

Final Review

Course web page:

http://goo.gl/EB3aA

May 15, 2012  Lecture 25

Remember…HW #4 due today!

Final Notes

• When/where

– Next Thursday, May 24

– 10:30 am-12:30 pm, Gore 303

– Worth 20% of your grade, just like the midterm

• Covers second half of term (from spring break to May
10), but of course first-half knowledge may be assumed

– A few topics not in book (like ambient occlusion, global
illumination)

– A bit less emphasis on topics addressed in HWs

• Closed book, no calculators, no notes

• Question format similar to midterm, including a few
OpenGL- and GLSL-related questions

Final topics

• Shading

• Ray tracing

• Global illumination

• Texture mapping

• GLSL shaders

• Shape modeling

Incoming and Outgoing Light at a Surface

• Irradiance E (Wm-2)

– Light arriving at a point on a

surface from all visible

directions

– An image samples the

irradiance at the pinhole

• Radiosity B (Wm-2)

– Light leaving a surface in all

directions (per patch)

Radiance

• Radiance L (Wm-2sr-1)
– Power at a point in space in a given

direction, foreshortened, per solid angle

– Can be incoming or outgoing

– Does not attenuate with distance in vacuum

• What is stored in a pixel—the light
energy arriving along a particular ray at a
particular point

Foreshortening

• The more a surface is tilted away, the larger the area
light energy is distributed over (and therefore is
“diluted”)
– In 2-D, received intensity is proportional to cosine of

angle between light direction l and surface normal n

– Received intensity is greatest when l and n are parallel

• 3-D foreshortening factor for light coming from

direction (θ, φ) is cos θ

from Akenine-Moller & Haines

Light sources

• Properties

– Intensity (total radiosity)

– Color (intensity / wavelength)

• Geometry

– Point: Shoots light in all
directions

– Spotlight: Angle-limited
point source

– Directional: Source distant
enough that light rays are
roughly parallel (e.g., like the
sun relative to earth)

– Area: Behaves like a
continuous configuration of
point sources inside, say, a
polygon

from Akenine-Moller & Haines

Some light source types

Light source types: Induced shading

Object surface properties

• General

– Light/dark/color

– Reflectivity (e.g., matte vs.

shiny)

• Space-varying pattern

– I.e., are above

characteristics different in

different locations?

– We’ll get to this when we

cover texture-mapping

• Bidirectional Reflectance Distribution Function
(BRDF): Ratio of outgoing radiance in one direction
to incident irradiance from another

Capturing Surface Properties: BRDF

Reflectance equation

• Radiance for a viewing direction given all incoming
light:

• This is expensive to compute in general, so the

standard local approach is approximation:
– Approximate incoming light as ambient (whole

hemisphere) + set of point light sources
– Approximate BRDF of surface as combination of diffuse

(matte) and specular (shiny) factors

Standard local model for graphics

• Final perceived brightness is a combination of

diffuse and specular reflectance, plus an

ambient term to approximate global lighting

effects

Ambient Diffuse

Specular Total

Lighting a point

• Let c = (r, g, b) be perceived
material color (called i on previous
slides), s(l) be color of light l

• Sum over all lights l for each color
channel (clamp overflow to [0, 1]):

from Hill

Illumination models

• Interaction between light sources and objects in
scene that results in perception of intensity and
color at eye

• Local vs. global models
– Local illumination: Perception of a particular primitive

only depends on light sources directly affecting that
one primitive

• Geometry

• Material properties

– Global illumination: Also take into account indirect
effects on light of other objects in the scene

• Shadows cast

• Light reflected/refracted

Backward Ray “Following”: Types

• Ray casting: Compute
illumination at first
intersected surface
point only
– Takes care of hidden

surface elimination

• Ray tracing:
Recursively spawn rays
at hit points to simulate
reflection, refraction,
etc.

Angel

Does Ray Intersect any Scene Primitives?

