Shading

Course web page:
http://goo.gl/EB3aA

April 5, 2012  Lecture 14 e DYEIAWARE



Outline

— Point light sources

— BRDF = Ambient + diffuse + specular
components

e Shading implementations
— Gouraud shading
— Phong shading

e OpenGL API
= PR



Light sources

Cut-off angle

— Point: Shoots light in all P AR otk

directions N Directional Light - Point Light - Spot Light
— Spotlight: Angle-limited l l l

point source

— Directional: Source distant
enough that light rays are
roughly parallel (e.g., like the
sun relative to earth)

— Area: Behaves like a
continuous configuration of
point sources inside, say, a

polygon

from Akenine-Moller & Haines

Light source types: Induced shading



Standard local model for graphics

cl‘.ln‘l.“.‘ll-

ambient term to approximate global lighting
effects

Gl
Ambient C- Diffuse
a b)
-

Specular (.- ‘ j Total

: IVERSITY o
d) p[ﬁm\\m



Reflectance equation: Total illumination

Sdiff y Sspecy Samb

e Actual light at a pixel is combination of three effects:

Liotal = Lamb _l_ idz’ﬁ _l_ ispec

alofa]

color and ambient diffuse specularity

F.RSI'TY(\L
from Wikipedia s AWARE



Reflectance equation: Ambient component
(Shirley 10.1.2)

objects typically mean that light is
coming from more directions than just
sources

e Model this with ambient light, which
guarantees that all scene objects get
some minimum illumination

Lamb — TagmbSn o
8 P ELAWARE



Reflectance equation

LO(X: 007 ¢O) —
/ f(Bo, b0, 0i, &i) Li(x, 0, pi) COS 0;dw
Q

e This is expensive to compute in general, so the
standard local approach is approximation:

— Approximate incoming light as ambient (whole
hemisphere) + set of point light sources

— Approximate BRDF of surface as combination of diffuse
(matte) and specular (shiny) factors

= Py



Reflectance equation for NV point sources:
Lambertian surface material (Shirley 10.1.1)

e Call this the diffuse material reflectance m
and let radiance due to each light nbe s,

e Book uses c,for m_ ., ¢ for s,
e Then we have: *E

N '
Lo(X, 00, $0) = ) Maifysn COS bn |

\ n=1

With appropriate units, we can use this as the pixel brightness e GRS



Reflectance equation for a single point
source: Lambertian surface material

source is behind surface and
therefore doesn’t illuminate it i

(directly) C
e This corresponds to a negative ‘

cosine:cos8=n-1<0 l%??

e So adjust the formula for one
light:

igip = Max(0, (n - D)myggsn)

= Py



Reflectance equation for a point source:
Specular surface material

a) = y= b) =3~ @ S T
e Ch %

r 'fﬁ:
n :
AR A
®

e Specular lobe: The further away the viewing
direction v is from the reflection direction r,
the less light is visible

e The shinier (more specular) the material,
the more quickly the highlight diminishes




Effects of specular exponent value

IVERSITY ol
E[ﬁmwm



Reflectance equation for a point source:
Phong lighting equation (Shirley 10.2.1)

with the quantlty (r v)msh/ne N L
— The larger the angle, the smaller p v
r - v (both unit vectors)
— The Iarﬂer the exponent, the e s
faster the quantity gets small

(becauser-vis<1)
— Book uses e for v, p for m,,

e S0 we can make the foIIow(ing formula for the
specular intensity due to a single light source:

) e T shine
Zspec — maX(O, r- V) " mspecsn



Reflectance equation for a single source:
Calculating the reflection direction

Il .
| A r {ﬁ
v
qﬂ
—2(n-Dn
T I W

p (twice the projection of | onto n)
—1 — ) sy




Lighting a point

e Sum over all lights /for each color
channel (clamp overflow to [0, 1]):

Ctotal =— Z Camb(l) + Cdiﬁ(l) + Cspec(l)
[

e f-'}] T

Camb (l) — mamb ® S amb (l) componentwise vector product

car (1) = max(0,n - 1(1) )myp ® sqg (1)

Cspec(l) — maX(O, V- r(l))Shinemspgc ® Sgpec(l)
o Py



Lighting details

ight direction | = (Ix, ly, 12)
(computed from surface & light ] r &F
positions) vV

— View direction v = (vx, vy, vz) ?
(computed from surface and eye
positions) S -

— Surface properties & light colors
e Specular, diffuse, ambient

from Hill

e Lighting’s place in the pipeline
— Must do before perspective transformation (in world or
camera coordinates) because of nonlinear distortion of z



Compute lighting at each pixel?

with individual Iiht irectin, veing
directions, etc.
e But this is expensive...

