Midterm Review

Course web page: http://goo.gl/EB3aA

March 20, 2012 * Lecture 11

Midterm Notes

- Thursday, Mar. 22
- Worth 20% of your grade (like a homework+)
- Closed book, no calculators, no notes
- Focus on lecture material (up to & including z buffers from today)
 - Use readings for depth and understanding, but I won't go there for new topics (some topics, like clipping algorithms, are NOT IN TEXTBOOK)
 - Readings include everything in "Readings" column of Course Page schedule
- Question types: Mostly definitions, explanations; some calculations (e.g., transformations)
 - Sample exams from 2003, 2004
 - A few OpenGL-related questions will be on it. For example, "What is gluLookAt()'s place and function in the geometry pipeline?"

Midterm topics

- Basic OpenGL/GLUT
- Rasterization
- 2-D texturing, blending
- Simulation/particle systems
- Geometry
 - Transformations
 - Projections
- Clipping
- Hidden surface elimination

Simple OpenGL program

}

```
#include <stdio.h>
#include <GL/glut.h>
void main(int argc, char** argv)
ł
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT RGB | GLUT DOUBLE);
   glutInitWindowSize(100, 100);
   glutCreateWindow("hello");
                           // set OpenGL states, variables
   init();
   glutDisplayFunc(display);
                                  // register callback routines
   glutKeyboardFunc(keyboard);
   glutIdleFunc(idle);
   glutMainLoop();
                              // enter event-driven loop
```


OpenGL Geometric Primitives

2-D Transformations: OpenGL

- 2-D transformation functions
 - glTranslate(x, y, 0)
 - glScale(sx, sy, 0)
 - glRotate(theta, 0, 0, 1) (angle in degrees; direction is counterclockwise)
- No shear, no reflection built into OpenGL
- Using glPushMatrix()/glPopMatrix() to isolate transformations

Rasterization: What is it?

- How to go from real numbers of geometric primitives' vertices to integer coordinates of pixels on screen
- Geometric primitives
 - Points: Round vertex location in coordinates
 - Lines: Can do this for endpoints, what about in between?

- Polygons: How to fill area bounded by edges?

DDA/Parametric Line Drawing

- DDA stands for <u>Digital Differential Analyzer</u>, the name of a class of old machines used for plotting functions
- Slope-intercept form of a line: y = mx + b

-m = dy/dx

- $-\mathbf{b}$ is where the line intersects the Y axis
- DDA's basic idea: If we increment the x coordinate by 1 pixel at each step, the slope of the line tells us how to much increment y per step

- I.e., $\mathbf{m} = \frac{dy}{dx}$, so for $d\mathbf{x} = 1$, $d\mathbf{y} = \mathbf{m}$
- from Angel
- This only works if m <= 1—otherwise there are gaps
 - Solution: Reverse axes and step in Y direction. Since now dy = 1, we get dx = 1/m

Midpoint line drawing: Line equation

- Recall that the slope-intercept form of the line is
 y = (dy/dx) x + b
- Multiplying through by dx, we can rearrange this in implicit form:

$$F(x, y) = dy x - dx y + dx b = 0$$

9x - 2y = 0

- **F** is:
 - Zero for points on the line
 - Positive for points **below** the line (**right** if slope > 1)
 - Negative for points **above** the line (**left** if slope > 1)
 - Examples: (0, 1), (1, 0), etc.

Midpoint line drawing: The Decision

- Given our assumptions about the slope, after drawing (x, y) the only choice for the next pixel is between the upper pixel U = (x+1, y+1) and the lower one L = (x+1, y)
- We want to draw the one closest to the line

Rasterizing triangles

- Special case of polygon rasterization
 Exactly two active edges at all times
- One method:
 - Fill scanline table between top and bottom vertex with leftmost and rightmost side by using DDA or midpoint algorithm to follow edges
 - Traverse table scanline by scanline, fill run from left to right

What is Texture Mapping?

