

Rasterization, or
“What is

glBegin(GL_LINES)

really doing?”

Course web page:

http://goo.gl/EB3aA

February 23, 2012  Lecture 4

Outline

• Rasterizing lines

– DDA/parametric algorithm

– Midpoint/Bresenham’s algorithm

• Rasterizing polygons/triangles

Rasterization: What is it?

• How to go from floating-point coords of
geometric primitives’ vertices to integer
coordinates of pixels on screen

• Geometric primitives

– Points: Round vertex location in
screen coordinates

– Lines: Can do this for endpoints,
but what about in between?

– Polygons: How to fill area bounded by edges?

from Angel

Rasterizing Lines: Goals

• Draw pixels as close to the ideal line as
possible

• Use the minimum number of pixels without
leaving any gaps

• Do it efficiently
• Extras

– Handle different line styles
• Width
• Stippling (dotted and dashed lines)
• Join styles for connected lines

– Minimize aliasing (“jaggies”)

DDA/Parametric Line Drawing

• DDA stands for Digital Differential Analyzer, the name
of a class of old machines used for plotting functions

• Slope-intercept form of a line: y = mx + b

– m = dy/dx
– b is where the line intersects the Y axis

• DDA’s basic idea: If we increment the x
coordinate by 1 pixel at each step, the
slope of the line tells us how to much
increment y per step

– I.e., m = dy/dx, so for dx = 1, dy = m

– This only works if m <= 1—otherwise there are gaps

• Solution: Reverse axes and step in Y direction. Since now

dy = 1, we get dx = 1/m

from Angel

• DDA stands for Digital Differential Analyzer, the name
of a class of old machines used for plotting functions

• Slope-intercept form of a line: y = mx + b

– m = dy/dx
– b is where the line intersects the Y axis

• DDA’s basic idea: If we increment the x
coordinate by 1 pixel at each step, the
slope of the line tells us how to much
increment y per step

– I.e., m = dy/dx, so for dx = 1, dy = m

– This only works if m <= 1—otherwise there are gaps

• Solution: Reverse axes and step in Y direction. Since now

dy = 1, we get dx = 1/m

from Angel

DDA/Parametric Line Drawing

DDA: Algorithm

1. Given endpoints (x0, y0), (x1, y1)
• Integer coordinates: Round if endpoints were originally real-valued

• Assume (x0, y0) is to the left of (x1, y1): Swap if they
aren’t

2. Then we can compute slope:

 m = dy/dx = (y1 - y0) / (x1 - x0)

3. Iterate

• If |m| <= 1: Iterate integer x from x0 to x1, incrementing by
1 each step

— Initialize real y = y0

— At each step, y += m, and plot point (x, round(y))

• Else |m| > 1: Iterate integer y from y0 to y1, incrementing
(or decrementing) by 1

— Initialize real x = x0
— At each step, x += 1/m, and plot (round(x), y)

Midpoint/Bresenham’s line drawing

• DDA is somewhat slow

– Floating-point calculations, rounding are
relatively expensive

• Big idea: Avoid rounding, do everything
with integer arithmetic for speed

• Assume slope between 0 and 1

– Again, handle lines with other slopes by using
symmetry

Midpoint line drawing: Line equation

• Recall that the slope-intercept form of the line is
y = (dy/dx)x + b

• Multiplying through by dx, we can rearrange this in
implicit form:

F(x, y) = dy x - dx y + dx b = 0

• F is:

– Zero for points on the line
– Positive for points below the line (to

(right if slope > 1)
– Negative for points above the line

(left if slope > 1)
• Examples: (0, 1), (1, 0), etc. from Angel

2x - 9y = 0

9x - 2y = 0

Midpoint line drawing: The Decision
• Given our assumptions about the slope, after

drawing (x, y) the only choice for the next

pixel is between the upper pixel U = (x+1,
y+1) and the lower one L = (x+1, y)

• We want to draw the one closest to the line

from Hill

U

L

Midpoint line drawing: Midpoint decision

• After drawing (x, y), in order to choose the next pixel to

draw we consider the midpoint M = (x+1, y+0.5)

– If it’s on the line, then U and L are equidistant from the line

– If it’s below the line, pixel U is closer to the line than pixel L

– If it’s above the line, then L is closer than U

from Hill

M

Midpoint line drawing: Midpoint decision

• So F is a decision function about which pixel to draw:

