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Outline 

• Parametric curves and surfaces 

– Bezier curves 

– Catmull-Rom splines 

– Application: morphing 



  

Parametric Lines 

• Parametric definition of a line segment:  

 p(t)  = p0 + t(p1 - p0), where t  [0, 1] 

      = p0 - t p0 + t p1  

      = (1 - t)p0 + t p1 

from Akenine-Möller & Haines 

like a “blend” of 
the two endpoints 



  

Linear Interpolation as Blending 

• Consider each point on 
the line segment as a 
sum of control points pi 

weighted by blending 
functions Bi : 

 

 
Blending functions for  

linear interpolation  
(2 control points) 

from Akenine-Möller & Haines degree n = 1 for linear blending 

• Here we have B0 = 1 - t and B1 = t  



  

Improving Interpolation 

• Cn continuity  nth derivative is 
continuous everywhere on the curve 

• Linear interpolation over multiple 
connected line segments has C0 continuity, 
but not C1 or higher continuity, which 
would make for a smoother curve 

from Akenine-Möller & Haines 

C0 continuity 

C1 or higher 
continuity 



  

Interpolating Interpolants 

• For 3 points a, b, and c, we can define a smoother curve by 
linearly interpolating along the line between points d and e 
linearly interpolated between a, b and b, c, respectively 

• This curve approximates a, b, and c, because it doesn’t go 
through all of them 

• True interpolating curves include all of the original points 

from Akenine-Möller & Haines 



  

Interpolating Interpolants 

p(t) = (1 - t)d + te 

       = (1 - t)[(1 - t)a + tb] + t[(1 - t)b + tc] 

 

 

from Akenine-Möller & Haines 



  

Changing notation… 

p(t) = (1 - t)[(1 - t)p0 + tp1] + t[(1 - t)p1 + tp2] 

     = (1 - t)2p0 + 2t (1 - t)p1 + t2p2 

 

 

from Akenine-Möller & Haines 

now n = 2  quadratic blending 



  

Quadratic Blending Functions 

• Blending functions are also called Bernstein 
polynomials 

• Magnitude of each proportional to control 
point’s influence on the shape of the curve 
– Note that each is non-zero along entire curve 

from Akenine-Möller & Haines 

3 blending functions for 3 control points 



  

Bézier Curves 

• Curve approximation through recursive 
application of linear interpolations 
– Linear: 2 control points, 2 linear 

Bernstein polynomials 
– Quadratic: 3 control points, 3 quadratic 

Bernstein polynomials 
– Cubic: 4 control points, 4 cubic 

polynomials 
– N control points = N - 1 degree curve 

• Notes 
– Only endpoints are interpolated (i.e., on 

the curve) 
– Curve is tangent to linear segments at 

endpoints 
– Every control point affects every point 

on curve 
• Makes modeling harder 

Cubic Bernstein polynomials 
for 4 control points 
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Extension to Surfaces 

• Multiply two blending functions (one for 
each dimension) together 

– Bilinear patch  

• Need 2 x 2 control points 

– Biquadratic Bézier patch 

• Need 3 x 3                
control points 

– Bicubic patch 

• 4 x 4 control         
points 
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Interpolating Splines  

• Idea: Use key frames to indicate a series of 
positions that must be “hit”  

• For example: 
– Camera location 

– Path for character to follow 

– Animation of walking, gesturing, or facial 
expressions 

• Morphing 

• Use splines for smooth interpolation 
– Must not be approximating! 



  

Catmull-Rom spline  

• Different from Bezier curves in that we can 
have arbitrary number of control points, but 
only 4 of them at a time influence each 
section of curve 
– And it’s interpolating (goes through points) 

instead of approximating (goes “near” points) 

• Four points define curve between 2nd and 3rd  

 

 

from Hearn & Baker 



  

Catmull-Rom spline: Closed curve example 
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(p0, p1, p2, p3) 

(p1, p2, p3, p0) 

(p2, p3, p0, p1) 

(p3, p0, p1, p2) 

Applet: http://www.cse.unsw.edu.au/~lambert/splines/CatmullRom.html 
 

http://www.cse.unsw.edu.au/~lambert/splines/CatmullRom.html


  