- Spatially-varying modification of surface appearance at the pixel level
- Characteristics
 - Color
 - Shininess
 - Transparency
 - Bumpiness
 - Etc.

from Hill

• "Sprite" when on polygon with no 3-D

Texture mapping applications: Billboards

from Akenine-Moller & Haines

from www.massal.net/projects

Also called "impostors": Image aligned polygons in 3-D

OpenGL texturing steps (Red book)

- 1. Create a texture object and specify a texture for that object
- 2. Indicate how the texture is to be applied to each pixel
- 3. Enable texture mapping with glEnable (GL_TEXTURE_2D)
- 4. Draw the scene, supplying both texture and geometric coordinates

Robins' texture tutor (aka details of Sprite class)

Screen-space

Texture-space

s view	Conmand manipulation window
	GLfloat border_color[] = { 1.00, 0.00, 0.00, 1.00};
	GLfloat env_color[] = { 0.00, 1.00, 0.00, 1.00};
	giTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, border_color); giTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, env_color);
	g(TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); g(TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); g(TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); g(TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); g(TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
Married Contraction	glEnable(GL_TEXTURE_2D); gluBuid2DMiphaps(GL_TEXTURE_2D, 3, w, h, GL_RGB, GL_UNSIGNED_BYTE, mage);
	giColor41 0.60 , 0.60 , 0.60 , 1.00);
	glTexCoord2f(0.0 , 0.0); glVertex3f(-1.0, -1.0, 0.0);
- 11	giTexCoord2f(1.0 , 1.0); giVertex3f(1.0 , 1.0 , 0.0); giTexCoord2f(1.0 , 1.0); giVertex3f(1.0 , 1.0 , 0.0);
	glTexCoord2f(0.0 , 1.0); glVertex3f(-1.0 , 1.0 , 0.0); glEnd();
	Click on the arguments and move the mouse to modify values

Compositing

- When a pixel is drawn to a buffer, what happens to what's already there?
- Normally, we just overwrite... but there are more options
- Different operations
 - Blending: Use alpha channel to transparency vs. opacity
 - alpha = 1 -> Perfect opacity (default)
 - alpha = 0 -> Perfect transparency
 - In between, pixel is a mix of source and destination colors
- We did not cover details of glBlendFunc(), so it won't be on exam

Particle Systems

- Definition: Simulation of a set of similar, moving agents in a larger environment
- Scale usually such that aggregate motion of "swarm" is more apparent than internal agent motion
- Applications
 - Water, snow
 - Smoke, fire
 - Cloth
 - "Creatures"
- Basic loop:
 - 1. Create, kill particles
 - 2. Update positions based on:
 - Previous positions, velocities, accelerations
 - Exterior and interior forces
 - 3. Render particles

courtesy of S. Dunn

Fire: Each particle is a blended sprite

Particle/Agent Motion Factors

- Global exterior forces such as gravity, wind, pre-determined path, target position, etc.
- Interactions with fixed environment
 - Collisions
 - Friction
- Physical interactions with each other
 - Gravity, electrical attraction/repulsion
 - Spring connections
 - Collisions
- Interior "self determination"
 - Randomness
 - AI-like perception-action feedback
 - Flocking, seeking with collision avoidance, etc.

Smoke movie (turbulence...): Convection + invisible container = smoke in a bottle

Initial upward and outward velocity + gravity = water fountain

Particle Update

- Given particle state at time t consisting of position, velocity, etc., how do we compute new values at time $\mathbf{x}(t + \Delta t)$?
- Typically, we don't have an explicit parametric function **x**(t) that we can just evaluate for any t

– E.g., a spline curve

- Rather, we have a set of forces and an initial value for the particle state
- We have to simulate the action of the forces on the particle to "see what happens"!
- In practice, this means numerical methods for solving ordinary differential equations (ODEs)

Ordinary Differential Equations

 Consider points on **unknown** parametric curve x(t) with known derivatives (i.e., tangents) f(x, t)

 $\frac{\partial \mathbf{x}(t)}{\partial t} = \dot{\mathbf{x}}(t) = f(\mathbf{x}, t)$

different ways of writing derivative

from A. Witkin's SIGGRAPH course notes

Euler Integration

• First order (linear) approximation using a **step size** of Δt : $x(t + \Delta t) = x(t) + \Delta t f(x, t)$

Midpoint/RK2 method: Steps

- 1. Compute Euler step $\Delta \mathbf{x} = \Delta t f(\mathbf{x}, t)$
- 2. Evaluate first derivative at midpoint (half step)

$$f_{\text{mid}} = f(\mathbf{x}(t) + \frac{\Delta \mathbf{x}}{2}, t + \frac{\Delta t}{2})$$

