

Global Illumination

Course web page:

http://goo.gl/EB3aA

April 19, 2012  Lecture 18

Outline

• HW #3

• Caustics

• Bidirectional ray tracing

• Photon mapping

HW #3 (due next Thursday, Apr. 26)

• Basic requirements

– Complete shade_ray_diffuse()

– Complete shade_ray_local(), which adds specular and
shadow effects

– Complete reflection component of shade_ray_recursive()

– Add sphere intersection testing in intersect_ray_sphere()

– Scene complexity and creativity

• Grad student requirements

– Add support for refraction in shade_ray_recursive()

– Add some version of adaptive supersampling, glossy
reflection, ambient occlusion, or another advanced
distributed-ray technique

– Implement bounding volumes around objects to speed
intersection calculations

Can Ray Tracing Do This?

courtesy of H. Wann Jensen

caustic

Caustics

• Definition: (Concentrated) specular
reflection/refraction onto a diffuse surface
– In simplest form, follow an LSDE path

• Standard ray tracing cannot handle caustics—
only paths described by LDS*E

courtesy of H. Wann Jensen from Sillion & Puech

More about caustics

• What is the problem with LS+DE paths
for ray tracing?

• Review: Radiance for a viewing
direction given all incoming light:

emitted light

reflected light

Review: BRDFs

• Bidirectional Reflectance Distribution
Function (BRDF): Ratio of outgoing radiance
in one direction to incident irradiance from
another

• Can view BRDF as probability that incoming
photon will leave in a particular direction
(given its incoming direction)

from Sillion & Puech

The Problem with Diffuse Surfaces

• For specular surfaces, when ray tracing we know where
the photon “came from”, whereas for diffuse surfaces
there’s much more uncertainty
– If we’re tracing a ray from the eye and we hit a diffuse surface,

this uncertainty means that the source of the photon could be
anywhere in the hemisphere

– Conventional ray tracing just looks for lights at this point, but for
LS+DE paths we need to look for other specular surfaces

• How to find them?

from P. Heckbert from Sillion & Puech

Bidirectional Ray Tracing (P. Heckbert, 1990)

• Idea: Trace forward light rays into scene as well as
backward eye rays

• At diffuse surfaces, light rays additively “deposit”
photons in radiosity textures, or “rexes”, where they
are accessed up by eye rays
– Summation approximates integral term in radiance computation
– Light rays carry information on specular surface locations—they

have no uncertainty

from P. Heckbert

Bidirectional Ray Tracing: Notes

• This kind of bidirectional
ray tracing simulates
LS*DS*E paths

• Photons deposited in
rexes are sparse, so they
must be interpolated
– Use density estimation
– Still have noise issues

• Storage of illumination only on surfaces
means that we ignore fog and other volume-
based scattering/absorption (aka
“participating media”)

from P. Heckbert

Bidirectional Ray Tracing: Results

from P. Heckbert

Lens, mirrored sphere, and diffuse surface with caustic
of focused light

“Backwards” Ray Tracing (1986)

courtesy of J. Arvo

A technique similar to Heckbert’s was used to form this image

What’s Still Missing?

An LD*E
scene

courtesy of Cornell

Color Bleeding

• Transfer of color
between diffuse
surfaces via reflection

courtesy of K. Fatahalian & J. Hui

White light only, so red and blue on white wall are from bleeding

Photon Mapping (H. Jensen, 1996)

• Two-pass algorithm somewhat like bidirectional
ray tracing, but photons stored differently
• Related to particle tracing approach in Shirley 24.1

• 1st pass: Build photon map (analog of rexes)
– Shoot random rays from light(s) into scene

– Each photon carries fraction of light’s power

– Follow specular bounces, but store photons in map
at each diffuse surface hit (or scattering event)

• 2nd pass: Render scene
– Modified ray tracing: follow eye rays into scene

– Use photons near each intersection to compute light

Photon Mapping: 1st pass

• Probabilistically decide on photon reflection,
transmission, or absorption based on material
properties of object hit
– Specular surface: Send new photon (with scaled-down

power) in reflection/refraction direction just like ray tracing

– Diffuse surface: If at least one bounce, store photon in
photon map, send new photon in random direction
(usually cosine distribution, see Shirley 14.4.1)

– So do NOT store photon at specular interactions

– Arbitrary BRDF: Use BRDF as probability distribution on
new photon’s direction

• Photon map is kd-tree
– Decoupling from scene geometry allows fewer photons

than scene objects/triangles (no texture maps, no meshes)

kd-trees

• Related to BSP trees: each point parametrizes axis-
aligned splitting plane; rotate which axis is split

• But balance is important to get O(log N) efficiency for
nearest-neighbor queries

• Example kd tree for k = 2 and N = 6:

Photon Map: Example

Photon Mapping: 2nd pass

• For each eye ray intersection, estimate irradiance as function of nearby
photons

• Each photon stores position, power, incident direction—can treat like mini-light source

• Use filtering (cone or Gaussian) to weight nearer photons more

• Can use discs instead of spheres to only get photons from same planar surface

• Irradiance estimates are combined with standard local illumination
calculations in final gathering—just like ray tracing adds
reflection/refraction components to local color

• As usual, more accurate with more photons  Use multiple maps for
different phenomena

Reflectance equation: Total illumination

• For greater control of appearance, a different light radiance
is typically specified in OpenGL for each type of reflectance

• Actual light at a pixel is combination of three effects:

from Wikipedia

Lighting Components, Reconsidered

• Break rendering equation into parts:

L = Ldirect + Lspecular + Lindirect + Lcaustic

• Can get Ldirect and Lspecular using ray-
casting, ray-tracing respectively

• Lindirect is main reason we’re looking at
photon mapping—it’s our LD*E paths

• Lcaustic from special “caustic” photon map

Photon Mapping: Diffuse Lighting

courtesy of S. Agarwal

Direct Lighting only

courtesy of S. Agarwal

Indirect Illumination only

courtesy of S. Agarwal

Multiple Photon Maps

• Global map: Shoot photons everywhere for
diffuse, indirect illumination

• Caustic map: Shoot photons only at specular
objects (“aimed” sort of like shadow rays)

• Volume map: Photon interactions with
participating media such as fog, smoke

Caustic map Global map

Raytraced scene (courtesy of P. Christensen)

Photon map of scene (n=500,000)
[notice nothing stored at specular surfaces]

Irradiance estimates based on nearby photons

Previous image combined w/ texture maps
& material colors

Scene after final gathering

Raytraced scene (courtesy of P. Christensen)

Go to interactive photon mapping demo

Ray Tracing

Photon Mapping

Visualization of Radiance Estimates

200,000 photons in global map;
100 nearest photons in each

radiance estimate

500 photons per
radiance estimate

(note incorrect bleeding
near edges/corners)

Example: Water caustics

Example: Smoke (volume map)

