

Shape Modeling:
Curves and Surfaces

Course web page:

http://goo.gl/EB3aA

May 8, 2012  Lecture 23

Outline

• Parametric curves and surfaces

– Bezier curves

– Catmull-Rom splines

– Application: morphing

Parametric Lines

• Parametric definition of a line segment:

 p(t) = p0 + t(p1 - p0), where t  [0, 1]

 = p0 - t p0 + t p1

 = (1 - t)p0 + t p1

from Akenine-Möller & Haines

like a “blend” of
the two endpoints

Linear Interpolation as Blending

• Consider each point on
the line segment as a
sum of control points pi

weighted by blending
functions Bi :

Blending functions for

linear interpolation
(2 control points)

from Akenine-Möller & Haines degree n = 1 for linear blending

• Here we have B0 = 1 - t and B1 = t

Improving Interpolation

• Cn continuity  nth derivative is
continuous everywhere on the curve

• Linear interpolation over multiple
connected line segments has C0 continuity,
but not C1 or higher continuity, which
would make for a smoother curve

from Akenine-Möller & Haines

C0 continuity

C1 or higher
continuity

Interpolating Interpolants

• For 3 points a, b, and c, we can define a smoother curve by
linearly interpolating along the line between points d and e
linearly interpolated between a, b and b, c, respectively

• This curve approximates a, b, and c, because it doesn’t go
through all of them

• True interpolating curves include all of the original points

from Akenine-Möller & Haines

Interpolating Interpolants

p(t) = (1 - t)d + te

 = (1 - t)[(1 - t)a + tb] + t[(1 - t)b + tc]

from Akenine-Möller & Haines

Changing notation…

p(t) = (1 - t)[(1 - t)p0 + tp1] + t[(1 - t)p1 + tp2]

 = (1 - t)2p0 + 2t (1 - t)p1 + t2p2

from Akenine-Möller & Haines

now n = 2  quadratic blending

Quadratic Blending Functions

• Blending functions are also called Bernstein
polynomials

• Magnitude of each proportional to control
point’s influence on the shape of the curve
– Note that each is non-zero along entire curve

from Akenine-Möller & Haines

3 blending functions for 3 control points

Bézier Curves

• Curve approximation through recursive
application of linear interpolations
– Linear: 2 control points, 2 linear

Bernstein polynomials
– Quadratic: 3 control points, 3 quadratic

Bernstein polynomials
– Cubic: 4 control points, 4 cubic

polynomials
– N control points = N - 1 degree curve

• Notes
– Only endpoints are interpolated (i.e., on

the curve)
– Curve is tangent to linear segments at

endpoints
– Every control point affects every point

on curve
• Makes modeling harder

Cubic Bernstein polynomials
for 4 control points

fr
o
m

 A
k
e
n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

Extension to Surfaces

• Multiply two blending functions (one for
each dimension) together

– Bilinear patch

• Need 2 x 2 control points

– Biquadratic Bézier patch

• Need 3 x 3
control points

– Bicubic patch

• 4 x 4 control
points

fr
o
m

 A
k
e
n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

Interpolating Splines

• Idea: Use key frames to indicate a series of
positions that must be “hit”

• For example:
– Camera location

– Path for character to follow

– Animation of walking, gesturing, or facial
expressions

• Morphing

• Use splines for smooth interpolation
– Must not be approximating!