– If F(M) = F(x+1, y+0.5) > 0 (M below the line), pick U

– If F(M) = F(x+1, y+0.5) <= 0 (M above or on line), pick L

from Hill

Midpoint line drawing: Implementation

• Key efficiency insight: F does not have to be fully evaluated every step

• Suppose we do the full evaluation once and get F(x+1, y+0.5)

– If we choose L, next midpoint to evaluate M' is at F(x+2, y+0.5)

– If we choose U, next midpoint M'' would be at F(x+2, y+1.5)

from Hill

Midpoint line drawing: Implementation

from Hill

• Key efficiency insight: F does not have to be fully evaluated every step

• Suppose we do the full evaluation once and get F(x+1, y+0.5)

– If we choose L, next midpoint to evaluate M' is at F(x+2, y+0.5)

– If we choose U, next midpoint M'' would be at F(x+2, y+1.5)

Midpoint line drawing: Implementation

from Hill

• Key efficiency insight: F does not have to be fully evaluated every step

• Suppose we do the full evaluation once and get F(x+1, y+0.5)

– If we choose L, next midpoint to evaluate M' is at F(x+2, y+0.5)

– If we choose U, next midpoint M'' would be at F(x+2, y+1.5)

Midpoint line drawing: Implementation
• Expanding these out using F(x, y) = dy x – dx y + dx b :

– FM = F(x + 1, y + 0.5) = dy(x + 1) - dx(y + 0.5) + dx b

– FM' = F(x + 2, y + 0.5) = dy(x + 2) - dx(y + 0.5) + dx b
– FM'' = F(x + 2, y + 1.5) = dy(x + 2) - dx(y + 1.5) + dx b

• Note that FM' - FM = dy and FM'' - FM = dy - dx

• So depending on whether we choose L or U, we just have to add dy or dy - dx,
respectively, to the old value of F in order to get the new value

from Hill

Midpoint line drawing: Algorithm
• To initialize, we do a full calculation of F at the first midpoint next to the

left line endpoint:

 F(x0 + 1, y0 + 0.5)

 = dy(x0 + 1) - dx(y0 + 0.5) + dx b

 = dy x0 - dx y0 + dx b + dy - 0.5 dx

 = F(x0, y0) + dy - 0.5 dx

– But F(x0, y0) = 0 since it’s on the line, so our first

F = dy - 0.5 dx
– Only the sign matters for the decision, so to make it an integer value we

multiply by 2 to get 2F = 2 dy - dx

• To update, keep current values for x and y and a running total for F:

– When L is chosen: F += 2dy and x++

– When U is chosen: F += 2(dy - dx) and x++ , y++

Line drawing speed

• 100,000 random lines in 500 x 500 window
(average of 5 runs)

• DDA: 6.8 seconds

• Midpoint: 2.5 seconds

• OpenGL using GL_LINES (in software):

1.6 seconds

Extensions

• How to draw thick (>1 pixel wide)
lines?
– Nested Bresenham’s (perpendicular to

main line at each step, or series of parallel
lines)

• Stippled/dashed lines
– Add state (pen up/down) inside loop

Polygon Rasterization

• Given a set of vertices, want to fill the interior

• Basic procedure:
– Iterate over scan lines between top

and bottom vertex

– For each scan line, find all
intersections with polygon edges

– Sort intersections by x-value
and fill pixel runs between odd-
even pairs of intersections

from Hill

Polygon Rasterization: Notes

• Refinements
– Maintain correct parity by discarding

intersections with upper endpoint of
any edge

– Avoid double-drawing at border of
abutting polygons (bad if blending/
XOR’ing): Left/bottom ownership

• Draw pixel on left edge of
run but not right

• Discard intersections with
any horizontal edges

• Efficiency
– Avoid checking intersections with all poly edges for each

scanline by keeping an active edge list

from Hill

Rasterizing triangles

• Special case of polygon
rasterization
– Exactly two active edges at

all times

• One method:
– Fill scanline table between

top and bottom vertex with
leftmost and rightmost side
by using DDA or midpoint
algorithm to follow edges

– Traverse table scanline by
scanline, fill run from left to
right