3. Take full step using midpoint derivative $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t f_{mid}$

n-ary Forces: Springs

- 2 connected particles *a* and *b* exert force on one another proportional to displacement from **resting length** r of spring
- Assuming time t, let $\Delta \mathbf{x} = \mathbf{x}_a \mathbf{x}_b$, $\mathbf{d} = \Delta \mathbf{x} / |\Delta \mathbf{x}|$, and $\Delta \mathbf{v} = \mathbf{v}_a - \mathbf{v}_b$. Then the force on *a* is (where $\mathbf{f}_b = -\mathbf{f}_a$):

$$\mathbf{f}_a = - \begin{bmatrix} k_s(||\Delta \mathbf{x}|| - r) + k_d \Delta \mathbf{v} \cdot \mathbf{d} \end{bmatrix} \mathbf{d}$$
spring constant
("stiffness")
damping constant
(like "spring drag")

See molecule examples at http://www.myphysicslab.com

Collisions

- Penalty method

 Spring-like force proportional to penetration distance pushes particle out object interior
- Hard collisions

 Detect intersection point explicitly, treat like a reflection (note that initial velocity vector points toward surface):

$$\mathbf{v}' = \mathbf{v} - 2(\mathbf{n} \cdot \mathbf{v})\mathbf{n}$$

See collision examples at http://www.myphysicslab.com

Spring systems

- Networks of particles connected by springs can be used to simulate objects with elastic properties
 - 1-D: Rope, hair, grass
 - 2-D: Cloth
 - 3-D: Deformable (aka rubber) objects

Flocking (C. Reynolds, SIGGRAPH 1987)

- Particles for simulating simple creatures: **boids**
 - Birds in flock
 - Fish in school
 - Etc.
- Not passive—forces are internally generated
 - Can be combined with external forces
- "Intentions" of each boid depend on characteristics of local environment

2-D & 3-D Transformations

- Types
 - Translation
 - Scaling
 - Rotation
 - Shear, reflection
- Mathematical representation as matrices when points are in homogeneous coordinates

Homogeneous Coordinates

- Note: write vectors vertically instead of horizontally
- Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)^T$ be a point in Euclidean space
- Change to *homogeneous* coordinates:

• Defined up to scale (think of as all points on a ray and w as how far along the ray):

$$(\mathbf{x}^{\mathsf{T}}, 1)^{\mathsf{T}} = (\mathbf{w}\mathbf{x}^{\mathsf{T}}, \mathbf{w})^{\mathsf{T}}$$

 Can go back to non-homogeneous representation by normalizing as follows:

$$(\mathbf{X}^{\mathsf{T}}, \mathsf{W})^{\mathsf{T}} \dashrightarrow \mathbf{X}/\mathsf{W}$$

3-D Rotation Matrices

- Similar form to 2-D rotation matrices, but with coordinate corresponding to rotation axis held constant
- E.g., a rotation about the X axis of θ radians:

$$\mathbf{R}_{X}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3-D Rigid Transformations

- Combination of rotation followed by translation, without scaling, etc.
- "Moves" an object from one 3-D pose to another

$$\begin{pmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & \Delta x \\ r_{21} & r_{22} & r_{23} & \Delta y \\ r_{31} & r_{32} & r_{33} & \Delta z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

R

N

3-D Transformations: Arbitrary Change of Coordinates

• A rigid transformation can be used to represent a change in the coordinate system that "expresses" a point's location

gluLookAt(): Details

- Moves scene points so that camera is at origin, "look at" point is on -Z axis, and camera +Y axis is aligned with up vector
 - Create and execute rigid transformation ${}^{\mathcal{C}}_{\mathcal{W}}\!\mathbf{M}$ making a change from world to camera coordinates
- Steps
 - 1. Compute vectors **u**, **v**, **n** defining new **camera axes** in **world coordinates**
 - "Old" axes are $\mathbf{u} = (1, 0, 0)^{\mathsf{T}}, \mathbf{v} = (0, 1, 0)^{\mathsf{T}}, \mathbf{n} = (0, 0, -1)^{\mathsf{T}}$
 - 2. Compute location $\mathcal{C}_{\mathbf{O}_{\mathcal{W}}}$ of old camera position in terms of new location's coordinate system
 - 3. Fill in rigid transform matrix $_{\mathcal{W}}^{\mathcal{C}}\mathbf{M}$

Transformations vs. Projections

- Transformation: Mapping within n-D space
 - Moves points around, effectively warping space
- **Projection**: Mapping from n-D space down to lowerdimensional subspace
 - E.g., point in 3-D space to point on plane (a 2-D entity) in that space
 - We will be interested in such 3-D to 2-D projections where the plane is the **image**

Parallel projection along direction d onto a plane

Orthographic Projection

- Projection direction d is aligned with Z axis
- Viewing volume is "brick"-shaped region in space
 - Not the same as image size
- No perspective effects—distant objects look same as near ones, so camera $(x, y, z) \Rightarrow$ image (x, y)

