Rasterization, or

“What is
glBegin (GL LINES)

Course web page:
http://goo.gl/EB3aA

February 23, 2012 < Lecture 4 @lﬁmvsvm

Outline

— DDA/parametric algorithm
— Midpoint/Bresenham’s algorithm

e Rasterizing polygons/triangles

Rasterization: What is it?

coordinates of pixels on screen 1

o Geometric primitives ,

— Points: Round vertex location in /
screen coordinates

— Lines: Can do this for endpoints, =T
but what about in between? ’

— Polygons: How to fill area bounded by edges?

Rasterizing Lines: Goals

e Use the minimum number of pixels without
eaving any gaps
e Do it efficiently]

e Extras ’

— Handle different line styles /
o Width
e Stippling (dotted and dashed lines)
e Join styles for connected lines &

— Minimize aliasing (“jaggies”)

-~~\\.-.'~
\

DDA/Parametric Line Drawin

—m = dy/dx f j
— b is where the line intersects the Y axis ! 7

e DDA’s basic idea: If we increment the X Il i
coordinate by 1 pixel at each step, the P
slope of the line tells us how to much 3 (ENN ot
increment y per step =

from Angel

7 1
- Ile,m = dy/dx,sofordx = 1,dy = m
— This only works if m <= 1l—otherwise there are gaps

e Solution: Reverse axes and step in Y direction. Since now
dy = 1,wegetdx = 1/m

= P)ELAARE

DDA/Parametric Line Drawin

O~
N\

—m = dy/dx
— b is where the line intersects the Y axis

e DDA’s basic idea: If we increment the X ll /

coordinate by 1 pixel at each step, the ,
slope of the line tells us how to much L —

7/ —

increment y per step 7?[,
- Ile,m = dy/dx,sofordx = 1,dy = m
— This only works if m <= 1l—otherwise there are gaps

e Solution: Reverse axes and step in Y direction. Since now
dy = 1,wegetdx = 1/m

from Angel

= P)ELAARE

DDA: Algorithm

aren'’t
2. Then we can compute slope:

m = dy/dx = (y; - ¥o) / (%1 - %)
3. Iterate

e If |[m|] <= 1:Iterate integer X from X, to X, incrementing by
1 each step

— Initializerealy = ¥y,
— Ateach step, y += m, and plot point (x, round(y))

e Else |m| > 1:Iterate integer y from ¥, to ¥, incrementing
(or decrementing) by 1

— Initialize real X = X,
— Ateachstep, X += 1/m, andplot (round(x), y)

= P)ELAARE

Midpoint/Bresenham’s line drawing

relatively expensive

e Big idea: Avoid rounding, do everything
with integer arithmetic for speed

e Assume slope between 0 and 1

— Again, handle lines with other slopes by using
symmetry

= Py

Midpoint line drawing: Line equation

Ox -2y =0
e Fis:

— Zero for points on the line
— Positive for points below the line
(right if slope > 1)
— Negative for points above the line
(left if slope > 1)
e Examples: (0, 1), (1, 0), etc.

e [[
S
ENAEEEEEEE
HEFEEEEEEEE
]
HiEEEEEEEE

Midpoint line drawing: The Decision

e \We want to draw the one closest to the line

P= [p_;]

o-—--o-—--@—-

Midpoint line drawing: Midpoint decision

it's below the line, pixel U is closer to the line than pixe
— If it's above the ling, then L is closer than U

--o-—--ea-—--@—-

P= [JrJ Py)

RSITYor
'@HAWARL
from Hill

Midpoint line drawing: Midpoint decision

o-—--@-—--@—-

P= [JrJ Py)

RSITYor
@@?{AWARL
from Hill

Midpoint line drawing: Implementation

— If we choose U, next midpoint M" " would be at FF (x+2, y+1.5)

o-—--@-—--@—-

P= [JrJ Py)

RSITYor
'@HAWARL
from Hill

Midpoint line drawing: Implementation

— If we choose U, next midpoint M" " would be at FF (x+2, y+1.5)

- RSITY or
EIAWARE.

Midpoint line drawing: Implementation

— If we choose U, next midpoint M' " would be at F (x/+2 , y+1.5)
/7

- RSITY or
EIAWARE.

from Hill

Midpoint line drawing: Implementation

e So depending on whether we choose L or U, we just have to add dy ordy - dx,
respectively, to the old value of F in order to get the new value

--o-——--ea-—--@—-

P= [JrJ Py)

: '[ﬁwnr{sn‘v
from Hill ELAWARE

Midpoint line drawing: Algorithm

dy(x, + 1) - dx(y, + 0.5) + dx b
dy x, ~ dx y, + dx b + dy - 0.5 dx
F(x,, yo) + dy - 0.5 dx

- ButF(x,, y,) = O sinceit’s on the line, so our first
F =dy - 0.5 dx

— Only the sign matters for the decision, so to make it an integer value we
multiply by 2toget 2F = 2 dy - dx

e To update, keep current values for X and y and a running total for B
— When L is chosen: F += 2dy and x++
— When Uis chosen: F += 2 (dy - dx) and x++, y++

= P)ELAARE

Line drawing speed

(average of 5 runs)

e DDA: 6.8 seconds

e Midpoint: 2.5 seconds

e OpenGL using GL. LINES (in software):
1.6 seconds

= Py

Extensions

— Nested Bresenham'’s (perpendicular to
main line at each step, or series of parallel
lines)

e Stippled/dashed lines
— Add state (pen up/down) inside loop

PATTERN FACTOR
Ox00FF 1
Ox00FF z

Ox0COF 1 — - — N — —
0x0COF 3

OxAALA T - - —— = = — =

D ALAL Zg - - - - - — — - — — — —
D AALA i - - - — — —
D AALA |

Polygon Rasterization

— Iterate over scan lines between
and bottom vertex

— For each scan line, find all
intersections with polygon edges

— Sort intersections by X-value

and fill pixel runs between
even pairs of intersections

1 2 3 4 5 6 7 8 9

e

RSITY or
EIAWARE

Polygon Rasterization: Notes

N
any edge \gee two \
— Avoid double-drawing at border of e one
abutting polyfgons (bad if bIendin?‘/
XOR’ing): Left/bottom ownership S —

e Draw pixel on left edgeof
run but not right

a) b) c) d)
e Discard intersections with
any horizontal edges

o Efficiency

— Avoid checking intersections with all poly edges for each
scanline by keeping an active edge list

Rasterizing triangles

— Exactly two active edges at
all times

e One method:

— Fill scanline table between
top and bottom vertex with
leftmost and rightmost side

b?/ using DDA or midpoint
algorithm to follow edges
— Traverse table scanline by

scanline, fill run from left to
right

JERSITY o
™ WYEIAWARE

