Texturing

Course web page:
http://goo.gl/EB3aA

April 26, 2012 % Lecture 20 @Iﬁm\%

Outline

interpolation

e Environment mapping

e Shadow mapping

e Magnification/minification

= Py

Texture Rasterization

o Use Gouraud-style linear interpolation of texture
coordinates, right?

— First along polygon edges between vertices
— Then along scanlines between left and right sides

v A (505 T0)

ERSITY
from Hill g M\R[A}iﬁ

Linear texture coordinate interpolation

courtesy of H. Pfister

JERSITY or

Why not?

etc.)
— But different depths change things due to foreshortening

[
of Projection

View plane courtesy of
H. Pfister

b) -

170
1:1’1]1 or ™ equispaced

/ from
closer to the eve i
the eye ' o JERSITY o
‘ from Hill & Y JEIAWARE

Perspective-Correct Texture Coordinate
Interpolation

— “Numerators” s/w, t/w
— “"Denominator” 1/w

e Linearly interpolate s/w, t/w, and 1/w across
triangle

o At each pixel, perform perspective division of
interpolated texture coordinates (s/w, t/w)
by interpolated 1/w (i.e., numerator over
denominator) to get (s, t)

= Py

Perspective-Correct Texture Coordinate
Interpolation

Perspective-Correct Interpolation: Notes

ouraud shading...

— Actually, we should have, but the error is
not as obvious

e Alternative: Use regular linear
interpolation with small enough
polygons that effect is not noticeable

e Linear interpolation for Z-buffering is
correct

= Py

Projecting in non-standard directions

any attribute of that position. For example
— Ray comes from another location

— Ray is surface normal n at (x, y, z)

— Ray is reflection-from-eye vector r at (X, y, z)
— Etc.

pasition

S

from centroid reflectia

courtesy of R. Wolfe

Projecting in non-standard directions

. position
\
I

s surface normal

*

from centroid
reflection

courtesy of R. Wolfe

Different ray directions for a spherical projector

JERSITY or
¥ WYEIAWARE

Environment/Reflection Mapping

e This is an expensive procedure with ray tracing
e Idea: Approximate with texture mapping

= Py

Environment mapping: Details

intermediate surface

o Intersection of eye reflection vector with intermediate
surface provides texture coordinates for
reflection/environment mapping

courtesy of R. Wolfe p[ﬁ%ﬂ&m
\“’/

Making environment textures: Cube

straightforward to
make: Render/

photograph six rotated
views of environment

— 4 side views at compass
points

— 1 straight-up view, 1
straight-down view

JERSITY o
™ WYEIAWARE

Making environment textures: Sphere

/ERSITY o
8 WYELAWARE

Environment mapping: Example

courtesy of G. Miller

/ERSITY o
¥ WYEIAWARE

Example

Environment mapping

=
e
| .
O
)
©
=
=
o)
=
&
o
| W
L

Environment mapping example: Same

IVERSITY or
EIAWARE

Environment mapping: Issues

n’t shw
— Other objects won't be reflected

— Parallel reflection vectors access same environment
texel, which is only a good approximation when
environment objects are very far from object

r
n

I Reflective object

N

Intermediate

. 'ERSITY o
object from Angel = P)EIAWARE

Environment Bump Mapping

from Akenine-Moller
& Haines

Shadow Maps

shadow

— “Camera” parameters here determine
spotlight characteristics

e When rasterizing scene from eye view,
transform each pixel to get 3-D position
with respect to the light

— Project pixel to shadow buffer
coordinates and compare to z-buffer
depth there to see if it is visible

e Shadow edges have aliasing depending
on shadow map resolution and scene
geometry

Magnification and minification

Minification

from Angel

Magnification Minification

e Magnification: Single screen pixel maps to
area less than or equal to one texel
e Minification: Single screen pixel area maps

to area greater than one texel

— If texel area covered is much greater than 4, even
bilinear filtering isn’t so great

Filtering for minification

' _ |
! Surface of _J
] object
K N = X
Texture Four corners of
map pixel on screen

RSITYor

image courtesy of D. Cohen-Or EIAWARE,

Supersampling: Using more than BLI's 4 texels

— Irregular jittered sampling pattern
reduces artifacts

e Combine multiple samples into
one pixel via weighted average

— “"Box” filter: All samples associated
with a pixel have equal weight (i.e.,
directly take their average)

