Geometry: 2-D & 3-D Transformations

Course web page: http://goo.gl/EB3aA

March 6, 2012 * Lecture 7

- HW #2 questions?
- 2-D, 3-D transformations
 - Types, mathematical representation
 - OpenGL functions for applying

Horizontal shift proportional to horizontal position

Vertical shift proportional to vertical position

2-D Rotation

2-D Rotation

This is a counterclockwise rotation

2-D Rotation

This is a counterclockwise rotation

2-D Rotation: Trigonometry

2-D Rotation: Matrix Multiplication

2-D Rotation: Matrix Multiplication

2-D Rotation (uncentered)

2-D Rotation (uncentered)

2-D Shear (horizontal)

2-D Shear (horizontal)

Horizontal displacement proportional to vertical position

2-D Shear (horizontal)

2-D Reflection (vertical)

2-D Reflection (vertical)

Just a special case of scaling—"negative" scaling

2-D Reflection (vertical)

2-D Transformations: OpenGL

- 2-D transformation functions
 - glTranslate(x, y, 0)
 - glScale(sx, sy, 0)
 - glRotate(theta, 0, 0, 1) (angle in degrees; direction is counterclockwise)
- No explicit shear built into OpenGL

Representing Transformations

• Note that we've defined rotation, scaling, etc. as matrix multiplications, but translation as a vector addition

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} \Delta x\\ \Delta y\end{array}\right)$$

- It's inconvenient (inelegant?) to have two different operations (addition and multiplication) for different forms of transformation
- It would be desirable for all transformations to be expressed in a common form
 - Solution: Homogeneous coordinates

Homogeneous Coordinates

- Note: write vectors vertically instead of horizontally
- Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be a point in Euclidean space
- Change to *homogeneous* coordinates:

$$\mathbf{x} \Rightarrow (\mathbf{x}^{\mathsf{T}}, \mathbf{1})^{\mathsf{T}}$$

- Think of last coordinate *w* as a **scale** coordinate, with *w* = 1 being the default scale
- Can go back to non-homogeneous representation by normalizing (some transformations may change scale):

$$(\mathbf{X}^{\mathsf{T}}, W)^{\mathsf{T}} \Rightarrow \mathbf{X} / W$$

Example: Translation with homogeneous coordinates

Homogeneous Coordinates: Rotations, etc.

 A 2-D rotation, scaling, shear or other transformation normally expressed by a 2 x 2 matrix **R** is written in homogeneous coordinates with the following 3 x 3 matrix:

$$\mathbf{x}' = \begin{pmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0}^T & \mathbf{1} \end{pmatrix} \mathbf{x}$$

- "Compose" transforms by multiplying their matrices together
- Matrix multiplication's non-commutativity explains why RTx ≠ TRx

OpenGL's coordinates

- The underlying form of all points/vertices is a 4-D vector (*x*, *y*, *z*, *w*)
- If you do something in 2-D, OpenGL simply sets *z* = 0 for you
- If the scale coordinate w is not set explicitly (recall that there is a glVertex4() that allows you to do so), OpenGL sets w = 1 for you

OpenGL 3-D coordinates

- "Right-handed" system
- From point of view of camera looking out into scene:
 - +X right, -X left
 - +Y up, -Y down
 - +Z behind camera, -Z in front
 - One way to remember: cross product of +X and +Y axis vectors is +Z

 Positive rotations are counterclockwise around axis of rotation

3-D Rotations

- In 2-D, we are always rotating in the plane of the image, but in 3-D the axis of rotation itself is a variable
- Three canonical rotation axes are the coordinate axes X, Y, Z
- These are sometimes referred to in aviation terms: pitch, yaw or heading, and roll, respectively

3-D Rotation Matrices

- Similar form to 2-D rotation matrices, but with coordinate corresponding to rotation axis held constant
- E.g., a rotation about the X axis of θ radians:

$$\mathbf{R}_{X}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3-D Rotation Matrices

 Similarly: 	$\left(\cos \theta \right)$	$0 \sin$	$h \theta$	0)
$\mathbf{R}_Y(heta) =$	0	1 ()	0
	$-\sin\theta$	$0 \cos$	${\rm s} heta$	0
	$\begin{pmatrix} 0 \end{pmatrix}$	0 0)	1)
$\mathbf{R}_Z(heta) =$	$(\cos\theta -$	$-\sin\theta$	0	0)
	$\sin heta$	$\cos heta$	0	0
	0	0	1	0
	$\begin{pmatrix} 0 \end{pmatrix}$	0	0	1)

3-D Shears

- Basic form: 4 x 4 identity matrix with one non-zero offdiagonal element in the upper-left 3 x 3 submatrix
- Six possibilities: $H_{\chi\gamma}(s)$, $H_{\chi Z}(s)$, $H_{\gamma\chi}(s)$, $H_{\gamma\chi}(s)$, $H_{Z\chi}(s)$, $H_{Z\chi}(s)$, $H_{Z\chi}(s)$
 - 1st subscript: Which coordinate is changed by shear (row where s appears)
 - 2nd subscript: Which coordinate is the **shearing proportional to** (column of *s*)
- E.g.:

OpenGL matrix stacks

- GL_MODELVIEW matrix is the 3-D transformation matrix we've been talking about
- OpenGL maintains a stack; top matrix is one applied to drawing commands
 - Can "read" with glGet(GL_MODELVIEW_MATRIX)
- So pushing and popping (the right stack) save and restore transformations
 - glPushMatrix() pushes a copy of top of stack
- Postmultiplication automatically happens when glTranslate(), glRotate(), etc. called successively

OpenGL stacks: Modifying top matrix

- Why?
 - OpenGL has no built-in shear function or many other "exotic" transformations
- Replacement of current matrix
 - -glLoadIdentity()
 - -glLoadMatrix(M)
- Postmultiplication of current matrix
 - -glMultMatrix(M)

glLoadMatrix(), glMultMatrix()

- Allocate and initialize an array of 16 doubles or floats m
- Column-major format:

