Geometry:
2-D & 3-D Transformations

Course web page:
http://goo.gl/EB3aA

March 6, 2012 < Lecture 7 [ﬁm&%

Outline

o 2-D, 3-D transformations
— Types, mathematical representation
— OpenGL functions for applying

2-D Translation

= Py

2-D Translation

= Py

2-D Translation

L
Y
= YA

2-D Translation

2-D Translation

2-D Scaling

= Py

2-D Scaling

= Py

2-D Scaling

Horizontal shift proportional to horizontal position

2-D Scaling

Vertical shift proportional to vertical position

2-D Scaling

= Py

2-D Scaling

= Py

2-D Rotation

= Py

2-D Rotation

This is a counterclockwise rotation

2-D Rotation

This is a counterclockwise rotation

2-D Rotation: Trigonometry

VAR 1 sin(45) + 1 cos(45)

v\ [xcosf —ysind
y |\ xsin + ycoso

2-D Rotation: Matrix Multiplication

Dot product e of row vector
and column vector:
rec=r¢+ neo+ ..+ rC,

cCosf —sind X
sin@ cosé J

~7

CQ\ E.g\

S——
|

2-D Rotation: Matrix Multiplication

Dot product e of row vector
and column vector:
rec=r¢+ neo+ ..+ rC,

cCosf —sind X
sin@ cosé J

~7

CQ\ E.g\

S——
|

2-D Rotation (uncentered)

N

'\ [cosf® —sind T
y]\ sin@ cos#

2-D Rotation (uncentered)

N

'\ [cosf® —sind T
y]\ sin@ cos#

2-D Shear (horizontal)

= Py

2-D Shear (horizontal)

Horizontal displacement proportional to vertical position

= Py

2-D Shear (horizontal)

2-D Reflection (vertical)

= Py

2-D Reflection (vertical)

Just a special case of scaling—"negative” scaling

= Py

2-D Reflection (vertical)

2-D Transformations: OpenGL

— glScale(sx, sy, 0)

— glRotate (theta, 0, 0, 1) (anglein
degrees; direction is counterclockwise)

e No explicit shear built into OpenGL

= Py

Representing Transformations

(2)=(2)+(2)

e It's inconvenient (inelegant?) to have two
different operations (addition and multiplication)
for different forms of transformation

e It would be desirable for all transformations to be
expressed in @ common form

— Solution: Homogeneous coordinates

= Py

Homogeneous Coordinates

1) --- » X,)' be a point in Euclidean
space
e Change to Aomogeneous coordinates:
X = (xT, DT

e Think of last coordinate w as a scale coordinate,
with w = 1 being the default scale

e (Can go back to non-homogeneous representation by
normalizing (some transformations may change
scale):

(X", W) = x/w

= P)ELAARE

Example: Translation with homogeneous
coordinates

e New way:
i (1 0 Az [x)
y | = 0 1 Ay J
1 \O0 0 1 /J\1)

= Py

Homogeneous Coordinates: Rotations, etc.

WI ertro owmg X Matrix.
x = =0 X
— Lol 1

e “"Compose” transforms by multiplying their
matrices together

e Matrix multiplication's non-commutativity explains
why RTx # TRx

= Py

OpenGL's coordinates

IS a 4-D vector (X, Y, Z, W

e If you do something in 2-D, OpenGL
simply sets z = O for you

e If the scale coordinate w is not set

explicitly (recall that there is a
glvertex4 () that allows you to do so),

OpenGL sets w = 1 for you

= Py

OpenGL 3-D coordinates

looking out into scene:

" +X right, -X left X
= +Y up, -Y down
= +7 behind camera, -Z in front

= One way to remember: cross product of
+X and +Y axis vectors is +7

e Positive rotations are counterclockwise
around axis of rotation

= Py

v
-
O
)
O
0
-
(O
. -
T
3
o

3-D Rotations

e Three canonical rotation axes e
e S
are the coordinate axes X, Y, Z

. % Q‘H—\P’
e These are sometimes referred to ﬂ@?(\@kQ

in aviation terms: pitch, yaw or |- __
heading, and roll, respectively

a) pitch b) roll C) yaw

RSITYor
from Hil P EIAWARE

3-D Rotation Matrices

constant
e E.g., a rotation about the X axis of &radians:

(1 0 0 0)
0 cosf —sinf 0
0 sin@ cosf@ O
\ 0 0 0 Iy

= Py

3-D Rotation Matrices

—sinf 0O cosf 0

\ 0 0 0 1/

(COS@ —sinf® 0 0)
sinff cos® 0O O
0 0 1 O

\ 0 0 0 1)

3-D Shears

X PU ® CO. / X / / Y- / /
— 1st subscript: Which coordinate is changed by shear (row where s
appears)

— 2nd subscript: Which coordinate is the shearing proportional to
(column of s)

= O e

o O e
O O -
o = O W

H,, (s) H,.(s) Ui

OpenGL matrix stacks

e OpenGL maintains a stack; top matrix is one applied
to drawing commands
— Can “read” with glGet (GL_MODELVIEW MATRIX)

e So pushing and popping (the right stack) save and
restore transformations
— glPushMatrix () pushes a copy of top of stack

e Postmultiplication automatically happens when
glTranslate (), glRotate (), etc. called

successively

= P)ELAARE

OpenGL stacks: Modifying top matrix

— OpenGL has no built-in shear function or
many other “exotic” transformations

e Replacement of current matrix
—glLoadIdentity ()
—glLoadMatrix (M)

o Postmultiplication of current matrix
—glMultMatrix (M)

= Py

glLoadMatrix (), glMultMatrix ()

doubles or floats m
e Column-major format:

m/[0]
m[1]
m|2]
m|3]

m[4] m|[8]
m[5] m][9]
m|[6] m[10]
m|7] m[11]

m[12]
m[13]
m|14]
m|15]

=)i