° APproximation: Compute quantities at vertices
of pTimitive and linearly interpolate to interior
pixels

— Like DDA or midpoint line-drawing, idea is to just
increment some value(s) for each new pixel to save
per-pixel calculations

= Py



Linear Interpolation (aka lerp)

=Po - tPo T P4
=(1-tpy+tp; = lerp(p0, pl, t)
\Iike a “blend” of
p(7) 2 the two endpoints
P



Bilinear interpolation for




Shading methods: Notes

e Gouraud: Compute different C,, at each vertex of a
polygon, interpolate to interior pixels

— Different vertex colors because |, V, I' , and possibly N are
different at each vertex

e Phong: Interpolate normals from polygon vertices to
interior, recompute C,:, at each pixel

— Interpolation changes length of normals, so be sure to normalize
them to unit length before computing C

Depth information needed for Z-buffering is just one more
parameter in Gouraud-style vertex interpolation

= P)ELAARE



Flat Shading

— Light source direction is same for every point on
facet

e OpenGL: glshadeModel (GL_FLAT)

= Py



Gouraud Shading

— Poor handling of specularities because of interpolation
— Slower than flat shading

e OpenGL: glshadeModel (GL. SMOOTH)

= Py



OpenGL: Normals

e But how to handle
shared edges and
vertices?

— Average all normals at ur'
shared vertices for smooth
shading m
— Don't average where you ’.

want to preserve sharp
creases/folds (flat
shading)

From Red book

" "RSITY or
EIAWARE



Example: Vertex normal handling

Sharp edges maintained

(no averaging) Adjacent vertices averaged

= Py



Gouraud shading artefacts

Issues can typically be resolved with more detailed geometry

/ERSITY o
¥ WYEIAWARE



Phong Shading

pixel inside polygon
— Better handling of specularities
— Slower than Gouraud shading

e Not built into OpenGL

e On modern graphics cards, this would
be called a fragment or pixel shader (vs.
a vertex shader)

= Py



OpenGL lighting steps

2. Place lights in scene, set properties

3. Choose lighting model with glLightModel ()

GL_LIGHT_MODEL_AMBIENT
GL_LIGHT_MODEL_LOCAL_VIEWER
GL_LIGHT_MODEL_TWO_SIDE

4. Define material properties
5. Enable lighting and individual lights

= Py



OpenGL: Defining Lights

etc.)

— pname: Which characteristic
e Position

e Specular, diffuse, ambient color (these are the s’s from
earlier formulas)

e Spotlight direction, cutoff angle, etc.
e Distance attenuation

— param: Value(s) of pname

e Transformed by modelview matrix like
geometric primitives

= P)ELAARE



Lighting a point

e Sum over all lights /for each color
channel (clamp overflow to [0, 1]):

Ctotal =— Z Camb(l) + Cdiﬁ(l) + Cspec(l)
[

e f-'}] T

Ca,mb(l) = Myyp Q Samb(l)
cqiyr (1) = max(0,n - 1(1) )myyy @ sy (1)

Cspec(l) — maX(O, V- r(l))Shinemspgc ® Sgpec(l)
o Py



OpenGL lights: Example (from Red book)

GLfloat light position[] = { 1.0, 1.0, 1.0,(0.0|};

Means infinite distance away
= Directional light

glLightfv (GL_LIGHTO, GL AMBIENT, light ambient);
glLightfv (GL LIGHTO, GL DIFFUSE, light diffuse);

glLightfv (GL LIGHTO, GL SPECULAR, light specular);
glLightfv(GL LIGHTO, GL POSITION, light position);

glEnable (GL LIGHTING) ;
glEnable (GL LIGHTO) ;

= P)ELAARE



OpenGL: Material properties

— face: Which face(s) to apply properties to
(GL_FRONT, GL_BACK, Or GL_FRONT AND BACK)

— pname: Which characteristic (these are the m’s on
the “Lighting a point” slide)
e Ambient color
e Diffuse color
e Specular color
e Shininess

— param: Value(s) of pname



Lighting a point

e Sum over all lights /for each color
channel (clamp overflow to [0, 1]):

Ctotal =— Z Camb(l) + Cdiﬁ(l) + Cspec(l)
[

e f-'}] T

Ca,mb(l) = Myyp Q Samb(l)
cqiyr (1) = max(0,n - 1(1) )myyy @ sy (1)

Cspec(l) — maX(O, V- r(l))Shinemspgc ® Sgpec(l)
o Py



OpenGL materials: Example

oat mat use .1, 0.0, 1. . ;
GLfloat mat specular[] = 1.0, 1.0, 1.0, 1.0 };
GLfloat no_shininess[] = 0.0 };

GLfloat low shininess[] = { 5.0 };
GLfloat high shininess[] = { 100.0 };

glMaterialfv (GL FRONT, GL AMBIENT, no mat);
glMaterialfv (GL _FRONT, GL DIFFUSE, mat diffuse);
glMaterialfv (GL FRONT, GL SPECULAR, mat specular);
glMaterialfv (GL FRONT, GL SHININESS, low shininess);

glutSolidSphere (radius, slices, stacks);

See Robins’ tutor program lightmaterial

= P)ELAARE