— @Gaussian/cone filter: Sample weights
inversely proportional to distance
from associated pixel

Center of
display pixel

Sample
L L/ofscene
7
A X >< %
TO
s A B) B
X X % /"-V"

from Hill

Regular

supersampling Jittered
with 2x supersampling
frequency

" "RSITY or
EIAWARE

Mipmaps

o JdEaq.
— Prefilter entire texture image at different resolutions

— For each screen pixel, pick texture in mipmap at level of
detail (LOD) that minimizes minification (i.e., pre-image
area closest to 1)

— Do nearest or linear filtering in appropriate LOD texture image

Cnginal Texture

T

Fre-Filtered Images

114

1H1a
1054
| /ERSITY:
@ % 1 picel = T

EIAWARE

from Woo, et al.

Create Texture Object

e Name it

— // Get unused “names” — not mandatory

glGenTextures (GLsizei n, GLuint *textures)

— // Create texture object w/ default params (or switch to existing one)
glBindTexture (GLenum target, GLuint texture)

e // Store data in bound texture object (no ref because it's global)

glTexImage2D (

GLenum target, GLint level,

GLint internalFormat,
GLsizel width, GLsizeil height,
GLint border, GLenum format,

GLenum type,
const GLvoid *pixels)

= P)ELAARE

Rasterization: Texture application modes

W+ A= TR

Texture Object Mapped Texture

e modulate: Combine object pixel with
texel via multiplication

— Need this for multitexturing (i e., lightmaps)

/N MR

Texture Object Mapped Texture

= Py

Texture mapping applications: Lightmaps

Texture Application Modes

— GL_REPLACE: Just overwrite surface pixel

- GL DECAL: Use alpha values of surface pixel and texel
to blend in standard way

- GL_MODULATE: Multiply surface pixel and texel colors

- GL_BLEND: Blend surface and texel colors with
GL _TEXTURE ENV COLOR (See glTexEnv () man

page for details)

e One thing we're ignoring right now is ! ol ko
wrapping—the idea of the texture being < </
a repeating pattern ~~ >

&
=
%_A

Texture Filtering Parameters

GLfloat border_color[]={ 1.00, 0.00, 0.00, 1.00};
GLfloat env_color[] = { 0.00, 1.00, 0.00, 1.00};

jlTexParameterfe(GL_TEXTURE_zD, GL_TEXTURE_BORDER_COLOR, horder_colar;
§ITexEnviv(GL_TEXTURE_EMY, GL_TEXTURE_EMY_COLOR, env_color;

gITexParameteri{GL_TEXTURE_ZD, GL_TEXTURE_MIM_FILTER, GL_MEAREST)
gITexParameteriiGL_TEXTURE_ZD, GL_TEXTURE_MAG_FILTER, GL_MEAREST);
gITexParameteri{GL_TEXTURE_ZD, GL_TEXTURE_WRAP_S, GL_REFEATY
gITexParameteriiGL_TEXTURE_ZD, GL_TEXTURE_WRAP_T, GL_REFEAT)
gITexEnvi{GL_TEXTURE_EMY, GL_TEXTURE_ENY_MODE, GL_MODULATEY

glEnable(GL_TEXTURE_2D);

gluBuildZDMipmaps(GL_TEXTURE_2D), 3, w, h, GL_RGE, GL_UNSIGNED_BYTE, image);
glColordf(0.60 ,0.60 ,0.60 ,1.00 };
glBegin(GL_POLYGON);

giTexCoord2f(0.0 , 0.0); glVertex3f(-1.0,-1.0, 0.0
gliTexCoord2f(1.0 , 0.0); glVertex3f(1.0 ,-1.0, 0.0
glTexCoord2f(1.0 , 1.0); glVertex3f(1.0 , 1.0 , 0.0
glTexCoord2f(0.0 , 1.0); glVertex3f(-1.0, 1.0 , 0.0
glEnd();

Click on the arguments and move the mouse to modify values.

IVERSITY o
F’[ﬁm\\m

Texturing: Enabling and Drawing

— Width, height must be powers of 2 (plus 2 if border is used)

— Only one texture current; faster to change textures by preloading
all and switching with glBindTexture () rather than reloading

each time (this is what Sprite.cpp does)

e Assign texture coordinates (S, t) to vertices with
glTexCoord ()

— Similar to glColor () command—sets a property for subsequent
vertices that holds until it is changed

= P)ELAARE

