The Decision 
• Given our assumptions about the slope, after 

drawing (x, y) the only choice for the next 

pixel is between the upper pixel U = (x+1, 
y+1) and the lower one L = (x+1, y) 

• We want to draw the one closest to the line 

 

from Hill 

U 

L 



  

Rasterizing triangles 

• Special case of polygon rasterization 
– Exactly two active edges at all times 

• One method: 
– Fill scanline table between top and bottom 

vertex with leftmost and rightmost side by 
using DDA or midpoint algorithm to follow 
edges 

– Traverse table scanline by scanline, fill run 
from left to right 

 

 



  

What is Texture Mapping? 

• Spatially-varying modification of surface 
appearance at the pixel level 

• Characteristics 
– Color 

– Shininess 

– Transparency 

– Bumpiness  

– Etc. 

• “Sprite” when on polygon with no 3-D 

from Hill 



  

Texture mapping applications: Billboards 

from Akenine-Moller & Haines 

Also called ”impostors”: Image aligned polygons in 3-D 

from www.massal.net/projects 



  

OpenGL texturing steps (Red book) 

1. Create a texture object and specify a 

texture for that object 

2. Indicate how the texture is to be 

applied to each pixel 

3. Enable texture mapping with 
glEnable(GL_TEXTURE_2D) 

4. Draw the scene, supplying both 

texture and geometric coordinates 

 



  

Robins’ texture tutor (aka details of 

Sprite class) 

 



  

Compositing 

• When a pixel is drawn to a buffer, what happens 
to what’s already there? 

• Normally, we just overwrite…                     
but there are more options 

• Different operations 
– Blending: Use alpha channel to            control 

transparency vs. opacity 
• alpha = 1 -> Perfect opacity (default) 
• alpha = 0 -> Perfect transparency 

• In between, pixel is a mix of source and destination colors 

• We did not cover details of glBlendFunc(), so 
it won’t be on exam 

from Angel 



  

Particle Systems 

• Definition: Simulation of a set of similar, moving 
agents in a larger environment 

• Scale usually such that aggregate motion of 
“swarm” is more apparent than internal agent 
motion 

• Applications 
– Water, snow 
– Smoke, fire 
– Cloth 
– “Creatures” 

• Basic loop: 
1. Create, kill particles 
2. Update positions based on:  

• Previous positions, velocities, accelerations  
• Exterior and interior forces 

3. Render particles 

 

Fire: Each particle is a blended sprite 

courtesy of S. Dunn 



  

Particle/Agent Motion Factors 

• Global exterior forces such as gravity, wind, 
pre-determined path, target position, etc. 

• Interactions with fixed environment 
– Collisions 
– Friction  

• Physical interactions with each other 
– Gravity, electrical attraction/repulsion 
– Spring connections  
– Collisions 

• Interior “self determination” 
– Randomness 
– AI-like perception-action feedback 

• Flocking, seeking with collision avoidance, etc. 

 
 

Initial upward and outward velocity + gravity =  water fountain 

co
u

rt
es

y
 o

f 
B

la
ck

 B
el

t 
S

y
st

em
s 

Smoke movie (turbulence…): 
Convection + invisible 

container = smoke in a bottle 



  

Particle Update 

• Given particle state at time t consisting of 
position, velocity, etc., how do we compute new 
values at time x(t + Δt) ? 

• Typically, we don’t have an explicit parametric 
function x(t) that we can just evaluate for any t 
– E.g., a spline curve  

• Rather, we have a set of forces and an initial 
value for the particle state 

• We have to simulate the action of the forces on 
the particle to “see what happens”! 

• In practice, this means numerical methods for 
solving ordinary differential equations (ODEs) 

 



  

Ordinary Differential Equations 

• Consider points on 

unknown parametric 

curve x(t) with known 

derivatives (i.e., 

tangents) f(x, t) 

from A. Witkin’s SIGGRAPH course notes 

different ways of writing derivative 



  

Euler Integration 

• First order (linear) approximation using a 

step size of Δt : 

from Numerical Recipes 



  

Midpoint/RK2 method: Steps 

1. Compute Euler step Δx = Δt f(x, t) 

2. Evaluate first derivative at midpoint (half 

step)          