Catmull-Rom spline 
• Want cubic polynomial curve defined parametrically over 

interval t  [0, 1] with following constraints: 
– Starts at P(0) = Pi , ends at P(1) = Pi+1 
– Starting slope P’(0) = Pi+1 – Pi-1  , ending slope P’(1) = Pi+2 – Pi  

 
 
 
 
 
 

 
 

• Also require that it be cubic polynomial: 



  

Catmull-Rom: Blending matrix* 

• Combine to get final blending matrix: 
 
 
 
 
 
 

• To trace curve, iterate through subsets of 4 
control points (pi-1, pi, pi+1, pi+2) 

– Inner loop iterates over t  [0, 1]  
 

*Valid for all but first and last segments of open curve (use different method there for tangents) 

courtesy of K. Joy 



  

Catmull-Rom spline properties 

• Yields C0, C1 continuous curve which 
goes through every control point 

– Not C2 continuous 

• Curve does not necessarily lie within 
convex hull of control points 



  

Splines for camera motion: Example 

• Use Catmull-Rom spline to define smooth camera path—
e.g., a roller coaster 

• Then keep calling gluLookat() while tracing the curve* 
 
 
 
 
 
 
 
 
 
 

• Example video: youtube.com/watch?v=WwLWwaMrIYM 

*There are a few more details regarding keeping track of the camera’s up vector— 
see http://www-2.cs.cmu.edu/~fp/courses/02-graphics/asst5/vectors.html  

http://www.youtube.com/watch?v=WwLWwaMrIYM
http://www.youtube.com/watch?v=WwLWwaMrIYM
http://www.youtube.com/watch?v=WwLWwaMrIYM
http://www.youtube.com/watch?v=WwLWwaMrIYM


  

Application: Morphing 

• Goal is smooth transformation between 
image of one object and another 

• Simplest approach is cross-fading: 
Animate image blending as  varies 
from 1 to 0 smoothly 

 = 1.0  = 0.75  = 0.5  = 0.25  = 0.0 

from G. Wolberg, CGI ‘96 



  

Morphing: Cross-Fading Issues 

• Problem with cross-fade is that 
if features don’t line up 
exactly, we get a double 
image 

• Can try shifting/scaling/etc. 
one entire image to get 
better alignment, but this 
doesn’t completely fix problem 

• Can handle more situations by 
applying different warps to 
different pieces of image 
– Manually chosen 
– Takes care of feature 

correspondences Image IS with mesh 

MS  defining pieces 

Image IT, mesh MT 

from G. Wolberg, CGI ‘96 



  

Morphing: Mesh Warping Algorithm 

for f = 0 to 1 do 

1. Linearly interpolate mesh 
vertices between MS and MT  to 
get Mf  

2. Warp image IS to If
S using MS 

and Mf 

3. Warp IT to If
T using MT and Mf 

4. Linearly interpolate morphed 
image If between images If

S  
and If

T (i.e., blend them 
together with  = 1 - f) 

end 

from G. Wolberg, CGI ‘96 

Image I0.5
S 

with mesh M0.5 
Image I1.0

S 
with mesh M1.0 

Image IS 
with mesh MS

 
Image IT 

with mesh MT
 



  

Mesh Warping: Splines 

• For steps 2 & 3, use cubic splines to interpolate 
new pixel locations between warped mesh 
vertices 
– E.g., Catmull-Rom  

• Could use bilinear patch for each piece, but 
wouldn’t have C1 continuity of intensity at 
borders 
– I.e., could get a faceted effect akin to Gouraud 

shading without normal averaging  

adapted from G. Wolberg, CGI ‘96 



  

Morphing: Mesh Warping 

from G. Wolberg, 
CGI ‘96 

Images If
T 

& meshes Mf 

Images If
S 

& meshes Mf 

Morphed 

images If 

f = 0.0 f = 0.25 f = 0.5 f = 0.75 f = 1.0 



  

Mesh Warping vs. Cross-fading 

 

from G. Wolberg, CGI ‘96 



  

One more morphing example… 

This is from the same paper, but using a line correspondence  
method rather than a mesh-based one 



  

One more morphing example… 


