Rasterization, or "What is glBegin(GL_LINES) really doing?"

> Course web page: http://goo.gl/EB3aA

February 23, 2012 * Lecture 4

- Rasterizing lines
 - DDA/parametric algorithm
 - Midpoint/Bresenham's algorithm
- Rasterizing polygons/triangles

Rasterization: What is it?

- How to go from floating-point coords of geometric primitives' vertices to integer coordinates of pixels on screen
- Geometric primitives
 - Points: Round vertex location in screen coordinates
 - Lines: Can do this for endpoints, but what about in between?

- Polygons: How to fill area bounded by edges?

Rasterizing Lines: Goals

- Draw pixels as close to the ideal line as possible
- Use the minimum number of pixels without leaving any gaps
- Do it efficiently
- Extras
 - Handle different line styles
 - Width
 - Stippling (dotted and dashed lines)
 - Join styles for connected lines
 - Minimize aliasing ("jaggies")

DDA/Parametric Line Drawing

- DDA stands for <u>Digital Differential Analyzer</u>, the name of a class of old machines used for plotting functions
- Slope-intercept form of a line: y = mx + b

-m = dy/dx

- $-\mathbf{b}$ is where the line intersects the Y axis
- DDA's basic idea: If we increment the x coordinate by 1 pixel at each step, the slope of the line tells us how to much increment y per step

- I.e., $\mathbf{m} = \frac{dy}{dx}$, so for $d\mathbf{x} = \mathbf{1}$, $d\mathbf{y} = \mathbf{m}$

from Angel

- This only works if m <= 1—otherwise there are gaps
 - Solution: Reverse axes and step in Y direction. Since now dy = 1, we get dx = 1/m

DDA/Parametric Line Drawing

- DDA stands for <u>Digital Differential Analyzer</u>, the name of a class of old machines used for plotting functions
- Slope-intercept form of a line: y = mx + b

-m = dy/dx

- $-\mathbf{b}$ is where the line intersects the Y axis
- DDA's basic idea: If we increment the x coordinate by 1 pixel at each step, the slope of the line tells us how to much increment y per step

- I.e., $\mathbf{m} = \frac{dy}{dx}$, so for $d\mathbf{x} = \mathbf{1}$, $d\mathbf{y} = \mathbf{m}$
- from Angel
- This only works if m <= 1—otherwise there are gaps
 - Solution: Reverse axes and step in Y direction. Since now dy = 1, we get dx = 1/m

DDA: Algorithm

- 1. Given endpoints $(x_0, y_0), (x_1, y_1)$
 - Integer coordinates: Round if endpoints were originally real-valued
 - Assume (x_0, y_0) is to the left of (x_1, y_1) : Swap if they aren't
- 2. Then we can compute slope:

$$m = dy/dx = (y_1 - y_0) / (x_1 - x_0)$$

- 3. Iterate
 - If |m| <= 1: Iterate integer x from x₀ to x₁, incrementing by 1 each step
 - Initialize real $\mathbf{y} = \mathbf{y}_0$

- At each step, y += m, and plot point (x, round(y))

- Else |m| > 1: Iterate integer y from y_0 to y_1 , incrementing (or decrementing) by 1
 - Initialize real $\mathbf{x} = \mathbf{x}_0$
 - At each step, x += 1/m, and plot (round(x), y)

Midpoint/Bresenham's line drawing

DDA is somewhat slow

- Floating-point calculations, rounding are relatively expensive
- Big idea: Avoid rounding, do everything with integer arithmetic for speed
- Assume slope between 0 and 1
 - Again, handle lines with other slopes by using symmetry

Midpoint line drawing: Line equation

- Recall that the slope-intercept form of the line is
 y = (dy/dx) x + b
- Multiplying through by dx, we can rearrange this in implicit form:

$$F(x, y) = dy x - dx y + dx b = 0$$

9x - 2y = 0

- **F** is:
 - Zero for points on the line
 - Positive for points **below** the line (**right** if slope > 1)
 - Negative for points **above** the line (**left** if slope > 1)
 - Examples: (0, 1), (1, 0), etc.