 
3. Take full step using midpoint derivative 

x(t + Δt) = x(t) + Δt fmid 

from Numerical Recipes 



  

n-ary Forces: Springs 

• 2 connected particles a and b exert force 

on one another proportional to displace-

ment from resting length r of spring 

• Assuming time t, let Δx = xa – xb ,           

d = Δx/|Δx|, and Δv = va – vb . Then the 

force on a is (where fb = –fa): 

spring constant 
(“stiffness”) 

damping constant 
(like “spring drag”) 

a b 

See molecule examples at http://www.myphysicslab.com 
 



  

Collisions 

• Penalty method 
– Spring-like force                        

proportional to          
penetration distance        
pushes particle out                      of 
object interior 

• Hard collisions 
– Detect intersection point explicitly, treat 

like a reflection (note that initial velocity 
vector points toward surface):  

See collision examples at http://www.myphysicslab.com 

 



  

Spring systems 

• Networks of particles connected by springs can be 
used to simulate objects with elastic properties 
– 1-D: Rope, hair, grass 

– 2-D: Cloth 

– 3-D: Deformable (aka rubber) objects 

Spring networks for cloth Angular springs for hair:  
Stiffness  More “body” 

co
u

rt
es

y
 o

f 
M

. 
K

as
s 

co
u

rt
es

y
 o

f 
J.

 B
ar

b
ic

 

Squishy “jello” 



  

Flocking (C. Reynolds, SIGGRAPH 1987) 

• Particles for simulating simple creatures: boids 
– Birds in flock 
– Fish in school 
– Etc. 

• Not passive—forces are internally generated 
– Can be combined with external forces 

• “Intentions” of each boid depend on characteristics of 
local environment 

from C. Reynolds 



  

2-D & 3-D Transformations 

• Types 

– Translation 

– Scaling 

– Rotation 

– Shear, reflection 

• Mathematical representation as 
matrices when points are in 
homogeneous coordinates 

 



  

Homogeneous Coordinates  

• Note: write vectors vertically instead of horizontally 

• Let x = (x1, ... , xn)
T be a point in Euclidean 

space  

• Change to homogeneous coordinates:  

x --> (xT, 1)T 

• Defined up to scale (think of as all points on a ray 
and w as how far along the ray):   

(xT, 1)T = (wxT, w)T 

• Can go back to non-homogeneous representation by 
normalizing as follows:  

(xT, w)T --> x/w 

 



  

3-D Rotation Matrices 

• Similar form to 2-D rotation matrices, but with 
coordinate corresponding to rotation axis held 
constant 

• E.g., a rotation about the X axis of θ radians: 



  

3-D Rigid Transformations 

• Combination of rotation followed by 
translation, without scaling, etc. 

• “Moves” an object from one 3-D pose to 
another 

 

T R M 



  

• A rigid transformation can be used to represent a 
change in the coordinate system that “expresses” 
a point’s location 

3-D Transformations: 
 Arbitrary Change of Coordinates  



  

gluLookAt(): Details 

• Moves scene points so that camera is at origin, “look at” point is on   
-Z axis, and camera +Y axis is aligned with up vector 
– Create and execute rigid transformation          making a change from 

world to camera coordinates 

• Steps 
1. Compute vectors u, v, n defining new camera axes in world 

coordinates 
• “Old” axes are u = (1, 0, 0)T, v = (0, 1, 0)T, n = (0, 0, -1)T 

2. Compute location          of old camera position in terms of new location’s 
coordinate system 

3. Fill in rigid transform matrix 

from Hill 

center 



  

Transformations vs. Projections 

• Transformation: Mapping within n-D space 
– Moves points around, effectively warping space 

• Projection: Mapping from n-D space down to lower-
dimensional subspace 
– E.g., point in 3-D space to point on plane (a 2-D entity) in that 

space 
– We will be interested in such 3-D to 2-D projections where the 

plane is the image 

Parallel projection along direction d onto a plane 

from Hill 



  

Orthographic Projection 

• Projection direction d is aligned with Z axis 

• Viewing volume is “brick”-shaped region in 
space 
– Not the same as image size 

• No perspective effects—distant objects look 
same as near ones, so camera (x, y, z)  image 
(x, y)  

 

from Hill 



  

Perspective with a Pinhole Camera (i.e., no lens) 

from Forsyth & Ponce 

Instead of single direction d characteristic of parallel projections,  

rays emanating from single point c define perspective projection 

c 



  

• Letting the camera coordinates of the 
projected point be                           
leads by similar triangles to: 
        

 

