Final Review

Remember...HW #4 due today!

Course web page:
http://goo.gl/EB3aA

May 15, 2012 < Lecture 25 e DYEIAWARE

Final Notes

— Worth 20% of your grade, just like the midterm
e Covers second half of term (from spring break to May
10), but of course first-half knowledge may be assumed

— A few topics not in book (like ambient occlusion, global
illumination)

— A bit less emphasis on topics addressed in HWs
e Closed book, no calculators, no notes

e Question format similar to midterm, including a few
OpenGL- and GLSL-related questions

= P)ELAARE

Final topics

e Ray tracing

e Global illumination
e Texture mapping
e GLSL shaders

e Shape modeling

Incoming and Outgoing Light at a Surface

surface from all visible
directions

— An image samples the
irradiance at the pinhole

Radiosity B (Wm™2)

— Light leaving a surface in all
directions (per patch)

Radiance

— Power at a point in space in a given
direction, foreshortened, per solid angle

— Can be incoming or outgoing
— Does not attenuate with distance in vacuum
e What is stored in a pixel—the light

energy arriving along a particular ray at a
particular point

= Py

Foreshortening

— Received intensity is greatest when | and N are parallel " "

e 3-D foreshortening factor for light coming from
direction (0, @) is COS0

I P)ELAWARE

from Akenine-Moller & Haines

Light sources

Cut-off angle

eometry . ; . 0
— Point: Shoots light in all L e

directions — n o
— Spotlight: Angle-limited l l l

point source

— Directional: Source distant
enough that light rays are
roughly parallel (e.g., like the
sun relative to earth)

— Area: Behaves like a

continuous configuration of _
point sources inside, say, a Light source types: Induced shad

polygon = P)ELAARE

from Akenine-Moller & Haines

Object surface properties

— Reflectivity (e.g., matte vs.
shiny)

e Space-varying pattern

—I.e., are above
characteristics different in
different locations?

— We'll get to this when we
cover texture-mapping

JERSITY o
™ WYEIAWARE

Capturing Surface Properties: BRDF

%f f(QOa qua Qia ¢Z) —

L(QOa ¢0)

dE(0;, ¢;)
IAI (007 qu)

= Py

Reflectance equation

LO(X) 907 ¢O) —_—
/ f(Bo, b0, 0i, &i) Li(x, 0, pi) COS 0;dw
Q

e This is expensive to compute in general, so the
standard local approach is approximation:

— Approximate incoming light as ambient (whole
hemisphere) + set of point light sources

— Approximate BRDF of surface as combination of diffuse
(matte) and specular (shiny) factors

= P)ELAARE

Standard local model for graphics

ambient term to approximate global lighting
effects

Ambient

Specular

IVERSITY ol
) [ﬁm\f\am

Lighting a point

e Sum over all lights /for each color
channel (clamp overflow to [0, 1]):

Ctotal — Z Ca,mb(l) + Cd'éﬁ(l) + Cspec(l)
[

Camb(l) = Mgy & Samb(l)
cqir (1) = max(0,n - 1(1))myy @ sqyr (1)

Cspec(I) = max(0, v - r(l))smnemspec ® Sspec (1)
= PR

Illumination models

color at eye

e Local vs. global models

— Local illumination: Perception of a particular primitive
only depends on light sources directly affecting that
one primitive

o Geometry
e Material properties

— Global illumination: Also take into account indirect
effects on light of other objects in the scene
e Shadows cast

e Light reflected/refracted
J / = PR

Backward Ray “Following”: Types

point only

— Takes care of hidden
surface elimination

e Ray tracing:
Recursively spawn rays
at hit points to simulate
reflection, refraction,

etc.

Angel
'ERSITY or
¥ P)EIAWARE

Does Ray Intersect any Scene Primitives?

o Different methods for different kinds of primitives
— Polygon
— Sphere
— Cylinder, torus
— Etc.

e Make sure intersection point is in front of eye and
nearest one

a) b)
& T
@

from Hill RSITYor
2 P)EIAWARE

Ray-Sphere Intersection I

P — P —r“=0
with ray equation
p=o-4td
(where d is a unit vector) to get:

0+ td —pel? —r° =0
=)i

Ray-Sphere Intersection II

to solve for 1, resulting in a quadratic
equation with roots given by:

t=d-Ap= \/(d-Ap)2 — (|Aapl* = r7)

e Notes

— Real solutions mean there actually are 1 or 2
intersections

— Negative solutions are behind eye

= Py

Shadow Rays

e Test for occlusion of | for p:
— Spawn shadow ray for | with origin p, direction I(I)