Midpoint line drawing: The Decision

- Given our assumptions about the slope, after drawing (x, y) the only choice for the next pixel is between the upper pixel U = (x+1, y+1) and the lower one L = (x+1, y)
- We want to draw the one closest to the line

Midpoint line drawing: Midpoint decision

- After drawing (x, y), in order to choose the next pixel to draw we consider the midpoint M = (x+1, y+0.5)
 - If it's **on** the line, then **U** and **L** are equidistant from the line
 - If it's **below** the line, pixel **U** is closer to the line than pixel **L**
 - If it's **above** the line, then **L** is closer than **U**

Midpoint line drawing: Midpoint decision

- So **F** is a **decision function** about which pixel to draw:
 - If F(M) = F(x+1, y+0.5) > 0 (M below the line), pick U
 - If $F(M) = F(x+1, y+0.5) \le 0$ (M above or on line), pick L

- Key efficiency insight: \mathbf{F} does not have to be fully evaluated every step
- Suppose we do the full evaluation once and get F(x+1, y+0.5)
 - If we choose **L**, next midpoint to evaluate **M**' is at **F**(x+2, y+0.5)
 - If we choose **U**, next midpoint **M**'' would be at **F**(**x**+2, **y**+1.5)

- Key efficiency insight: **F** does not have to be fully evaluated every step
- Suppose we do the full evaluation once and get F(x+1, y+0.5)
 - If we choose L, next midpoint to evaluate M' is at F(x+2, y+0.5)
 - If we choose **U**, next midpoint **M**'' would be at **F**(**x**+2, **y**+1.5)

- Key efficiency insight: **F** does not have to be fully evaluated every step
- Suppose we do the full evaluation once and get F(x+1, y+0.5)
 - If we choose L, next midpoint to evaluate M' is at F(x+2, y+0.5)
 - If we choose **U**, next midpoint **M**'' would be at **F**(**x**+2, **y**+1.5)

- Expanding these out using F(x, y) = dy x dx y + dx b:
 - $-F_{M} = F(x + 1, y + 0.5) = dy(x + 1) dx(y + 0.5) + dx b$
 - $F_{M'} = F(x + 2, y + 0.5) = dy(x + 2) dx(y + 0.5) + dx b$ - $F_{M''} = F(x + 2, y + 1.5) = dy(x + 2) - dx(y + 1.5) + dx b$
- Note that $\mathbf{F}_{\mathbf{M}'} \mathbf{F}_{\mathbf{M}} = \mathbf{dy}$ and $\mathbf{F}_{\mathbf{M}''} \mathbf{F}_{\mathbf{M}} = \mathbf{dy} \mathbf{dx}$
- So depending on whether we choose L or U, we just have to add dy or dy dx, respectively, to the old value of F in order to get the new value

Midpoint line drawing: Algorithm

 To initialize, we do a full calculation of **F** at the first midpoint next to the left line endpoint:

$$F(x_0 + 1, y_0 + 0.5)$$

= dy(x_0 + 1) - dx(y_0 + 0.5) + dx b
= dy x_0 - dx y_0 + dx b + dy - 0.5 dx
= F(x_0, y_0) + dy - 0.5 dx

- But $\mathbf{F}(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}$ since it's on the line, so our first $\mathbf{F} = \mathbf{dy} \mathbf{0.5} \mathbf{dx}$
- Only the sign matters for the decision, so to make it an integer value we multiply by 2 to get 2F = 2 dy dx
- To update, keep current values for ${f x}$ and ${f y}$ and a running total for ${f F}$:
 - When **L** is chosen: $\mathbf{F} += 2dy$ and $\mathbf{x}++$
 - When U is chosen: $\mathbf{F} += 2(dy dx)$ and x++, y++

Line drawing speed

 100,000 random lines in 500 x 500 window (average of 5 runs)

- DDA: 6.8 seconds
- Midpoint: 2.5 seconds
- OpenGL using GL_LINES (in software):
 1.6 seconds

Extensions

- How to draw thick (>1 pixel wide) lines?
 - Nested Bresenham's (perpendicular to main line at each step, or series of parallel lines)
- Stippled/dashed lines
 - Add state (pen up/down) inside loop

Polygon Rasterization

- Given a set of vertices, want to fill the interior
- Basic procedure:
 - Iterate over scan lines between and bottom vertex
 - For each scan line, find all intersections with polygon edges
 - Sort intersections by X-value and fill pixel runs between even pairs of intersections

Polygon Rasterization: Notes

- Refinements
 - Maintain correct parity by discarding intersections with upper endpoint of any edge
 - Avoid double-drawing at border of abutting polygons (bad if blending/ XOR'ing): Left/bottom ownership
 - Draw pixel on left edge of run but not right
 - Discard intersections with any horizontal edges
- Efficiency
 - Avoid checking intersections with all poly edges for each scanline by keeping an **active edge list**

a)

В

Rasterizing triangles

- Special case of polygon rasterization
 - Exactly two **active** edges at all times
- One method:
 - Fill scanline table between top and bottom vertex with leftmost and rightmost side by using DDA or midpoint algorithm to follow edges
 - Traverse table scanline by scanline, fill run from left to right