• Test each primitive in scene for intersection
individually

• Different methods for different kinds of primitives
– Polygon
– Sphere
– Cylinder, torus
– Etc.

• Make sure intersection point is in front of eye and
nearest one

from Hill

Ray-Sphere Intersection I

• Combine implicit definition of sphere

with ray equation

(where d is a unit vector) to get:

Ray-Sphere Intersection II

• Substitute and use identity

 to solve for t, resulting in a quadratic
equation with roots given by:

• Notes
– Real solutions mean there actually are 1 or 2

intersections

– Negative solutions are behind eye

Shadow Rays

• For point p being locally shaded, only add diffuse
& specular components for light l if light is not
occluded (i.e., blocked)

• Test for occlusion of l for p:
– Spawn shadow ray for l with origin p, direction l(l)
– Check whether shadow ray

intersects any scene object
– Intersection only “counts” if:

• More details in Shirley, Chap. 10.5

from Hill

Ray Tracing
• Model: Perceived color at point p is an additive combination of

local illumination (e.g., Phong), reflection, and refraction
effects

• Compute reflection, refraction contributions by tracing
respective rays back from p to surfaces they came from and
evaluating local illumination at those locations

• Apply operation recursively to some maximum depth to get:
– Reflections of reflections of ...

– Refractions of refractions of ...

– And of course mixtures of the two

from Hill

Ray Tracing Reflection Formula

• The formula used for Phong

illumination is not what we want here

because our incident ray v is pointing

in toward the surface, whereas the

light direction l was pointed away

from the surface

• So just negate the formula to get:

• Definition: Bending of light ray as it crosses interface
between media (e.g., air  glass or vice versa)

• Index of refraction (IOR) n for a medium: Ratio of
speed of light in vacuum to that in medium
(wavelength-dependent  prisms)
– By definition, n  1

– Examples: nair (1.00) < nwater (1.33) < nglass (1.52)

θ1: Angle of incidence

θ2: Angle of refraction

courtesy of
Wolfram

Refraction

Basic Ray Tracing: Notes

• Global illumination effects simulated by basic
algorithm are shadows, purely specular
reflection/transmission

• Some outstanding issues
– Aliasing, aka jaggies

– Shadows have sharp edges, which is unrealistic

– No diffuse reflection from other objects

• Intersection calculations are expensive, and
even more so for more complex objects
– Not currently suitable for real-time (i.e., games)

Distributed (aka “distribution”) Ray

Tracing (DRT)

• Basic idea: Use multiple eye rays for each

pixel rendered or multiple recursive rays at

intersections

• Application #1: Improving image quality via

anti-aliasing

– Supersampling: Shoot multiple nearby eye rays

per pixel and combine colors

– Uniform vs. adaptive: Constant number of rays or

change in areas where image is changing more

quickly

Supersampling

• Rasterize at higher resolution

– Regular grid pattern around each
“normal” image pixel

– Irregular jittered sampling pattern
reduces artifacts

• Combine multiple samples into
one pixel via weighted average

– “Box” filter: All samples associated
with a pixel have equal weight (i.e.,
directly take their average)

– Gaussian/cone filter: Sample weights
inversely proportional to distance
from associated pixel

from Hill

Regular
supersampling
with 2x
frequency

Jittered
supersampling

Adaptive Supersampling (Whitted’s method)

• Shoot rays through 4 pixel corners and
collect colors

• Provisional color for entire pixel is
average of corner contributions
– If you stop here, the only overhead vs.

center-of-pixel ray-tracing is another row,
column of rays

• If any corner’s color is too different,
subdivide pixel into quadrants and
recurse on quadrants

• Details
– Subdivide if any corner is more than 25%

different from average (try experimenting
with different thresholds here)

– Maximum depth of 2 subdivisions sufficient

from Hill

DRT: Soft Shadows

• For point light sources,
sending a single shadow
ray toward each is
reasonable
– But this gives hard-edged

shadows

• Simulating soft shadows
– Model each light source as

sphere

– Send multiple jittered
shadow rays toward a light
sphere; use fraction that
reach it to attenuate color

