

Texturing

Course web page:

http://goo.gl/EB3aA

April 24, 2012  Lecture 19

Outline

• Bump, displacement mapping

• Texturing pipeline

What is Texture Mapping?

• Spatially-varying modification of surface
appearance at the pixel level

• Characteristics
– Color

– Shininess

– Transparency

– Bumpiness

– Etc. from Hill

Texture mapping: Examples

Examples of modulating color, bumpiness, shininess, transparency
with identical sphere geometry

Why use texture mapping?

• More detail without the cost of more
complicated geometry
– Modeling

– Display

• Layer multiple texture maps  Can modulate
color + other surface characteristics

• “Lookup table” for precomputed quantities
– Lighting

– Shadows

– Etc.

Texture mapping application: Lightmaps

• Can’t compute global illumination on

the fly for interactive applications, but

can precompute and turn into a texture

maps

courtesy of K. Miller

+ =

Texture mapping application: Lightmaps

Tenebrae Quake screenshot

Bump Mapping

• So far we’ve been thinking of textures
modulating color and transparency only
– Billboards, decals, lightmaps, etc.

• But any other per-pixel properties are fair
game...

• Pixel normals usually smoothly varying
– Computed at vertices for Gouraud shading; color

interpolated
– Interpolated from vertices for Phong shading

• Textures allow setting per-pixel normal with a
bump map

Bump mapping: Why?

• Can get a lot more surface detail
without expense of more object vertices
to light, transform

courtesy of Nvidia

Bump Mapping: How?

• Idea: Perturb pixel normals n(u, v)
derived from object geometry to get
additional detail for shading

• Compute lighting per pixel (like Phong)

from Hill

Bump mapping: Representations

• 3-D vector m(u, v)
added directly to
normal n

• Or: 2-D vector of
coefficients (bu, bv)
that scale u, v vectors
tangent to surface

 from Akenine-Moller & Haines

Bump representation: Height map f(u, v)

• Store just scalar “altitude” at each pixel

• Get bu, bv from partial derivatives:

– Approximate with finite differencing

from Akenine-Moller
 & Haines

Example: Converting height maps to
normal displacements

Z coordinate set to some constant scale factor; (X, Y) normalized to [0, 1] range.
Right image is mostly blue because “straight up” vector is (0.5, 0.5, 1)

courtesy of Nvidia

Bump mapping: Example

from MIT CG lecture notes

+ =

Bump mapping: Example

courtesy of A. Awadallah

Height map Bump texture applied to teapot

Procedural Bump Mapping

courtesy of Nvidia

Bump mapping: Issues

• Bumps don’t cast shadows

• Geometry doesn’t change, so silhouette
of object is unaffected

• Textures can be used to
modify underlying
geometry with
displacement maps

– Generally in direction
of surface normal

courtesy of Nvidia

Displacement Mapping

co
u
rt

e
sy

 o
f

sp
o
t3

d
.c

o
m

Bump mapping Displacement mapping

Displacement Mapping – Height Maps

courtesy of artofillusion.org -- Julian MacDonald

Displacement Mapping the Sphere

courtesy of geeks3d.com

Texture mapping: Steps

• Creation: Where does the texture
image come from?

• Geometry: Transformation from 3-D
shape locations to 2-D texture image
coordinates

• Rasterization: What to draw at each
pixel

– E.g., bilinear interpolation vs. nearest-
neighbor

Texturing: Creation

• Reproductions

– Photographs

– Handpainted

• Directly-computed functions

– E.g., lightmaps, visibility maps

• Procedurally-built

– Synthesize with randomness,
pattern-generating rules, etc.

– More about this in next lecture
courtesy of H. Elias

Texturing Pipeline (Geometry + Rasterization)

1. Compute object space location (x, y, z) from
screen space location (i, j)

2. Use projector function to obtain object surface
coordinates (u, v) (3-D -> 2-D projection)

3. Corresponder function to find texel
coordinates (s, t) (2-D -> 2-D transformation)

• Scale, shift, wrap like
viewport transform in
geometry pipeline

4. Filter texel at (s, t)

5. Modify pixel (i, j)

list adapted from Akenine-Moller & Haines

courtesy of R. Wolfe

Rasterization

Projector Functions

• Want way to get from 3-D point to 2-D
surface coordinates as an intermediate step

• Idea: Project complex object onto simple
object’s surface with parallel or perspective
projection (focal point inside object)
– Plane
– Cylinder
– Sphere
– Cube
– Mesh: piecewise

planar (how OpenGL
does it)

Planar projector

courtesy of R. Wolfe

Planar projector

Orthographic projection onto
XY plane: u = x, v = y

...onto YZ plane ...onto XZ plane

courtesy of
R. Wolfe

Cylindrical projector

• Convert rectangular coordinates (x, y, z) to
cylindrical (r, h, θ), use only (h, θ) to index
texture image

courtesy of
R. Wolfe

Spherical projector

• Convert rectangular coordinates (x, y, z)
to spherical (r, θ, Φ), use only (θ, Φ)

courtesy of R. Wolfe

Parametric Surfaces

• If we have a surface patch already parametrized by
some natural (u, v) such that x = f(u, v),
y = g(u, v), z = h(u, v), we can use parametric
coordinates u, v without a projector

courtesy of R. Wolfe

Texture coordinates at vertices

• Polygons can be treated as parametric patches
by assigning texture coordinates to vertices

courtesy of
R. Wolfe

OpenGL Texturing: Enabling and Drawing

• To draw textured shape, texturing must first be enabled:
glEnable(GL_TEXTURE_2D)

• Load current texture image with glTexImage2D()
– Width, height must be powers of 2 (plus 2 if border is used)
– Only one texture current; faster to change textures by preloading

all and switching with glBindTexture() rather than reloading
each time (this is what Sprite.cpp does)

• Assign texture coordinates (s, t) to vertices with
glTexCoord()

– Similar to glColor() command—sets a property for subsequent
vertices that holds until it is changed

– See Robins’ texture tutor

