

Shading

Course web page:

http://goo.gl/EB3aA

April 5, 2012 Lecture 14

Outline

• Standard local model

– Point light sources

– BRDF = Ambient + diffuse + specular
components

• Shading implementations

– Gouraud shading

– Phong shading

• OpenGL API

Light sources

• Properties
– Intensity (total radiosity)

– Color (intensity / wavelength)

• Geometry
– Point: Shoots light in all

directions

– Spotlight: Angle-limited
point source

– Directional: Source distant
enough that light rays are
roughly parallel (e.g., like the
sun relative to earth)

– Area: Behaves like a
continuous configuration of
point sources inside, say, a
polygon

from Akenine-Moller & Haines

Some light source types

Light source types: Induced shading

Standard local model for graphics

• Final perceived brightness is a combination of
diffuse and specular reflectance, plus an
ambient term to approximate global lighting
effects

Ambient Diffuse

Specular Total

Reflectance equation: Total illumination

• For greater control of appearance, a different light radiance
is typically specified in OpenGL for each type of reflectance

• Actual light at a pixel is combination of three effects:

from Wikipedia

Reflectance equation: Ambient component
(Shirley 10.1.2)

• Light reflections, refractions off of other
objects typically mean that light is
coming from more directions than just
sources

• Model this with ambient light, which
guarantees that all scene objects get
some minimum illumination

Reflectance equation

• Radiance for a viewing direction given all incoming
light (also called rendering equation in Shirley 20.2):

• This is expensive to compute in general, so the

standard local approach is approximation:
– Approximate incoming light as ambient (whole

hemisphere) + set of point light sources
– Approximate BRDF of surface as combination of diffuse

(matte) and specular (shiny) factors

Reflectance equation for N point sources:
Lambertian surface material (Shirley 10.1.1)

• If the surface is Lambertian (diffuse), the BRDF is
constant regardless of the viewing direction

• Call this the diffuse material reflectance mdiff
and let radiance due to each light n be sn

• Book uses cr for mdiff , cl for sn

• Then we have:

With appropriate units, we can use this as the pixel brightness

Reflectance equation for a single point
source: Lambertian surface material

• If angle with light source is
greater than 90 degrees, light
source is behind surface and
therefore doesn’t illuminate it
(directly)

• This corresponds to a negative
cosine: cos θ = n l < 0

• So adjust the formula for one
light:

Reflectance equation for a point source:
Specular surface material

• Specular lobe: The further away the viewing
direction v is from the reflection direction r,
the less light is visible

• The shinier (more specular) the material,
the more quickly the highlight diminishes

Effects of specular exponent value

• So we can make the following formula for the
specular intensity due to a single light source:

Reflectance equation for a point source:
Phong lighting equation (Shirley 10.2.1)

• (This is different from Phong
shading later in lecture)

• Approximate these intuitions
with the quantity (r v)mshine
– The larger the angle, the smaller

r v (both unit vectors)
– The larger the exponent, the

faster the quantity gets small
(because r v is 1)

– Book uses e for v, p for mshine

Reflectance equation for a single source:
Calculating the reflection direction

• Can calculate r from n, l via:

(twice the projection of l onto n)

Lighting a point

• Let c = (r, g, b) be perceived
material color (called i on previous
slides), s(l) be color of light l

• Sum over all lights l for each color
channel (clamp overflow to [0, 1]):

from Hill

componentwise vector product

Lighting details

• What do we need to “light” a
piece of surface?
– Normal n = (nx, ny, nz)
– Light direction l = (lx, ly, lz)

(computed from surface & light
positions)

– View direction v = (vx, vy, vz)
(computed from surface and eye
positions)

– Surface properties & light colors
• Specular, diffuse, ambient

from Hill

• Lighting’s place in the pipeline
– Must do before perspective transformation (in world or

camera coordinates) because of nonlinear distortion of z

Compute lighting at each pixel?

• Most accurate approach: Compute component
illumination at each pixel (aka surface patch)
with individual light directions, viewing
directions, etc.