 

Perspective Projection 



  

Perspective Projection Matrix 

• Using homogeneous coordinates, we can describe a 
perspective transformation with the image plane at z = -f 
(because f > 0 but z < 0) via a 4 x 4 matrix multiplication: 
                  
                 

       
 

    
 
    Last step accomplishes distance-dependent scaling by the 

rule for converting between homogeneous and regular 
coordinates.  This is called the perspective division 

• Actual matrix has additional terms to scale everything to CVV 
• Now just do orthographic projection to image coordinates 

– After any steps that require depth information 



  

Geometry pipeline 

Coordinate change rigid transform 
(GL_MODELVIEW) 

Perspective normalization 
(GL_PERSPECTIVE) 

2-D scale and shift 
(GL_VIEWPORT) 

Perspective division 

Orthographic projection 

Camera coordinates 

Clip coordinates 

Normalized device coordinates 

Window coordinates 

Screen coordinates 

World coordinates 



  

Clipping 

• Removal of portions of geometric    
primitives outside viewing volume (VV) 

• Why? 
– Optimization that saves computation which         

would otherwise be wasted on lighting,     
texturing, etc.  

• Cases 
– Trivial acceptance: Complete inside VV 
– Trivial rejection: Completely outside VV 
– Crossing clip plane(s): Partially outside,               

so must trim to fit 

• Different primitives require different    
methods  
– Points: Only trivial accept/reject 
– Lines: Chop at intersection with clip plane 
– Polygons: Must trim so as to maintain connectivity 
 

courtesy of L. McMillan 



  

Cohen-Sutherland clipping 

• Outcodes partition plane around 

the viewing area 

• Trivial line clipping cases 

– Accept line (p1, p2): Both endpoints 

are inside the rectangle  

• In terms of outcodes, this means     

o(p1) = FFFF and o(p2) = FFFF  

– Reject line: Both endpoints outside 

rectangle on same side  

• This means both points’ outcodes have a 

T at the same bit position—e.g.,      

o(p1) = FTTF and o(p2) = FFTF  

 

from Hill 



  

Sutherland-Hodgman 2-D polygon clipping 

• Algorithm for clipping polygon S (convex or not) against a 
convex clip polygon C 

• Basic approach: Clip S against each side (ci, cj) of C in 
sequence 
– Traverse vertex list of S                   & build new 

clipped vertex list 

– For each old edge (si, sj) of S: 

• If both inside (ci, cj): Output new sj  
• If both outside: Output nothing 
• If si inside, sj outside: Output intersection of (si, sj) 

with (ci, cj) 
• If si outside, sj inside: Output intersection of (si, sj) 

with (ci, cj), then sj 

• Simple case: S is a triangle, C a rectangle 
– Can convert arbitrary polygon to set of triangles               via 

tesselation (e.g., gluTess*() functions) 

from E. Angel 

from E. Angel 



  

Hidden Surfaces: Why care? 

• Hidden surfaces are objects inside the viewing 

volume that should not be seen 

• Occlusion: Closer (opaque) objects along same 

viewing ray obscure more distant ones 

• Reasons to remove  

– Efficiency: As with clipping,                avoid 

wasting work on                      invisible objects 

– Correctness: The image will          look wrong if 

we don’t model          occlusion properly 

 
from Angel 



  

Backface Culling 

• Basic idea: We don’t have to draw 
polygons that face away from the 
viewer, since front-facing polygons will 
occlude them 

• A back-facing polygon’s normal forms 
an acute angle with the view vector 

 

 

from  
Hill 

n 



  

Painter’s algorithm 

from  Shirley 

Draw primitives 
from back to 

front to avoid 
need for depth 

comparisons 



  

Binary Space Partitioning (BSP) trees 

• A preprocess to organize objects in a tree such that 
a traversal gives a depth sort relative to the eye 

• Each internal node represents a “splitting plane” 

• See applet at http://pauillac.inria.fr/~levy/bsp 



  

Z-Buffering 

• Maintain an image-sized buffer of the depths 
of the closest pixels drawn so far 

• Only draw a pixel if it’s closer than what’s 
been rendered already 

 

from Hill 



  

Z-buffer: Example 

 

courtesy of DAM Entertainment 

Color buffer Depth buffer 

http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zcolor.avi
http://www.dam-ent.com/manuals/cookbook/depthalpha/z_vs_a_zbuf.avi