DRT: Ambient Occlusion

• Extension of shadow ray idea—not every point should
get full ambient illumination

• Cast random rays from each surface point to estimate
percent of sky hemisphere that is visible (i.e., is there
any intersection within a certain distance)
– May use cosine weighting/distribution for foreshortening

DRT: Glossy Reflections

• Analog of hard shadows

are “sharp reflections”—

every reflective surface

acts like a perfect mirror

• To get glossy or blurry

reflections, send out

multiple jittered reflection

rays and average their

colors

Why is the reflection
sharper at the top?

Bounding Volumes

• Idea: enclose complex objects (i.e., .obj

models) in simpler ones (i.e., spheres)

and test simple intersection before

complex

• Want bounds as tight as possible

Light Paths

• Consider the path
that a light ray
might take through
a scene between
the light source L
and the eye E

• It may interact with
multiple diffuse (D)
and specular (S)
objects along the way

• We can describe this series of interactions with
the regular expression L (D | S)* E
– (If a surface is a mix of D and S, the combination is

additive so it is still OK to treat in this manner)

from Sillion & Puech

Light Paths: Examples

• Direct visualization of the light: LE

• Local illumination: LDE, LSE

• Ray tracing: LS*E, LDS*E

from Hill

Ray tracing light paths General light paths

from Sillion & Puech

Caustics

• Definition: (Concentrated) specular
reflection/refraction onto a diffuse surface
– In simplest form, follow an LSDE path

• Standard ray tracing cannot handle caustics—
only paths described by LDS*E

courtesy of H. Wann Jensen from Sillion & Puech

Bidirectional Ray Tracing (P. Heckbert, 1990)

• Idea: Trace forward light rays into scene as well as
backward eye rays

• At diffuse surfaces, light rays additively “deposit”
photons in radiosity textures, or “rexes”, where they
are accessed up by eye rays
– Summation approximates integral term in radiance computation
– Light rays carry information on specular surface locations—they

have no uncertainty

from P. Heckbert

Photon Mapping (H. Jensen, 1996)

• Two-pass algorithm somewhat like bidirectional
ray tracing, but photons stored differently

• 1st pass: Build photon map

– Shoot random rays from light(s) into scene

– Each photon carries fraction of light’s power

– Follow specular bounces, but store photons in map
at each diffuse surface hit (or scattering event)

• 2nd pass: Render scene

– Modified ray tracing: follow eye rays into scene

– Use photons near each intersection to compute light

What is Texture Mapping?

• Spatially-varying modification of surface
appearance at the pixel level

• Characteristics
– Color

– Shininess

– Transparency

– Bumpiness

– Etc. from Hill

Bump Mapping

• So far we’ve been thinking of textures
modulating color and transparency only
– Billboards, decals, lightmaps, etc.

• But any other per-pixel properties are fair
game...

• Pixel normals usually smoothly varying
– Computed at vertices for Gouraud shading; color

interpolated
– Interpolated from vertices for Phong shading

• Textures allow setting per-pixel normal with a
bump map

Bump mapping: Why?

• Can get a lot more surface detail
without expense of more object vertices
to light, transform

courtesy of Nvidia

Bump Mapping: How?

• Idea: Perturb pixel normals n(u, v)
derived from object geometry to get
additional detail for shading

• Compute lighting per pixel (like Phong)

from Hill

Bump mapping: Issues

• Bumps don’t cast shadows

• Geometry doesn’t change, so silhouette
of object is unaffected

• Textures can be used to
modify underlying
geometry with
displacement maps

courtesy of Nvidia

Displacement Mapping

co
u
rt

e
sy

 o
f

sp
o
t3

d
.c

o
m

Bump mapping Displacement mapping

Texture mapping: Steps

• Creation: Where does the texture
image come from?