— Check whether shadow ray
intersects any scene object

— Intersection only “counts” if:

0<t<|p—p

e More details in Shirley, Chap. 10.5

from Hill

Ray Tracing

evaluating local illumination at those locations

e Apply operation recursively to some maximum depth to get:
— Reflections of reflections of ...
— Refractions of refractions of ...
— And of course mixtures of the two

= P)ELAARE

Ray Tracing Reflection Formula

because our incident ray v is pointing
in toward the surface, whereas the
light direction | was pointed away
from the surface

e SO just negate the formula to get:

r=v-—2(n-v)n

= Py

Refraction

speed of Iigh in vacuum to tha in medium
(wavelength-dependent = prisms)

— By definition, n>1
— Examples: 1, (1.00) < Myper (1.33) < Myjpes (1.52)

|
\5'16 n B,: Angle of incidence
L)
%gx 0,: Angle of refraction
|

/ERSITY o1
B[ﬁ‘mwﬁm

Basic Ray Tracing: Notes

reflection/transmission

e Some outstanding issues
— Aliasing, aka jaggies
— Shadows have sharp edges, which is unrealistic
— No diffuse reflection from other objects

o Intersection calculations are expensive, and
even more so for more complex objects
— Not currently suitable for real-time (i.e., games)

= P)ELAARE

Distributed (aka “distribution™) Ray
Tracing (DRT)

pixel rendered or multiple recursive rays a
Intersections
e Application #1: Improving image quality via
anti-aliasing
— Supersampling: Shoot multiple nearby eye rays
per pixel and combine colors

— Uniform vs. adaptive: Constant number of rays or
change in areas where image is changing more
quickly

= P)ELAARE

Supersampling

— Irreqular jittered sampling pattern
reduces artifacts

e Combine multiple samples into
one pixel via weighted average

— “Box” filter: All samples associated
with a pixel have equal weight (i.e.,
directly take their average)

— @Gaussian/cone filter: Sample weights
inversely proportional to distance
from associated pixel

Center of
display pixel

Sample
L L/ofscene
7
A X X %
TO
s A B () B
X X % /‘,—V’”

Regular

supersampling Jittered
with 2x supersampling
frequency

" "RSITY or
EIAWARE

Adaptive Supersampling (Whitted's method)

average of corner contrlbutlons p/!

— If you stop here, the only overhead vs. y//d
center-of-pixel ray-tracing is another row,
column of rays 7

e If any corner’s color is too different, \

)

subdivide pixel into quadrants and
recurse on quadrants

e Details

— Subdivide if any corner is more than 25%
different from average (try experimenting
with different thresholds here)

— Maximum depth of 2 subdivisions sufficient

F.-—-"

= i

DRT: Soft Shadows

AV LOwdadrd eacdi

reasonable

— But this gives hard-edged
shadows

e Simulating soft shadows

— Model each light source as
sphere

— Send multiple jittered
shadow rays toward a light
sphere; use fraction that
reach it to attenuate color

JERSITY o
™ WYEIAWARE

DRT: Ambient Occlusion

ny intersection within a certain distace) |
— May use cosine weighting/distribution for foreshortening

>
Bw

DRT: Glossy Reflections

are “sharp reflections™—
every reflective surface
acts like a perfect mirror

e To get glossy or blurry

reflections, send out

multiple jittered reflection & e e i tons”
rays and average their

colors

/ERSITY or
¥ WYEIAWARE

Bounding Volumes

models) in simpler ones (i.e., spheres)
and test simple intersection before
complex

a scene between
the light source L
and the eye E

e It may interact with
multiple diffuse (D)
and specular (S)
objects along the way

e \We can describe this series of interactions with
the regular expression L (D | S)* E

— (If a surface is a mix of D and S, the combination is
additive so it is still OK to treat in this manner)

from Sillion & Puech

Light Paths: Examples

e Ray tracing: LS*E, LDS*E

from Sillion & Puech
from Hill

Ray tracing light paths General light paths s [

Caustics

ray tracing cannot handle caustics—
only paths described by LDS*E

from Sillion & Puech courtesy of H. Wann Jensen

Bidirectional Ray Tracing (P. Heckbert, 1990)

are accessed up by eye rays
— Summation approximates integral term in radiance computation