• But this is expensive...
• Approximation: Compute quantities at vertices

of primitive and linearly interpolate to interior
pixels
– Like DDA or midpoint line-drawing, idea is to just

increment some value(s) for each new pixel to save
per-pixel calculations

Linear Interpolation (aka lerp)

• Parametric definition of a line segment:

p(t) = p0 + t(p1 - p0), where t in [0, 1]

 = p0 - t p0 + t p1

 = (1 - t)p0 + t p1

from Akenine-Möller & Haines

like a “blend” of
the two endpoints

= lerp(p0, p1, t)

Bilinear interpolation for LIGHTING

m = lerp(mleft, mright, t)

mleft= lerp(m3, m4, tleft)
mright= lerp(m1, m2, tright)

Shading methods: Notes

• Flat: Compute ctotal at one vertex per polygon, use
same value for every pixel in polygon

– Infinite viewpoint v/light l: Same value for all vertices in scene

• Gouraud: Compute different ctotal at each vertex of a
polygon, interpolate to interior pixels

– Different vertex colors because l, v, r , and possibly n are
different at each vertex

• Phong: Interpolate normals from polygon vertices to
interior, recompute ctotal at each pixel
– Interpolation changes length of normals, so be sure to normalize

them to unit length before computing ctotal

Depth information needed for z-buffering is just one more

parameter in Gouraud-style vertex interpolation

Flat Shading

• Normal same for all polygon vertices so same
color used for every pixel in polygon

• Good approximation for directional lights
– Light source direction is same for every point on

facet
• OpenGL: glShadeModel(GL_FLAT)

Gouraud Shading

• Colors computed at polygon vertices and linearly
interpolated (like Z-buffer algorithm)
– Poor handling of specularities because of interpolation

– Slower than flat shading

• OpenGL: glShadeModel(GL_SMOOTH)

OpenGL: Normals

• Can compute normals of
polygons using cross
product formula

• But how to handle
shared edges and
vertices?
– Average all normals at

shared vertices for smooth
shading

– Don’t average where you
want to preserve sharp
creases/folds (flat
shading)

From Red book

Example: Vertex normal handling

Sharp edges maintained
(no averaging) Adjacent vertices averaged

Gouraud shading artefacts

Issues can typically be resolved with more detailed geometry

Phong Shading

• Normal vectors interpolated between
vertices, but color computed at each
pixel inside polygon

– Better handling of specularities

– Slower than Gouraud shading

• Not built into OpenGL

• On modern graphics cards, this would
be called a fragment or pixel shader (vs.
a vertex shader)

OpenGL lighting steps

1. Attach normals to vertices with glNormal()

2. Place lights in scene, set properties

3. Choose lighting model with glLightModel()
• GL_LIGHT_MODEL_AMBIENT

• GL_LIGHT_MODEL_LOCAL_VIEWER

• GL_LIGHT_MODEL_TWO_SIDE

4. Define material properties

5. Enable lighting and individual lights

OpenGL: Defining Lights

• glLight(light, pname, param)

– light: Which light (GL_LIGHT0, GL_LIGHT1,
etc.)

– pname: Which characteristic
• Position
• Specular, diffuse, ambient color (these are the s’s from

earlier formulas)
• Spotlight direction, cutoff angle, etc.
• Distance attenuation

– param: Value(s) of pname

• Transformed by modelview matrix like
geometric primitives

Lighting a point

• Let c = (r, g, b) be perceived
material color (called i on previous
slides), s(l) be color of light l

• Sum over all lights l for each color
channel (clamp overflow to [0, 1]):

from Hill

OpenGL lights: Example (from Red book)

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };

GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);

glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

Means infinite distance away
= Directional light

OpenGL: Material properties

• Applies to subsequent vertices:
glMaterial(face, pname, param)

– face: Which face(s) to apply properties to
(GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK)

– pname: Which characteristic (these are the m’s on

the “Lighting a point” slide)
• Ambient color

• Diffuse color

• Specular color

• Shininess

– param: Value(s) of pname

Lighting a point

• Let c = (r, g, b) be perceived
material color (called i on previous
slides), s(l) be color of light l

• Sum over all lights l for each color
channel (clamp overflow to [0, 1]):

from Hill

OpenGL materials: Example

GLfloat no_mat[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat mat_ambient[] = { 0.7, 0.7, 0.7, 1.0 };

GLfloat mat_diffuse[] = { 0.1, 0.0, 1.0, 1.0 };

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat no_shininess[] = { 0.0 };

GLfloat low_shininess[] = { 5.0 };

GLfloat high_shininess[] = { 100.0 };

glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);

glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

glutSolidSphere(radius, slices, stacks);

See Robins’ tutor program lightmaterial

