Simulation: How-to

Course web page:
http://goo.gl/EB3aA
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Outline

e Ordinary aifferential equations &
difference equations

e HW #2



Particle Update

e Typically, we don’t have an explicit parametric
function x(t) that we can just evaluate for any t

— E.g., a spline curve

e Rather, we have a set of forces and an initial
value for the particle state

e \We have to simulate the action of the forces on
the particle to “"see what happens”!
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Forces

gravity
— Drag: Resistance to motion through medium proportional to speed:

fdrag(t) = 'kd v(t)

— Just need to sum component forces acting on particle at time t to get
net force f(t). For example, for a “cannonball” shot through the air:

f(t) = fgravity(t) + fdrag(t) T ..

e n-ary: Interaction forces between particles

— Gravitational attraction .
— Electrical charge Based on proximity
— Springs 2+ Specific to connected particles
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N-ary Forces: Springs

ment from resting length r of spring

e Assuming time t, let Ax = x_,— x,,
d = Ax/|Ax|, and Av = v_—v,. Then the
force on gis (where f, = —f.):

f, = — [ks(]|AX|| — r) + kgAv - d] d
4 4

spring constant damping constant
(“stiffness”) (like “spring drag”)

See molecule examples at http://www.myphysicslab.com —
e[ﬁ“hlAWARE



Particle Update: Passive Dynamics

— Position x(t)
— Velocity v(t)
—Mass m

— Net force f(t) acting on it according to
Newton’s 2" law of motion F = m a.
Rewrite acceleration as:

a(t) = v(t) = %(t) = £(t) /m

= Py



Passive Update: Steps

0 ¢© ' 40
e S0 assume we have x(t) and v(t)
e Now we want:

1.v(t + At): Integrate acceleration a(t)
2. X(t + At): Integrate velocity v(t)

= Py



Ordinary Differential Equations

derivatives (i.e.,
tangents) f(x, t)

ox(t)
ot

different ways of writing derivative

= x(1) = f(x,1)




ODE: Initial Value Problems

X(ty) = X
e How do we compute

other values x(t)
where t = t; ?




ODE: Vector field

e Think of this vector field as
“pushing” point along—we
can choose where to drop
the point, but the vector

field carries it from there

o Represents velocities of
point




Euler Integration
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from Numerical Recipes @ EIAWARE



Euler Integration: Step Sizes

approximation of
curve

e Shorter step sizes
better, but more
evaluations :(

from A. Witkin’s SI

GGRAPH course notes
IVERSITYor
E[ﬁmwm



Euler integration: Issues




Higher-order solvers

o
x(to + At) = x(t0) + Atax(to)

At? §? A" O™
| o 8t2x(to)+--- | Ny c’)tnx(tO)

e Euler method uses just first two terms—the rest
IS error
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Midpoint method (aka “2" order Runge-
Kutta”, aka RK2)

2 atQX(to)

o Letting f(x, t)=f(x(t)) for simplicity,
compute second derivative with its own
Taylor series approximation and
substitute to get:

X(t+ ) = x(1) + AL + L))

= Py



Midpoint/RK2 method: Steps

Step) A At
fmia = f(x(¢) QX,t | 2)

3. Take full step using midpoint derivative
x(t + At) = x(t) + At f_4

= Py



Midpoint/RK2 ODE solver is not the same
as two half Euler steps!

Xi+At
Xi+ At/2
Xt
Single full Euler step Two half Euler steps :
(One function evaluation) (Two function evaluations) H
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Midpoint/RK2 ODE solver is not the same
as two half Euler steps!

At/2)

* f
Bt qutf?’t i

Midpoint Ruinge-Kutta step
(o functioin evaiuations)
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— Implement a mass-spring system to simulate collisions of deformable
bodies

— Simulate some variant of pachinko, pinball, Labyrinth, or billiards where a
ball or balls collide or roll around. Besides just walls, there might be
bumpers, flippers, elevators, conveyor belts, trampolines, cannons, rocket
thrusters, parachutes, wind-making fans, etc.

e Provided: Bounce!
e Required elements: see assignment page



