

Ray Tracing

Course web page:

http://goo.gl/EB3aA

April 10, 2012  Lecture 15

Outline

• Global illumination with ray casting &
ray tracing

• Ray casting

– Intersections

– Shadow rays

Illumination models

• Interaction between light sources and objects in
scene that results in perception of intensity and
color at eye

• Local vs. global models
– Local illumination: Perception of a particular primitive

only depends on light sources directly affecting that
one primitive

• Geometry

• Material properties

– Global illumination: Also take into account indirect
effects on light of other objects in the scene

• Shadows cast

• Light reflected/refracted

“Forward” Ray Tracing

• Proper global illumination
means simulation of physics
of light
– Rays are emitted from light

source, bounce off objects in
the scene, and some eventually
hit our eye, forming an image

• Problem: Not many rays
make it to the image
– Waste of computation for those

that don’t
Angel

“Backward” Ray Tracing

• Idea: Only consider those rays that do
create the image—where did they come
from?

Angel

Backward Ray “Following”: Types

• Ray casting: Compute
illumination at first
intersected surface
point only
– Takes care of hidden

surface elimination

• Ray tracing:
Recursively spawn rays
at hit points to simulate
reflection, refraction,
etc.

Angel

Lighting a point

• Let c = (r, g, b) be perceived
material color (called i on previous
slides), s(l) be color of light l

• Sum over all lights l for each color
channel (clamp overflow to [0, 1]):

from Hill

One of the earliest ray-traced scenes

from T. Whitted’s paper

State of the art in 1980
(B & W reproduction of a color image)

Ray Tracing: Example

Ray Tracing: Example from “Cars”

http://www.sci.utah.edu/~wald/RT06/papers/raytracing06per.pdf

Ray Casting

• Simulation of irradiance (incoming light ray)
at each pixel

• Send a ray from the focal point through each
pixel and out into the scene and see if it
intersects an object
– “Background” color if nothing hit

• Local shading model is applied to first point
hit
– Easy to apply exact rather than faceted shading

model to objects for which we have an analytic
description (spheres, cones, cylinders, etc.)

Ray Casting: Details

• Must compute 3-D ray into
scene for each 2-D image
pixel (Chap. 4.3 of Shirley)

• Compute 3-D position of
ray’s intersection with nearest object and normal
at that point

• Apply shading model such as Phong to get color
at that point and fill in pixel with it

from Hill

from Woo et al.

Does Ray Intersect any Scene Primitives?

• Test each primitive in scene for intersection
individually

• Different methods for different kinds of primitives
– Polygon
– Sphere
– Cylinder, torus
– Etc.

• Make sure intersection point is in front of eye and
nearest one

from Hill

Ray-Sphere Intersection I

• Combine implicit definition of sphere

with ray equation

(where d is a unit vector) to get:

Ray-Sphere Intersection II

• Substitute and use identity

 to solve for t, resulting in a quadratic
equation with roots given by:

• Notes
– Real solutions mean there actually are 1 or 2

intersections

– Negative solutions are behind eye

Ray-Polygon Intersection

• General polygons
– Express point p on a ray as some distance t along direction d

from origin o: p = o + td
– Use plane equation n  x + d = 0, substitute o + td for x, and

solve for t
– Only positive t’s mean the intersection is in front of the eye
– Then plug t back into p = o + td to get p
– Is the 2-D location of p on the plane inside the 2-D polygon?

• For convex polys, Cohen-Sutherland-style outcode test will work

• Triangles
– Direct barycentric coordinates expression (see Shirley, Chaps.

2.7 and 4.4)

– Set this equal to parametric form of ray o + td and solve for

intersection point (t, u, v)
– Only inside triangle if u, v, and 1 – u – v are between 0 and 1

Shadow Rays

• For point being locally shaded, spawn
new ray in each light direction and
check for intersection to make sure light
is “visible”

Shadow Rays

• For point p being locally shaded, only add diffuse
& specular components for light l if light is not
occluded (i.e., blocked)

• Test for occlusion of l for p:
– Spawn shadow ray for l with origin p, direction l(l)
– Check whether shadow ray

intersects any scene object
– Intersection only “counts” if:

• More details in Shirley, Chap. 4.7

from Hill

Ray-Cast Scene with and without Shadows

from Hill

Ray Casting Example: No shadows

Light 1 only Light 2 only

Lights 1 and 2

Ray Casting Examples: Shadows

Light 1 only Light 2 only

Lights 1 and 2

Ambient Occlusion

• Extension of shadow ray idea—not every point should get full
ambient illumination

• Idea: Cast multiple random rays (a “distribution of rays”) from
each rendered surface point to estimate percent of sky
hemisphere that is visible

– Limit length of rays so distant objects have no effect

– Cosine weighting/distribution for foreshortening

• Developers of this idea won a technical Oscar in 2010

Ambient Occlusion: Example

Ambient Occlusion: Example

http://www.gavinharrison.co.uk/renderman04.php

