

Geometry:
GLUT Basics and

2-D Transformations

Course web page:

http://goo.gl/EB3aA

February 9, 2012  Lecture 2

Outline

• Quick peek at compiling in Ubuntu

• OpenGL & GLUT basics

– Setting up a program

– 2-D drawing

– 2-D transformations

My coding environment

• Ubuntu
– Here I’ve installed it to a virtual machine using

VirtualBox

– Add compiler (g++), GLUT library (freeglut3-dev) with
“sudo apt-get install …”

– I also use xemacs as text editor; added with “apt-get
install xemacs21” (plus syntax highlighting)

• Makefile
– Specifies .cpp files that are part of “project”, plus

libraries and any path info needed

– Just type “make” in that directory and you get an
executable

OpenGL – What is It?

• GL (Graphics Library): Library of 2-D, 3-D drawing
primitives and operations
– API for 3-D hardware acceleration

• GLU (GL Utilities): Miscellaneous functions dealing
with camera set-up and higher-level shape
descriptions

• GLUT (GL Utility Toolkit): Window-system
independent toolkit with numerous utility functions,
mostly dealing with user interface

• Course web page has links to online function

references (functions from each library start with
library prefix—i.e., gl*, glu*, glut*)

Event-driven GLUT program structure

1. Configure and open window

2. Initialize OpenGL state, program
variables

3. Register callback functions
• Display (where rendering occurs)

• Resize

• User input: keyboard, mouse clicks,
motion, etc. (on Thursday)

4. Enter event processing loop
Portions of some slides adapted from “An Interactive Introduction to OpenGL Programming”,

D. Shreiner, E. Angel, V. Shreiner, SIGGRAPH 2001 course

Simple OpenGL program (no animation)

#include <stdio.h>

#include <GL/glut.h>

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

glutInitWindowSize(100, 100);

glutCreateWindow(“hello”);

init(); // set OpenGL states, variables

glutDisplayFunc(display); // register callback routines

glutMainLoop(); // enter event-driven loop

}

adapted from E. Angel

Simple OpenGL program (no animation)

#include <stdio.h>

#include <GL/glut.h>

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);

glutInitWindowSize(100, 100);

glutCreateWindow(“hello”);

init(); // set OpenGL states, variables

glutDisplayFunc(display); // register callback routines

glutMainLoop(); // enter event-driven loop

}

adapted from E. Angel

Something to know about OpenGL:
It uses global state a lot

Initialization

• glutInit: Pass command-line flags on to GLUT
• glutInitDisplayMode: OR together bit masks to set

modes on pixel type (indexed vs. true color), single- vs.
double-buffering, etc.

• glutInitWindowSize, glutCreateWindow: Set
drawing window attributes, then make it

• init() (my function): Set OpenGL state, program
variables
– Use GL types/typedefs GLfloat, GLint, GL_TRUE, GL_FALSE, etc.

for cross-platform compatibility
– Most notable function here: glClearColor(0, 0, 0, 0);
– glOrtho() explained in a few slides; other functions will wait a

few lectures

Let’s see how to look these up…

Simple OpenGL program

#include <stdio.h>

#include <GL/glut.h>

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);

glutInitWindowSize(100, 100);

glutCreateWindow(“hello”);

init(); // set OpenGL states, variables

glutDisplayFunc(display); // register callback routines

glutMainLoop(); // enter event-driven loop

}

adapted from E. Angel

Rendering Steps (no animation)

• glutDisplayFunc(display) registers a
function called “display” (could have any name
though) as a “callback” when it’s time to draw the
window

– When might this happen?

• What does display() do?
1. Clear window: glClear(GL_COLOR_BUFFER_BIT)

2. Draw shapes
• Set colors, patterns, point/line sizes

• Specify type of geometric primitive(s) and list vertices

3. Commands aren’t necessarily executed immediately, so
force completion with glFlush()

OpenGL Geometric Primitives

Specifying Geometric Primitives

• Primitives are specified using
glBegin(primType);

...

glEnd();

– primType determines how vertices are combined

GLfloat red, green, blue;
GLfloat x, y;

glBegin(primType);
for (i = 0; i < nVerts; i++) {
 // set color, coord. values
 glColor3f(red, green, blue);
 glVertex2f(x, y);
}
glEnd();