Perspective with a Pinhole Camera (i.e., no lens)

Instead of single direction \mathbf{d} characteristic of parallel projections, rays emanating from single point \mathbf{C} define perspective projection

Perspective Projection

• Letting the camera coordinates of the projected point be $\mathbf{x}_{cam} = (x, y, z)^T$ leads by similar triangles to:

$$\mathbf{x}_{im} = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} fx/z \\ fy/z \end{pmatrix}$$

Perspective Projection Matrix

• Using homogeneous coordinates, we can describe a perspective transformation with the image plane at z = -f (because f > 0 but z < 0) via a 4 x 4 matrix multiplication:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/f & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ -z/f \end{pmatrix} \rightarrow \begin{pmatrix} -fx/z \\ -fy/z \\ -f \\ 1 \end{pmatrix}$$

Last step accomplishes distance-dependent scaling by the rule for converting between homogeneous and regular coordinates. This is called the **perspective division**

- Actual matrix has additional terms to scale everything to CVV
- Now just do orthographic projection to image coordinates
 - After any steps that require **depth information**

Geometry pipeline

Clipping

- Removal of portions of geometric primitives outside viewing volume (VV)
- Why?
 - Optimization that saves computation which would otherwise be wasted on lighting, texturing, etc.
- Cases
 - Trivial acceptance: Complete inside VV
 - Trivial rejection: Completely outside VV
 - Crossing clip plane(s): Partially outside, so must trim to fit
- Different primitives require different methods
 - Points: Only trivial accept/reject
 - Lines: Chop at intersection with clip plane
 - Polygons: Must trim so as to maintain connectivity

courtesy of L. McMillan

Cohen-Sutherland clipping

- Outcodes partition plane around the viewing area
- Trivial line clipping cases
 - Accept line (p₁, p₂): Both endpoints are inside the rectangle
 - In terms of outcodes, this means o(p₁) = FFFF and o(p₂) = FFFF
 - Reject line: Both endpoints outside rectangle on same side
 - This means both points' outcodes have a T at the same bit position—e.g., o(p₁) = FTTF and o(p₂) = FFTF

TTFF	FTFF	FTTF
TFFF	FFFF window	FFTF
TFFT	FFFT	FFTT

Sutherland-Hodgman 2-D polygon clipping

- Algorithm for clipping polygon *S* (convex or not) against a convex clip polygon *C*
- Basic approach: Clip *S* against each side (**c**_i, **c**_j) of *C* in sequence
 - Traverse vertex list of S clipped vertex list
 - For each old edge $(\mathbf{s}_i, \mathbf{s}_j)$ of S:
 - If both inside $(\mathbf{c}_i, \mathbf{c}_j)$: Output new \mathbf{s}_j
 - If both outside: Output nothing
 - If s_i inside, s_j outside: Output intersection of (s_i, s_j) with (c_i, c_j)
 - If s_i outside, s_j inside: Output intersection of (s_i, s_i) with (c_i, c_j), then s_j
- Simple case: *S* is a triangle, *C* a rectangle
 - Can convert arbitrary polygon to set of triangles
 tesselation (e.g., gluTess*() functions)

Hidden Surfaces: Why care?

- Hidden surfaces are objects inside the viewing volume that should not be seen
- Occlusion: Closer (opaque) objects along same viewing ray obscure more distant ones
- Reasons to remove
 - Efficiency: As with clipping, wasting work on
 - Correctness: The image will we don't model occl

Backface Culling

- Basic idea: We don't have to draw polygons that face away from the viewer, since front-facing polygons will occlude them
- A back-facing polygon's **normal** forms an acute angle with the view vector

Painter's algorithm

Draw primitives from back to front to avoid need for depth comparisons

from Shirley

Binary Space Partitioning (BSP) trees

- A preprocess to organize objects in a tree such that a traversal gives a depth sort relative to the eye
- Each internal node represents a "splitting plane"
- See applet at http://pauillac.inria.fr/~levy/bsp

- Maintain an image-sized buffer of the depths of the closest pixels drawn so far
- Only draw a pixel if it's closer than what's been rendered already

```
for (each face F)
    for (each pixel (x,y) covering the face)
    {
        depth = depth of F at (x,y);
        if(depth < d[x][y]) //F is closest so far
        {
            c = color of F at (x, y);
            set the pixel color at (x, y) to c
            d[x][y] = depth; // update the depth buffer
        }
    }
</pre>
```


from Hil

Color buffer

Depth buffer