— Light rays carry information on specular surface locations—they
have no uncertainty

W.RSTTY()[
from P. Heckbert < EIAWARE

Photon Mapping (H. Jensen, 1996)

e 1st pass: Build photon map
— Shoot random rays from light(s) into scene
— Each photon carries fraction of light's power

— Follow specular bounces, but store photons in map
at each diffuse surface hit (or scattering event)

e 2" pass: Render scene
— Modified ray tracing: follow eye rays into scene
— Use photons near each intersection to compute light

= P)ELAARE

What is Texture Mapping?

appearance at the pixel leve

e Characteristics
— Color
— Shininess
— Transparency
— Bumpiness
— Etc.

Bump Mapping

— Billboards, decals, lightmaps, etc.
e But any other per-pixel properties are fair
game...

e Pixel normals usually smoothly varying

— Computed at vertices for Gouraud shading; color
interpolated

— Interpolated from vertices for Phong shading

o Textures allow setting per-pixel normal with a
bump map

= P)ELAARE

Bump mapping: Why?

IVERSITY o
F’[ﬁm\\m

Bump Mapping: How?

additional detail for shading
e Compute lighting per pixel (like Phong)

ur (r.v)

? ;';% 5! II m{ut

!-'.'r ![ﬁ

Bump mapping: Issues

of object is unaffected

e Textures can be used
modify underlying
geometry with

displacement maps

/ERSITY o1
™ WYEIAWARE

Displacement Mapping

Bump mapping Displacement mapping

JERSITYor
&Y JEIAWARE

Texture mapping: Steps

image come from?

e Geometry: Transformation from 3-D
shape locations to 2-D texture image
coordinates

e Rasterization: What to draw at each
pixel

— E.q., bilinear interpolation vs. nearest-

neighbor
9 = PR

Texturing Pipeline (Geometry + Rasterization)

2. Use projector function to obtain object surface
coordinates (u, v)

3. Corresponder function to find texel
coordinates (s, t)

« Scale, shift, wrap like
viewport transform in
geometry pipeline

4. Filter texel at (s, t)
5. Modify pixel (i, j)

Rasterization

list adapted from Akenine-Moller & Haines bt ' A

Projector Functions

e Idea: Project complex object onto simple
object’s surface with parallel or perspective
projection (focal point inside object)

— Plane

— Cylinder
— Sphere
— Cube

courtesy of R. Wolfe

Planar proj ector o [ﬁa&&m

Projecting in non-standard directions

position (X, y, z)—can use any attribute of t
For example:

— Ray comes from another location
Ray is surface normal n at (X, y, z)

Ray is reflection-from-eye vector r at (X, y, 2)
Etc.

= e
%)
\/

X =

\ //

e

position surface normal
2~
=5 s —==
oy
N

from centroid reflaction

courtesy of R. Wolfe

Projecting in non-standard directions

. position
\
I

s surface normal

*

from centroid
reflection

courtesy of R. Wolfe

Different ray directions for a spherical projector

JERSITY or
¥ WYEIAWARE

Environment/Reflection Mapping

e This is an expensive procedure with ray tracing
e Idea: Approximate with texture mapping

= Py

Environment mapping: Details

intermediate surface

o Intersection of eye reflection vector with intermediate
surface provides texture coordinates for
reflection/environment mapping

courtesy of R. Wolfe p[ﬁ%ﬂ&m
\“’/

Texture Rasterization

o Use Gouraud-style linear interpolation of texture
coordinates, right?

— First along polygon edges between vertices
— Then along scanlines between left and right sides

v A (505 T0)

ERSITY
from Hill g M\R[A}iﬁ

farther
J from
closer to the eye
the eye
- from Hill

Cent:e_[_____

of Projection

View plane =T p[ﬁnmsnm

H. Pfister EIAWARE,

Magnification and minification

Minification

from Angel

Magnification Minification

e Magnification: Single screen pixel maps to
area less than or equal to one texel
e Minification: Single screen pixel area maps

to area greater than one texel

— If texel area covered is much greater than 4, even
bilinear filtering isn’t so great

Bilinear Interpolation (BLI)

o Idea: Blend four texel
values surrounding
source, weighted by
nearness

(s, 1,t4+1)

oy _ Item(sat) It6$(8+1,t) _ 1l—a
I(7,7) = (1-b, b’)_ Liex(s,t+1) Liep(s+1,t+1) _

\ =
Vertical blend Horizontal blend e TG

Mipmaps

o JdEaq.
— Prefilter entire texture image at different resolutions

— For each screen pixel, pick texture in mipmap at level of
detail (LOD) that minimizes minification (i.e., pre-image
area closest to 1)

— Do nearest or linear filtering in appropriate LOD texture image

Cnginal Texture

T

Fre-Filtered Images

114

1H1a
1054
| /ERSITY:
@ % 1 picel = T

EIAWARE

from Woo, et al.

