

OpenGL: Interaction,
motion, and textures

Course web page:

http://goo.gl/EB3aA

Reminder: NO CLASS on Thursday, Feb. 16 and Tuesday, Feb. 21

Vincent will be giving a lecture on rasterization on Thursday, Feb. 23

Outline

• [Finish last lecture]

• Slightly more advanced OpenGL, GLUT

– User interaction

– Animation

– Texture maps

• HW #1

Event-driven GLUT program structure

1. Configure and open window

2. Initialize OpenGL state, program
variables

3. Register callback functions
• Display (where rendering occurs)

• Resize

• User input: keyboard, mouse clicks,
motion, etc.

4. Enter event processing loop
Portions of some slides adapted from “An Interactive Introduction to OpenGL Programming”,

D. Shreiner, E. Angel, V. Shreiner, SIGGRAPH 2001 course

More callbacks!!

#include <stdio.h>

#include <GL/glut.h>

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

glutInitWindowSize(100, 100);

glutCreateWindow(“hello”);

init(); // set OpenGL states, variables

glutDisplayFunc(display); // register callback routines

glutKeyboardFunc(keyboard);

glutIdleFunc(idle);

glutMainLoop(); // enter event-driven loop

}

adapted from E. Angel

Simple OpenGL program

#include <stdio.h>

#include <GL/glut.h>

void main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

glutInitWindowSize(100, 100);

glutCreateWindow(“hello”);

init(); // set OpenGL states, variables

glutDisplayFunc(display); // register callback routines

glutKeyboardFunc(keyboard);

glutIdleFunc(idle);

glutMainLoop(); // enter event-driven loop

}

adapted from E. Angel

Callback registration functions

• Render glutDisplayFunc()

• Key down in window glutKeyboardFunc()

• Key up in window glutKeyboardUpFunc()

• Button press/release glutMouseFunc()

• Mouse motion glutMotionFunc()

 (with button down)

• Mouse motion glutPassiveMotionFunc()

 (with button up)

• Window reshaping glutResizeFunc()

• Nothing happening glutIdleFunc()

• X time has elapsed glutTimerFunc()

• Other callbacks (non-printing keys, other input
devices): See GLUT reference pages linked on course page

Example: Keyboard callback

• These arguments are required for your callback

• They say what key was pressed and where the
cursor was when it was pressed:

glutKeyboardFunc(keyboard);

void keyboard(unsigned char key, int x, int y)
{
 switch(key) {
 case ‘q’ : case ‘Q’ :
 exit(1);
 break;

 case ‘r’ : case ‘R’ :
 rotate_mode = GL_TRUE;
 break;
 }
}

Example: Mouse button callback

• Which mouse button, where, and has it been
pressed or released:

glutMouseFunc(mouse);

void mouse(int button, int state, int x, int y)
{

 if (button == GLUT_LEFT_BUTTON) {

 if (state == GLUT_DOWN) {

 left_down = TRUE;

 mouse_x = x;

 mouse_y = y;

 }

 else if (state == GLUT_UP)

 left_down = FALSE;

 }
}

Example: Idle callback

• Use for animation and continuous update

glutIdleFunc(idle);

void idle(void)
{
 // change position variables, etc.
 t += dt;

 // call glutDisplayFunc() callback ASAP
 glutPostRedisplay();
}

Example: Timer callback
• Can be used instead of glutIdleFunc() for control

of frames per second (fps) on different systems

• Key argument is milliseconds until invocation
– Also pass “context” argument to callback function

• Only is called once—re-register at end of function
for repetition

glutTimerFunc(1000, timer, 0)

void timer(int value) // value = 0 here
{
 // change position variables, etc.

 glutPostRedisplay();
 glutTimerFunc(1000, timer, 0);
}

hello_motion example

• Add idle function to previous hello to

move square

• Add some mouse interaction

hello_texture example

• Let’s add some pizzazz to our boring

colored squares…

• In their simplest form, textures are

pictures we can “stick” to our polygons

to make them more visually interesting

• I am providing a Sprite class that

mostly takes care of the details for you

for certain uses

What is Texture Mapping?

• Spatially-varying modification of surface
appearance at the pixel level

• Characteristics
– Color

– Shininess

– Transparency

– Bumpiness

– Etc.

• Sometimes called a “sprite” when on a
polygon with no 3-D

from Hill

Texture mapping applications: Billboards

from Akenine-Moller & Haines

Also called ”impostors”: Image-aligned polygons in 3-D

from www.massal.net/projects

OpenGL texturing steps (Red book)

1. Create a texture object and specify a

texture for that object

2. Indicate how the texture is to be

applied to each pixel

3. Enable texture mapping with
glEnable(GL_TEXTURE_2D)

4. Draw the scene, supplying both

texture and geometric coordinates

Sprite does most of this – but what is it doing?

Create Texture Object

• From where?

– Create programmatically (aka “procedurally” --
see Red Book Chap. 9 checker.c)

– Load image from file (e.g., load_ppm() in Sprite.cpp)

• Name it

– // Get unused “names” – not mandatory
glGenTextures(GLsizei n, GLuint *textures)

– // Create texture object w/ default params (or switch to existing one)
glBindTexture(GLenum target, GLuint texture)

• // Store data in bound texture object (no ref because it’s global)

 glTexImage2D(GLenum target, GLint level,

 GLint internalFormat,
 GLsizei width, GLsizei height,
 GLint border, GLenum format,

 GLenum type,
 const GLvoid *pixels)

Rasterization: Texture application modes

• decal: Overwrite object pixel with texel

• modulate: Combine object pixel with
texel via multiplication
– Need this for multitexturing (i.e., lightmaps)

 courtesy of Microsoft

Texture mapping applications: Lightmaps

courtesy of K. Miller

+ =

Texture Application Modes

• glTexEnv(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE, param), where

param is one of:

– GL_REPLACE: Just overwrite surface pixel

– GL_DECAL: Use alpha values of surface pixel and texel
to blend in standard way

– GL_MODULATE: Multiply surface pixel and texel colors

– GL_BLEND: Blend surface and texel colors with
GL_TEXTURE_ENV_COLOR (see glTexEnv() man
page for details)

• One thing we’re ignoring right now is

wrapping—the idea of the texture being

a repeating pattern

Transparency

• Remember glColor4f(r,g,b,a)?

• a is called the alpha channel and is used

to specify transparency when blending

textures

– See Red Book, Chap. 6

• Used for overlapping sprites in Drop! game

– load_ppm() sets full transparency

when image pixel color is black, full

opacity otherwise

Texturing: Enabling and Drawing

• To draw textured shape, texturing must first be enabled:
glEnable(GL_TEXTURE_2D)

• Load current texture image with glTexImage2D()
– Width, height must be powers of 2 (plus 2 if border is used)
– Only one texture current; faster to change textures by preloading

all and switching with glBindTexture() rather than reloading
each time (this is what Sprite.cpp does)

• Assign texture coordinates (s, t) to vertices with
glTexCoord()

– Similar to glColor() command—sets a property for subsequent
vertices that holds until it is changed

HW #1

• Your first programming assignment,

due on Tuesday, February 28

• See course page for details

