Advanced Ray Tracing Techniques

Course web page: http://goo.gl/EB3aA

April 17, 2012 ***** Lecture 17

Outline

- Distributed/distribution ray tracing & bounding volumes
 - Anti-aliasing
 - Soft shadows, glossy reflections, ambient occlusion
- Light paths & caustics
- HW #3—go over code structure

Basic Ray Tracing: Notes

- Global illumination effects simulated by basic algorithm are shadows, purely specular reflection/transmission
- Some outstanding issues
 - Aliasing, aka jaggies
 - Shadows have sharp edges, which is unrealistic
 - No diffuse reflection from other objects
- Intersection calculations are expensive, and even more so for more complex objects
 - Not currently suitable for real-time (i.e., games)

DRT: Soft Shadows

- For point light sources, sending a single shadow ray toward each is reasonable
 - But this gives hard-edged shadows
- Simulating soft shadows
 - Model each light source as sphere
 - Send multiple jittered shadow rays toward a light sphere; use fraction that reach it to attenuate color
 - Similar to ambient occlusion, but using list of light sources instead of single hemisphere

Soft Shadows: Example

1 shadow ray

10 shadow rays

50 shadow rays

DRT: Glossy Reflections

- Analog of hard shadows are "sharp reflections" every reflective surface acts like a perfect mirror
- To get glossy or blurry reflections, send out multiple jittered reflection rays and average their colors

Why is the reflection sharper at the top?

Ray Tracing: Recursion

Other DRT Effects

• Depth of field

Motion blur

Bounding Volumes

- Idea: enclose complex objects (i.e., .obj models) in simpler ones (i.e., spheres, boxes) and test simple intersection before complex
- Want bounds as tight as possible

Can Ray Tracing Do This?

courtesy of H. Wann Jensen

Light Paths

- Consider the path that a light ray might take through a scene between the light source L and the eye E
- It may interact with multiple diffuse (D) and specular (S) objects along the way

from Sillion & Puech

- We can describe this series of interactions with the regular expression L (D | S)* E
 - (If a surface is a mix of **D** and **S**, the combination is additive so it is still OK to treat in this manner)

Light Paths: Examples

- Direct visualization of the light: LE
- Local illumination: LDE, LSE
- Ray tracing: LS*E, LDS*E

Ray tracing light paths

General light paths

Caustics

- Definition: (Concentrated) specular reflection/refraction onto a diffuse surface
 - In simplest form, follow an LSDE path
- Standard ray tracing cannot handle caustics only paths described by LDS*E

courtesy of H. Wann Jensen

More about caustics

- What is the problem with LS+DE paths for ray tracing?
- Review: Radiance for a viewing direction given all incoming light:

$$L_{o}(\mathbf{x}, \theta_{o}, \phi_{o}) = L_{e}(\mathbf{x}, \theta_{o}, \phi_{o}) + \int_{\Omega} f(\theta_{o}, \phi_{o}, \theta_{i}, \phi_{i}) L_{i}(\mathbf{x}, \theta_{i}, \phi_{i}) \cos \theta_{i} d\omega$$

reflected light

Review: BRDFs

- **Bidirectional Reflectance Distribution Function** (BRDF): Ratio of outgoing radiance in one direction to incident irradiance from another
- Can view BRDF as **probability** that incoming photon will leave in a particular direction (given its incoming direction)

The Problem with Diffuse Surfaces

- For specular surfaces, we "know" where the photon will go (= "came from", if going backwards), whereas for diffuse surfaces there's much more uncertainty
 - If we're tracing a ray from the eye and we hit a diffuse surface, this uncertainty means that the source of the photon could be anywhere in the hemisphere
 - Conventional ray tracing just looks for lights at this point, but for LS⁺DE paths we need to look for other specular surfaces
 - How to find them?

HW #3 (due next Thursday, Apr. 26)

- Basic requirements
 - Complete shade_ray_diffuse()
 - Complete shade_ray_local(), which adds specular and shadow effects
 - Complete **reflection** component of shade_ray_recursive()
 - Add sphere intersection testing in intersect_ray_sphere()
 - Scene complexity and creativity
- Grad student requirements
 - Add support for **refraction** in shade_ray_recursive()
 - Add some version of adaptive supersampling, glossy reflection, ambient occlusion, or another advanced distributed-ray technique
 - Implement **bounding spheres** around objects to speed intersection calculations

