

Texturing

Course web page:

http://goo.gl/EB3aA

April 26, 2012  Lecture 20

Outline

• Perspective-correct texture coordinate
interpolation

• Environment mapping

• Shadow mapping

• Magnification/minification

Texture Rasterization

• Okay…we’ve got texture coordinates for the
polygon vertices. What are (s, t) for the pixels
inside the polygon?

• Use Gouraud-style linear interpolation of texture
coordinates, right?
– First along polygon edges between vertices
– Then along scanlines between left and right sides

from Hill

Linear texture coordinate interpolation

• But this doesn’t work!

courtesy of H. Pfister

Why not?

• Equally-spaced pixels do not project to equally-spaced
texels under perspective projection
– No problem with 2-D affine transforms (rotation, scaling, shear,

etc.)

– But different depths change things due to foreshortening

from Hill

courtesy of
H. Pfister

Perspective-Correct Texture Coordinate
Interpolation

• Compute at each vertex after perspective
transformation
– “Numerators” s/w, t/w
– “Denominator” 1/w

• Linearly interpolate s/w, t/w, and 1/w across
triangle

• At each pixel, perform perspective division of
interpolated texture coordinates (s/w, t/w)
by interpolated 1/w (i.e., numerator over
denominator) to get (s, t)

Perspective-Correct Texture Coordinate
Interpolation

Perspective-Correct Interpolation: Notes

• But we didn’t do this for the colors in
Gouraud shading…
– Actually, we should have, but the error is

not as obvious

• Alternative: Use regular linear
interpolation with small enough
polygons that effect is not noticeable

• Linear interpolation for Z-buffering is
correct

Projecting in non-standard directions

• Texture projector function doesn’t have to project ray
from object center through position (x, y, z)—can use
any attribute of that position. For example:
– Ray comes from another location

– Ray is surface normal n at (x, y, z)

– Ray is reflection-from-eye vector r at (x, y, z)
– Etc.

co
u
rt

e
sy

 o
f

R
.
W

o
lf
e

Projecting in non-standard directions

• This can lead to interesting or informative
effects

courtesy of R. Wolfe

Different ray directions for a spherical projector

Environment/Reflection Mapping

• Problem: To render pixel on mirrored surface correctly, we
need to follow reflection of eye vector back to first
intersection with another surface and get its color

• This is an expensive procedure with ray tracing

• Idea: Approximate with texture mapping

from Angel

Environment mapping: Details

• Key idea: Render 360 degree view of environment
from center of object with sphere or box as
intermediate surface

• Intersection of eye reflection vector with intermediate
surface provides texture coordinates for
reflection/environment mapping

courtesy of R. Wolfe

Making environment textures: Cube

• Cube map
straightforward to
make: Render/
photograph six rotated
views of environment

– 4 side views at compass
points

– 1 straight-up view, 1
straight-down view

Making environment textures: Sphere

• Most often constructed with two
photographs of mirrored sphere taken
90 degrees apart

courtesy of P. Debevec

Environment mapping: Example

courtesy of G. Miller

Environment mapping: Example

From “Terminator II”

Environment mapping example: Same
scene, different lighting

courtesy of P. Debevec

Environment mapping: Issues
• Only physically correct under assumptions that

object shape is convex and radiance comes from
infinite distance
– Object concavities mean self-reflections, which

won’t show up

– Other objects won’t be reflected

– Parallel reflection vectors access same environment
texel, which is only a good approximation when
environment objects are very far from object

v

from Angel

Environment Bump Mapping

• Idea: Bump map perturbs eye reflection vector

from Akenine-Moller
 & Haines

Shadow Maps

• Idea: If we render scene from point of
view of light source, all visible surfaces
are lit and hidden surfaces are in
shadow
– “Camera” parameters here determine

spotlight characteristics

• When rasterizing scene from eye view,
transform each pixel to get 3-D position
with respect to the light
– Project pixel to shadow buffer

coordinates and compare to z-buffer
depth there to see if it is visible

• Shadow edges have aliasing depending
on shadow map resolution and scene
geometry

Magnification and minification

• Magnification: Single screen pixel maps to
area less than or equal to one texel

• Minification: Single screen pixel area maps
to area greater than one texel
– If texel area covered is much greater than 4, even

bilinear filtering isn’t so great

Magnification Minification

from Angel

courtesy of H. Pfister

Filtering for minification

• Aliasing problem much like line rasterization

– Pixel maps to quadrilateral (pre-image) in texel space

image courtesy of D. Cohen-Or

Supersampling: Using more than BLI’s 4 texels

• Rasterize at higher resolution
– Regular grid pattern around each

“normal” image pixel

– Irregular jittered sampling pattern
reduces artifacts

• Combine multiple samples into
one pixel via weighted average
– “Box” filter: All samples associated

with a pixel have equal weight (i.e.,
directly take their average)

– Gaussian/cone filter: Sample weights
inversely proportional to distance
from associated pixel

from Hill

Regular
supersampling
with 2x
frequency

Jittered
supersampling

Mipmaps

• Filtering for minification is expensive, and different
areas must be averaged depending on the amount of
minification

• Idea:
– Prefilter entire texture image at different resolutions
– For each screen pixel, pick texture in mipmap at level of

detail (LOD) that minimizes minification (i.e., pre-image
area closest to 1)

– Do nearest or linear filtering in appropriate LOD texture image

from Woo, et al.

Create Texture Object

• From where?

– Create programmatically (aka “procedurally” --
see Red Book Chap. 9 checker.c)

– Load image from file (e.g., load_ppm() in Sprite.cpp)

• Name it

– // Get unused “names” – not mandatory
glGenTextures(GLsizei n, GLuint *textures)

– // Create texture object w/ default params (or switch to existing one)
glBindTexture(GLenum target, GLuint texture)

• // Store data in bound texture object (no ref because it’s global)

 glTexImage2D(GLenum target, GLint level,

 GLint internalFormat,
 GLsizei width, GLsizei height,
 GLint border, GLenum format,

 GLenum type,
 const GLvoid *pixels)

Rasterization: Texture application modes

• decal: Overwrite object pixel with texel

• modulate: Combine object pixel with
texel via multiplication
– Need this for multitexturing (i.e., lightmaps)

 courtesy of Microsoft

Texture mapping applications: Lightmaps

courtesy of K. Miller

+ =

Texture Application Modes

• glTexEnv(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE, param), where

param is one of:

– GL_REPLACE: Just overwrite surface pixel

– GL_DECAL: Use alpha values of surface pixel and texel
to blend in standard way

– GL_MODULATE: Multiply surface pixel and texel colors

– GL_BLEND: Blend surface and texel colors with
GL_TEXTURE_ENV_COLOR (see glTexEnv() man
page for details)

• One thing we’re ignoring right now is

wrapping—the idea of the texture being

a repeating pattern

Texture Filtering Parameters

Texturing: Enabling and Drawing

• To draw textured shape, texturing must first be enabled:
glEnable(GL_TEXTURE_2D)

• Load current texture image with glTexImage2D()
– Width, height must be powers of 2 (plus 2 if border is used)
– Only one texture current; faster to change textures by preloading

all and switching with glBindTexture() rather than reloading
each time (this is what Sprite.cpp does)

• Assign texture coordinates (s, t) to vertices with
glTexCoord()

– Similar to glColor() command—sets a property for subsequent
vertices that holds until it is changed