Pipeline Visual Summary

LINE{@ o), TRIANGLE(® & ©)

Vertices Transf Vertices Zonnectivity
O - Q nformation
® Geom. Ops.
o ——
e o © © v
Assembly
[] ————— G‘___________,_O

Colored Fragments Fragmentis .v:’
Raster
el —
e

Interpolation

o |

= Py

Vertex Shaders

e Must take care of
— Modelview and perspective transformations
— Normal transformations
— Texture coordinate generation & transformations
— Lighting per vertex
— Etc.

Fragment Shaders

e Alpha blending, depth test still in fixed
pipeline
e Can be used to
— Compute colors
— Apply textures
— Compute fog
— Per-pixel lighting (e.g., Phong shading)

= Py

GLSL Syntax Overview

— Recursion
— Gotos, switches
— Dynamic memory allocation

e GLSL is like C with
— Built-in vector, matrix and sampler types
— Constructors
— A great math library
— Input and output qualifiers

= Py

GLSL Syntax: Types

e \Vectors are first-class types:
— vecz, vec3, vecid

— ivec, bvec: Integer, boolean vectors

e Matrices
— mat2, mat3, mat4 (2x2, 3x3, 4x4)
— Can also do m x n; stored in column-major format

e Samplers
— sampler1lD, sampler2D, sampler3D

= Py

Noise as a Texture Generator

or texels
—noise(x, y) = random()

e If random () has limited range (e.q.,

[0, 1]), can control maximum value via
amplitude

—a * noise(x, V)

e But the results usually aren't
very exciting visually

Perlin Noise for Turbulence

e Typical (but totally adjustable) parameters:
— Magnification doubles at each level (octave)
— Amplitude drops by half

/ERSITY or
¥ WYEIAWARE

Parametric Lines

=Pg-UPy + 1P,
=(1-t)py +tp;

\Iike a “blend” of

P, the two endpoints

p(7)

Linear Interpolation as Blending

sum of control points p,

. - 04+
weighted by blending O
functions B, : 0/. N\
0 02 04 06 08 |
degree n = 1 for linear blending from Akenine-Méller & Haines

n Blending functions for

p(t) = Y B't)p; iear nepoltin
=0

= Py

Bézier Curves

— Quadratic: 3 control points, 3 quadratic
Bernstein polynomials VA 7 5 s 1 f
— N control points = N - 1 degree curve ® 007 04 06 08 1 |E
o Notes Cubi:c: Be4rnstein ||:>olynomials
- . . nt int
— Only endpoints are interpolated (i.e., on of % COMTOT PO
the curve) h
— Curve is tangent to linear segments at s
endpoints o
— Every control point affects every point
on curve

e Makes modeling harder

Interpolating Splines

e For example:
— Camera location
— Path for character to follow

— Animation of walking, gesturing, or facial
expressions

e Morphing
e Use splines for smooth interpolation
— Must not be approximating!

= P)ELAARE

Catmull-Rom spline

section of curve

— And it’s interpolating (goes through points)
instead of approximating (goes “near” points)

e Four points define curve between 2"d and 3

Inferring the Coefficients

t = 1 on the curve segment, so we can relate
them to the polynomial coefficients as follows:

P(0) = ag
P(l)=ag+ a7+ a> + a3
P'(0) = ay

P'(1) = a1 + 2ap + 3a3

= Py

Curve Subdivision

e One approach: Corner-cutting subdivision
— Repeatedly chop off corners of polygon
— Each line segment is replaced by two shorter segments

— Limit curve is shape that would be reached after an
infinite series of such subdivisions

Surface Subdivision

2. Smooth mesh: Move vertices to fit underlying

object
refinement smoothing
/’_‘\l /‘—“\

Loop subdivision

subdwlm()w Subdwmltiﬂ

from Akenine-Mdller & Haines

e Approximating scheme

— Original vertices not guaranteed to be in
subdivided mesh

= Py