• Geometry: Transformation from 3-D
shape locations to 2-D texture image
coordinates

• Rasterization: What to draw at each
pixel

– E.g., bilinear interpolation vs. nearest-
neighbor

Texturing Pipeline (Geometry + Rasterization)

1. Compute object space location (x, y, z) from
screen space location (i, j)

2. Use projector function to obtain object surface
coordinates (u, v)

3. Corresponder function to find texel
coordinates (s, t)

• Scale, shift, wrap like
viewport transform in
geometry pipeline

4. Filter texel at (s, t)

5. Modify pixel (i, j)

list adapted from Akenine-Moller & Haines

courtesy of R. Wolfe

Rasterization

Projector Functions

• Want way to get from 3-D point to 2-D surface
coordinates as an intermediate step

• Idea: Project complex object onto simple
object’s surface with parallel or perspective
projection (focal point inside object)
– Plane
– Cylinder
– Sphere
– Cube
– Mesh: piecewise planar

Planar projector

courtesy of R. Wolfe

Projecting in non-standard directions

• Don’t have to project ray from object center through
position (x, y, z)—can use any attribute of that position.
For example:
– Ray comes from another location

– Ray is surface normal n at (x, y, z)

– Ray is reflection-from-eye vector r at (x, y, z)
– Etc.

co
u
rt

e
sy

 o
f

R
.
W

o
lf
e

Projecting in non-standard directions

• This can lead to interesting or informative
effects

courtesy of R. Wolfe

Different ray directions for a spherical projector

Environment/Reflection Mapping

• Problem: To render pixel on mirrored surface correctly, we
need to follow reflection of eye vector back to first
intersection with another surface and get its color

• This is an expensive procedure with ray tracing

• Idea: Approximate with texture mapping

from Angel

Environment mapping: Details

• Key idea: Render 360 degree view of environment
from center of object with sphere or box as
intermediate surface

• Intersection of eye reflection vector with intermediate
surface provides texture coordinates for
reflection/environment mapping

courtesy of R. Wolfe

Texture Rasterization

• Okay…we’ve got texture coordinates for the
polygon vertices. What are (s, t) for the pixels
inside the polygon?

• Use Gouraud-style linear interpolation of texture
coordinates, right?
– First along polygon edges between vertices
– Then along scanlines between left and right sides

from Hill

Why not?

• Equally-spaced pixels do not project to equally-spaced
texels under perspective projection
– No problem with 2-D affine transforms (rotation, scaling, shear,

etc.)

– But different depths change things

from Hill

courtesy of
H. Pfister

Magnification and minification

• Magnification: Single screen pixel maps to
area less than or equal to one texel

• Minification: Single screen pixel area maps
to area greater than one texel
– If texel area covered is much greater than 4, even

bilinear filtering isn’t so great

Magnification Minification

from Angel

courtesy of H. Pfister

Bilinear Interpolation (BLI)

• Idea: Blend four texel
values surrounding
source, weighted by
nearness

Vertical blend Horizontal blend

Mipmaps

• Filtering for minification is expensive, and different
areas must be averaged depending on the amount of
minification

• Idea:
– Prefilter entire texture image at different resolutions
– For each screen pixel, pick texture in mipmap at level of

detail (LOD) that minimizes minification (i.e., pre-image
area closest to 1)

– Do nearest or linear filtering in appropriate LOD texture image

from Woo, et al.

Pipeline Visual Summary

• From lighthouse3d

Vertex Shaders

• Operates on single vertex

• Input includes position, color, normals, etc.

• Must take care of

– Modelview and perspective transformations

– Normal transformations

– Texture coordinate generation & transformations

– Lighting per vertex

– Etc.