OpenGL screen coordinates

• Bottom left corner is
origin

• gluOrtho2D() sets
the units of the screen
coordinate system (just a wrapper
around glOrtho())

•gluOrtho2D(0, w, 0, h) means the
coordinates are in units of pixels

•gluOrtho2D(0, 1, 0, 1) means the
coordinates are in units of “fractions of window
size” (regardless of actual window size)

from Hill

Example: Specifying the center of a square

(320, 240)

gluOrtho2D(0, 640, 0, 480)

Example: Specifying the center of a square

(0.5, 0.5)

1

1

gluOrtho2D(0, 1, 0, 1)

OpenGL Command Formats

glVertex3fv(v)

Number of

components

2 - (x,y)

3 - (x,y,z),

 (r,g,b)

4 - (x,y,z,w),

 (r,g,b,a)

Data Type

b - byte

ub - unsigned byte

s - short

us - unsigned short

i - int

ui - unsigned int

f - float

d - double

Vector

omit “v” for

scalar form–

e.g.,

glVertex2f(x, y)

glColor3f(r, g, b)

glColor3fv(v)

Drawing: Miscellaneous

• glColor() range
• [0, 1] for each color channel for glColor3f()

• [0, 255] for glColor3ub()

• Can set persistent “pen size” outside of
glBegin()/ glEnd()

– glPointSize(GLfloat size)

– glLineWidth(GLfloat width)

• glRect(x1, y1, x2, y2) specifying
opposite corners of rectangle is equivalent to
GL_POLYGON with four vertices listed (i.e.,
filled)

Why We Need Transformations

• What can we do so far?

– Draw 2-D shapes by exhaustively
listing their vertices

• Something missing:

– The ability to specify the intrinsic
shape of an object independently of
its location, scale, or orientation

Example: Shape vs. Viewing Issues

Example: Shape vs. Viewing Issues

Example: Shape vs. Viewing Issues

Example: Shape vs. Viewing Issues

Transformations for modeling, viewing

1. Make object model in canonical coordinate frame

2. Transform object with appropriate translation,
scaling, rotation as needed

• Also useful for building complex objects from
simpler parts

from Hill

2-D Transformations: OpenGL

• 2-D transformation functions*

– glTranslatef(x, y, 0)

– glScalef(sx, sy, 0)

– Negative scaling is reflection

– glRotatef(theta, 0, 0, 1) (angle in
degrees; direction is counterclockwise)

• Notes
– Set glMatrixMode(GL_MODELVIEW) first

– Transformations should be specified before
drawing commands to be affected

– Multiple transformations are applied in reverse
order

*Technically, these are 3-D—we’re just ignoring 1 dim.

Example: 2-D Translation in OpenGL

Two ways to do this:

glRectf(.25,.25,.75,.75);

glTranslatef(.5,.5,0);

glRectf(-.25,-.25,.25,.25);

Assuming gluOrtho2D(0, 1, 0, 1)

What will this

look like?

Suppose we want to draw a diamond

glTranslatef(.5,.5,0);

glRotatef(45,0,0,1);

glRectf(-.25,-.25,.25,.25);

glRotatef(45,0,0,1);

glTranslatef(.5,.5,0);

glRectf(-.25,-.25,.25,.25);

Remember: Order of application is backwards from drawing commands

How can we

get this?

Why does the order of

transformations seem backwards?

• Because (as we will learn),

transformations are implemented with

matrix multiplications

• Thus the rules of linear algebra dictate

that T x R x p means “rotate p, then

translate it”

• Can also think of it functionally: T(R(p))

Limiting “Scope” of Transformations

• Transformations are ordinarily applied to all
subsequent draw commands

• Useful to think of a transformation stack

• To limit effects, use push/pop functions:
glPushMatrix();

// transform

// draw affected by transform

glPopMatrix();

// draw unaffected by transform

Example: Pushing, popping transformations

glPushMatrix();

glTranslatef(.5,.5,0);

glRotatef(45,0,0,1);

glRectf(-.25,-.25,.25,.25);

glPopMatrix();

glPushMatrix();

// draw axis lines

glPopMatrix();

3-D Analogies

• GL_MODELVIEW
transformation is about
moving scene objects
(MODEL) or virtual camera
(VIEW) relative to each
other

• GL_PROJECTION
transformation is about
lens properties of camera
– gluOrtho2D() is one

wrapper for this

• Both described by
matrices, each has
separate stack

