Shape Modeling: Curves and Surfaces

Course web page: http://goo.gl/EB3aA

May 8, 2012 * Lecture 23

Parametric curves and surfaces

- Bezier curves
- Catmull-Rom splines
- Application: morphing

Parametric Lines

• Parametric definition of a line segment: $\mathbf{p}(t) = \mathbf{p}_0 + t(\mathbf{p}_1 - \mathbf{p}_0), \text{ where } t \in [0, 1]$ $= \mathbf{p}_0 - t \mathbf{p}_0 + t \mathbf{p}_1$ $= (1 - t)\mathbf{p}_0 + t \mathbf{p}_1$

like a "blend" of the two endpoints

from Akenine-Möller & Haines

Linear Interpolation as Blending

 Consider each point on the line segment as a sum of control points p_i weighted by blending functions B_i:

n

 $\mathbf{p}(t) = \sum B_i^n(t) \mathbf{p}_i$

i=0

Blending functions for linear interpolation (2 control points)

• Here we have $B_0 = 1 - t$ and $B_1 = t$

degree n = 1 for linear blending

Improving Interpolation

- Cⁿ continuity \rightarrow nth derivative is continuous everywhere on the curve
- Linear interpolation over multiple connected line segments has C⁰ continuity, but not C¹ or higher continuity, which would make for a smoother curve

Interpolating Interpolants

 For <u>3</u> points **a**, **b**, and **c**, we can define a smoother curve by linearly interpolating along the line between points **d** and **e** linearly interpolated between **a**, **b** and **b**, **c**, respectively

- This curve approximates a, b, and c, because it doesn't go through all of them
- True interpolating curves include all of the original points

$$p(t) = (1 - t)d + te$$

= (1 - t)[(1 - t)a + tb] + t[(1 - t)b + tc]

Interpolating Interpolants

Changing notation...

from Akenine-Möller & Haines

 $\mathbf{p}(t) = (1 - t)[(1 - t)\mathbf{p}_0 + t\mathbf{p}_1] + t[(1 - t)\mathbf{p}_1 + t\mathbf{p}_2]$ $= (1 - t)^{2}\mathbf{p}_{0} + 2t (1 - t)\mathbf{p}_{1} + t^{2}\mathbf{p}_{2}$ = $\sum B_{i}^{n}(t)\mathbf{p}_{i}$ now $n = 2 \rightarrow$ quadratic blending i=0

Quadratic Blending Functions

- Blending functions are also called **Bernstein** polynomials
- Magnitude of each proportional to control point's **influence** on the shape of the curve
 Note that each is non-zero along entire curve

Bézier Curves

- Curve approximation through **recursive** application of linear interpolations
 - Linear: 2 control points, 2 linear Bernstein polynomials
 - Quadratic: 3 control points, 3 quadratic Bernstein polynomials
 - Cubic: 4 control points, 4 cubic polynomials
 - N control points = N 1 degree curve
- Notes
 - Only endpoints are interpolated (i.e., on the curve)
 - Curve is tangent to linear segments at endpoints
 - Every control point affects every point on curve
 - Makes modeling harder

1/3

2/3

f=p(1/3)

2/3

u=1

w=0

Extension to Surfaces

- Multiply two blending functions (one for each dimension) together
 - Bilinear patch
 - Need 2 x 2 control points
 - Biquadratic Bézier patch
 - Need 3 x 3 control points
 - Bicubic patch
 - 4 x 4 control points

Interpolating Splines

- Idea: Use key frames to indicate a series of positions that must be "hit"
- For example:
 - Camera location
 - Path for character to follow
 - Animation of walking, gesturing, or facial expressions
 - Morphing
- Use splines for smooth interpolation
 - Must not be approximating!

Catmull-Rom spline

- Different from Bezier curves in that we can have arbitrary number of control points, but only 4 of them at a time influence each section of curve
 - And it's interpolating (goes through points) instead of approximating (goes "near" points)
- Four points define curve between 2nd and 3rd

Catmull-Rom spline: Closed curve example

Applet: http://www.cse.unsw.edu.au/~lambert/splines/CatmullRom.html

Catmull-Rom spline

- Want cubic polynomial curve defined parametrically over interval $t \in [0, 1]$ with following constraints:
 - Starts at $\mathbf{P}(0) = \mathbf{P}_i$, ends at $\mathbf{P}(1) = \mathbf{P}_{i+1}$
 - Starting slope $\mathbf{P}'(0) = \mathbf{P}_{i+1} \mathbf{P}_{i-1}$, ending slope $\mathbf{P}'(1) = \mathbf{P}_{i+2} \mathbf{P}_{i}$

• Also require that it be cubic polynomial:

$$\mathbf{P}(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$

Catmull-Rom: Blending matrix*

• Combine to get final **blending matrix**:

$$\mathbf{P}(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 0 & 2 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 2 & -5 & 4 & -1 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{i-1} \\ \mathbf{P}_i \\ \mathbf{P}_{i+1} \\ \mathbf{P}_{i+2} \end{bmatrix}$$
curtes of K. by

To trace curve, iterate through subsets of 4 control points (**p**_{i-1}, **p**_i, **p**_{i+1}, **p**_{i+2})

– Inner loop iterates over $t \in [0, 1]$

Catmull-Rom spline properties

- Yields C₀, C₁ continuous curve which goes through every control point
 – Not C₂ continuous
- Curve does not necessarily lie within convex hull of control points

Splines for camera motion: Example

- Use Catmull-Rom spline to define smooth camera path e.g., a roller coaster
- Then keep calling gluLookat() while tracing the curve*

Example video: <u>youtube.com/watch?v=WwLWwaMrIYM</u>

*There are a few more details regarding keeping track of the camera's **up** vector see http://www-2.cs.cmu.edu/~fp/courses/02-graphics/asst5/vectors.html

Application: Morphing

- Goal is smooth transformation between image of one object and another
- Simplest approach is **cross-fading**: Animate image blending as α varies from 1 to 0 smoothly

from G. Wolberg, CGI '9

Morphing: Cross-Fading Issues

- Problem with cross-fade is that if features don't line up exactly, we get a double image
- Can try shifting/scaling/etc. one entire image to get better alignment, but this doesn't completely fix problem
- Can handle more situations by applying different warps to different **pieces** of image
 - Manually chosen
 - Takes care of feature correspondences

from G. Wolberg, CGI '96

Morphing: Mesh Warping Algorithm

for f = 0 to 1 **do**

end

- 1. Linearly interpolate mesh vertices between \bm{M}_S and \bm{M}_T to get \bm{M}^f
- 2. Warp image ${\bm I}_S$ to ${\bm I}_S^f$ using ${\bm M}_S$ and ${\bm M}^f$
- 3. Warp \mathbf{I}_T to \mathbf{I}_T^f using \mathbf{M}_T and \mathbf{M}_T^f
- 4. Linearly interpolate morphed image \mathbf{I}^{f} between images \mathbf{I}^{f}_{S} and \mathbf{I}^{f}_{T} (i.e., blend them together with $\alpha = 1 f$)

from G. Wolberg, CGI '96

Mesh Warping: Splines

 For steps 2 & 3, use cubic splines to interpolate new pixel locations between warped mesh vertices

– E.g., Catmull-Rom

- Could use bilinear patch for each piece, but wouldn't have C¹ continuity of **intensity** at borders
 - I.e., could get a faceted effect akin to Gouraud shading without normal averaging

Morphing: Mesh Warping

Mesh Warping vs. Cross-fading

One more morphing example...

This is from the same paper, but using a line correspondence method rather than a mesh-based one

One more morphing example...