Fragment Shaders

• Operates on single fragment, executed in
parallel

• Alpha blending, depth test still in fixed
pipeline

• Can be used to
– Compute colors

– Apply textures

– Compute fog

– Per-pixel lighting (e.g., Phong shading)

GLSL Syntax Overview

• GLSL is like C without

– Pointers, objects (but structs are still there)

– Recursion

– Gotos, switches

– Dynamic memory allocation

• GLSL is like C with

– Built-in vector, matrix and sampler types

– Constructors

– A great math library

– Input and output qualifiers

GLSL Syntax: Types

• Scalar types: float, int, uint, bool
– Can do casts: int i = int(0.0);

• Vectors are first-class types:
– vec2, vec3, vec4

– ivec, bvec: Integer, boolean vectors

• Matrices

– mat2, mat3, mat4 (2x2, 3x3, 4x4)

– Can also do m x n; stored in column-major format

• Samplers

– sampler1D, sampler2D, sampler3D

Noise as a Texture Generator

• Easiest texture to make: Random values
for texels
– noise(x, y) = random()

• If random() has limited range (e.g.,
[0, 1]), can control maximum value via
amplitude
– a * noise(x, y)

• But the results usually aren’t
very exciting visually

Perlin Noise for Turbulence

• Fractal noise: Many frequencies present, looks more natural

• Can get this by summing noise at different magnifications

• turb(x, y, z) = Σi ai * noisei(x, y, z)

• Typical (but totally adjustable) parameters:
– Magnification doubles at each level (octave)

– Amplitude drops by half

+ 0.5 x

+ 0.25 x

+ 0.125 x

1 x

=

courtesy of H. Elias

Parametric Lines

• Parametric definition of a line segment:

 p(t) = p0 + t(p1 - p0), where t  [0, 1]

 = p0 - t p0 + t p1

 = (1 - t)p0 + t p1

from Akenine-Möller & Haines

like a “blend” of
the two endpoints

Linear Interpolation as Blending

• Consider each point on

the line segment as a

sum of control points pi

weighted by blending

functions Bi :

Blending functions for

linear interpolation
(2 control points)

from Akenine-Möller & Haines degree n = 1 for linear blending

• Here we have B0 = 1 - t and B1 = t

Bézier Curves

• Curve approximation through recursive
application of linear interpolations

– Linear: 2 control points, 2 linear
Bernstein polynomials

– Quadratic: 3 control points, 3 quadratic
Bernstein polynomials

– N control points = N - 1 degree curve

• Notes

– Only endpoints are interpolated (i.e., on
the curve)

– Curve is tangent to linear segments at
endpoints

– Every control point affects every point
on curve

• Makes modeling harder

Cubic Bernstein polynomials
for 4 control points

fr
o
m

 A
k
e
n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

Interpolating Splines

• Idea: Use key frames to indicate a series of
positions that must be “hit”

• For example:
– Camera location

– Path for character to follow

– Animation of walking, gesturing, or facial
expressions

• Morphing

• Use splines for smooth interpolation
– Must not be approximating!

Catmull-Rom spline

• Different from Bezier curves in that we can
have arbitrary number of control points, but
only 4 of them at a time influence each
section of curve
– And it’s interpolating (goes through points)

instead of approximating (goes “near” points)

• Four points define curve between 2nd and 3rd

from Hearn & Baker

Inferring the Coefficients

• The control points are located at t = 0 and

t = 1 on the curve segment, so we can relate

them to the polynomial coefficients as follows:

Curve Subdivision

• Goal: Algorithmically obtain smooth curves
starting from small number of line segments

• One approach: Corner-cutting subdivision
– Repeatedly chop off corners of polygon

– Each line segment is replaced by two shorter segments

– Limit curve is shape that would be reached after an
infinite series of such subdivisions

from Shirley

Surface Subdivision

• Analogous to curve subdivision:

1. Refine mesh: Choose new vertices to make

smaller polygons, update connectivity

2. Smooth mesh: Move vertices to fit underlying

object

from Akenine-Möller & Haines

Loop subdivision

• Smooths triangle mesh

• Subdivision replaces 1 triangle with 4

• Approximating scheme
– Original vertices not guaranteed to be in

subdivided mesh

from Akenine-Möller & Haines