Catmull-Rom spline

• Different from Bezier curves in that we can
have arbitrary number of control points, but
only 4 of them at a time influence each
section of curve
– And it’s interpolating (goes through points)

instead of approximating (goes “near” points)

• Four points define curve between 2nd and 3rd

from Hearn & Baker

Catmull-Rom spline: Closed curve example

fr
o
m

 H
e
a
rn

 &
 B

a
k
e
r

(p0, p1, p2, p3)

(p1, p2, p3, p0)

(p2, p3, p0, p1)

(p3, p0, p1, p2)

Applet: http://www.cse.unsw.edu.au/~lambert/splines/CatmullRom.html

http://www.cse.unsw.edu.au/~lambert/splines/CatmullRom.html

Catmull-Rom spline
• Want cubic polynomial curve defined parametrically over

interval t  [0, 1] with following constraints:
– Starts at P(0) = Pi , ends at P(1) = Pi+1
– Starting slope P’(0) = Pi+1 – Pi-1 , ending slope P’(1) = Pi+2 – Pi

• Also require that it be cubic polynomial:

Catmull-Rom: Blending matrix*

• Combine to get final blending matrix:

• To trace curve, iterate through subsets of 4
control points (pi-1, pi, pi+1, pi+2)

– Inner loop iterates over t  [0, 1]

*Valid for all but first and last segments of open curve (use different method there for tangents)

courtesy of K. Joy

Catmull-Rom spline properties

• Yields C0, C1 continuous curve which
goes through every control point

– Not C2 continuous

• Curve does not necessarily lie within
convex hull of control points

Splines for camera motion: Example

• Use Catmull-Rom spline to define smooth camera path—
e.g., a roller coaster

• Then keep calling gluLookat() while tracing the curve*

• Example video: youtube.com/watch?v=WwLWwaMrIYM

*There are a few more details regarding keeping track of the camera’s up vector—
see http://www-2.cs.cmu.edu/~fp/courses/02-graphics/asst5/vectors.html

http://www.youtube.com/watch?v=WwLWwaMrIYM
http://www.youtube.com/watch?v=WwLWwaMrIYM
http://www.youtube.com/watch?v=WwLWwaMrIYM
http://www.youtube.com/watch?v=WwLWwaMrIYM

Application: Morphing

• Goal is smooth transformation between
image of one object and another

• Simplest approach is cross-fading:
Animate image blending as  varies
from 1 to 0 smoothly

 = 1.0  = 0.75  = 0.5  = 0.25  = 0.0

from G. Wolberg, CGI ‘96

Morphing: Cross-Fading Issues

• Problem with cross-fade is that
if features don’t line up
exactly, we get a double
image

• Can try shifting/scaling/etc.
one entire image to get
better alignment, but this
doesn’t completely fix problem

• Can handle more situations by
applying different warps to
different pieces of image
– Manually chosen
– Takes care of feature

correspondences Image IS with mesh

MS defining pieces

Image IT, mesh MT

from G. Wolberg, CGI ‘96

Morphing: Mesh Warping Algorithm

for f = 0 to 1 do

1. Linearly interpolate mesh
vertices between MS and MT to
get Mf

2. Warp image IS to If
S using MS

and Mf

3. Warp IT to If
T using MT and Mf

4. Linearly interpolate morphed
image If between images If

S
and If

T (i.e., blend them
together with  = 1 - f)

end

from G. Wolberg, CGI ‘96

Image I0.5
S

with mesh M0.5
Image I1.0

S
with mesh M1.0

Image IS
with mesh MS

Image IT

with mesh MT

Mesh Warping: Splines

• For steps 2 & 3, use cubic splines to interpolate
new pixel locations between warped mesh
vertices
– E.g., Catmull-Rom

• Could use bilinear patch for each piece, but
wouldn’t have C1 continuity of intensity at
borders
– I.e., could get a faceted effect akin to Gouraud

shading without normal averaging

adapted from G. Wolberg, CGI ‘96

Morphing: Mesh Warping

from G. Wolberg,
CGI ‘96

Images If
T

& meshes Mf

Images If
S

& meshes Mf

Morphed

images If

f = 0.0 f = 0.25 f = 0.5 f = 0.75 f = 1.0

Mesh Warping vs. Cross-fading

from G. Wolberg, CGI ‘96

One more morphing example…

This is from the same paper, but using a line correspondence
method rather than a mesh-based one

One more morphing example…

