

Ray Tracing

Course web page:

http://goo.gl/EB3aA

April 12, 2012  Lecture 16

Outline

• Recursive rays

– Reflection

– Refraction

• Distributed/distribution ray tracing for
anti-aliasing

• HW #3 outline

Ray “tracing” for more realism

• Ray casting does not
account for two important
visual phenomena:

– Mirror-like surfaces should
reflect other objects in
scene

– Transparent surfaces
should refract scene
objects behind them

co
u
rt

e
sy

 o
f

J.
 A

rv
o

Refraction

Glossy reflection

Ray Tracing
• Model: Perceived color at point p is an additive combination of

local illumination (e.g., Phong), reflection, and refraction
effects
– Weights on last two terms are additional material properties

• Compute reflection, refraction contributions by tracing
respective rays back from p to surfaces they came from and
evaluating local illumination at those locations

• Apply operation recursively to some maximum depth to get:
– Reflections of reflections of ...
– Refractions of refractions of ...
– And of course mixtures of the two

from Hill

Ray Tracing: Recursion

from Hill

Reflections

incident ray v reflected ray r

Review: Reflectance direction for Phong model

• We calculated r from normal n, light
direction l via:

(twice the projection of l onto n)

Ray Tracing Reflection Formula

• The formula used for Phong
illumination is not what we want here
because our incident ray v is pointing
in toward the surface, whereas the
light direction l was pointed away
from the surface

• So just negate the formula to get:

Example: Reflections at depth = 0

Example: Reflections at depth = 1

Example: Reflections at depth = 2

Example: Reflections at depth = 3

• Definition: Bending of light ray as it crosses interface
between media (e.g., air  glass or vice versa)

• Index of refraction (IOR) n for a medium: Ratio of
speed of light in vacuum to that in medium
(wavelength-dependent  prisms)
– By definition, n  1
– Examples: nair (1.00) < nwater (1.33) < nglass (1.52)

θ1: Angle of incidence

θ2: Angle of refraction

courtesy of
Wolfram

Refraction

Snell’s Law

• The relationship between the angle of
incidence and the angle of refraction is
given by:

courtesy of
Wolfram

Snell’s Law: Implications
• Since θ ≈ sin θ over the range [0, /2] and the

angle of refraction is given by

 we can infer the following from their IORs:
n1 < n2  θ2 < θ1 and n1 > n2  θ2 > θ1

courtesy of
Wolfram

So n1 < n2
in this image
(like air to water)

divergence

convergence

Refraction: Critical Angle

• Snell’s law says that n1 > n2
 θ2 > θ1 (e.g., water to air), but biggest angle θ2 that
exiting ray can be bent is /2 (along tangent to the
surface)

• Thus, no light escapes—all light is reflected internally—
for θ1 greater than or equal to the critical angle of:

courtesy of G. Kessler

n1

n2
θ2

θ1
θcritical

Critical Angle: Example

• Going from water (IOR = 1.33) to air
(IOR = 1.00), we have:

courtesy of J. Alward

θcritical

Computing the Transmission Direction t

v

n

n1

n2

adapted from Hill

Total internal reflection happens when the term in the square
root above isn’t positive, which is when

m

Example: Refraction

Ray Tracing Example (with texture mapping)

courtesy of J. Lee

Basic Ray Tracing: Notes

• Global illumination effects simulated by basic
algorithm are shadows, purely specular
reflection/transmission

• Some outstanding issues
– Aliasing, aka jaggies

– Shadows have sharp edges, which is unrealistic

– No diffuse reflection from other objects

• Intersection calculations are expensive, and
even more so for more complex objects
– Not currently suitable for real-time (i.e., games)

Distributed (aka “distribution”) Ray
Tracing (DRT)

• Basic idea: Use multiple eye rays for each
pixel rendered or multiple recursive rays at
intersections

• Application #1: Improving image quality via
anti-aliasing

– Supersampling: Shoot multiple nearby eye rays
per pixel and combine colors

– Uniform vs. adaptive: Constant number of rays or
change in areas where image is changing more
quickly

Aliasing/jaggies

Anti-aliased image

Supersampling

• Rasterize at higher resolution
– Regular grid pattern around each

“normal” image pixel

– Irregular jittered sampling pattern
reduces artifacts

• Combine multiple samples into
one pixel via weighted average
– “Box” filter: All samples associated

with a pixel have equal weight (i.e.,
directly take their average)

– Gaussian/cone filter: Sample weights
inversely proportional to distance
from associated pixel

from Hill

Regular
supersampling
with 2x
frequency

Jittered
supersampling

Adaptive Supersampling (Whitted’s method)

• Shoot rays through 4 pixel corners and
collect colors

• Provisional color for entire pixel is
average of corner contributions
– If you stop here, the only overhead vs.

center-of-pixel ray-tracing is another row,
column of rays

• If any corner’s color is too different,
subdivide pixel into quadrants and
recurse on quadrants

• Details
– Subdivide if any corner is more than 25%

different from average (try experimenting
with different thresholds here)

– Maximum depth of 2 subdivisions sufficient

from Hill

Adaptive Supersampling: Details

OK Must subdivide

HW #3

• Basic requirements
– Complete shade_ray_diffuse()
– Complete shade_ray_local(), which adds specular and

shadow effects
– Complete reflection component of shade_ray_recursive()
– Add sphere intersection testing in intersect_ray_sphere()
– Scene complexity and creativity

• Grad student requirements
– Add support for refraction in shade_ray_recursive()
– Add some version of adaptive supersampling, glossy

reflection, ambient occlusion, or another advanced
distributed-ray technique

– Implement bounding spheres around objects to speed
intersection calculations

