

Geometry:
2-D & 3-D Transformations

March 6, 2012 Lecture 7

Course web page:
http://goo.gl/EB3aA

Outline

• HW #2 questions?

• 2-D, 3-D transformations

– Types, mathematical representation

– OpenGL functions for applying

2-D Translation

2-D Translation

2-D Translation

2-D Translation

2-D Translation

2-D Scaling

2-D Scaling

2-D Scaling

1

sx

Horizontal shift proportional to horizontal position

2-D Scaling

1

sy

Vertical shift proportional to vertical position

2-D Scaling

2-D Scaling

2-D Rotation

2-D Rotation

This is a counterclockwise rotation

2-D Rotation

θ

This is a counterclockwise rotation

2-D Rotation: Trigonometry

1 cos(45) – 1 sin(45)
1 sin(45) + 1 cos(45)

(1, 1)

0.707 – 0.707
0.707 + 0.707

(0, 1.414)

2-D Rotation: Matrix Multiplication

Dot product of row vector
and column vector:
r c = r1c1 + r2c2 + … + rncn

2-D Rotation: Matrix Multiplication

Dot product of row vector
and column vector:
r c = r1c1 + r2c2 + … + rncn

2-D Rotation (uncentered)

2-D Rotation (uncentered)

2-D Shear (horizontal)

2-D Shear (horizontal)

Horizontal displacement proportional to vertical position

2-D Shear (horizontal)

2-D Reflection (vertical)

2-D Reflection (vertical)

Just a special case of scaling—”negative” scaling

2-D Reflection (vertical)

2-D Transformations: OpenGL

• 2-D transformation functions
– glTranslate(x, y, 0)

– glScale(sx, sy, 0)

– glRotate(theta, 0, 0, 1) (angle in
degrees; direction is counterclockwise)

• No explicit shear built into OpenGL

Representing Transformations

• Note that we’ve defined rotation, scaling, etc. as
matrix multiplications, but translation as a vector
addition

• It’s inconvenient (inelegant?) to have two
different operations (addition and multiplication)
for different forms of transformation

• It would be desirable for all transformations to be
expressed in a common form
– Solution: Homogeneous coordinates

Homogeneous Coordinates

• Note: write vectors vertically instead of horizontally

• Let x = (x1, ... , xn)
T be a point in Euclidean

space

• Change to homogeneous coordinates:

x (xT, 1)T

• Think of last coordinate w as a scale coordinate,
with w = 1 being the default scale

• Can go back to non-homogeneous representation by
normalizing (some transformations may change
scale):

(xT, w)T x / w

Example: Translation with homogeneous
coordinates

• Old way:

• New way:

Homogeneous Coordinates: Rotations, etc.

• A 2-D rotation, scaling, shear or other
transformation normally expressed by a 2 x 2
matrix R is written in homogeneous coordinates
with the following 3 x 3 matrix:

• “Compose” transforms by multiplying their
matrices together

• Matrix multiplication's non-commutativity explains
why RTx ≠ TRx

OpenGL’s coordinates

• The underlying form of all points/vertices
is a 4-D vector (x, y, z, w)

• If you do something in 2-D, OpenGL
simply sets z = 0 for you

• If the scale coordinate w is not set
explicitly (recall that there is a
glVertex4() that allows you to do so),

OpenGL sets w = 1 for you

OpenGL 3-D coordinates

• “Right-handed” system

• From point of view of camera
looking out into scene:
 +X right, -X left

 +Y up, -Y down

 +Z behind camera, -Z in front

 One way to remember: cross product of
+X and +Y axis vectors is +Z

• Positive rotations are counterclockwise
around axis of rotation

3-D Translations

modified from Hill

3-D Scaling

3-D Rotations

• In 2-D, we are always rotating in the plane of
the image, but in 3-D the axis of
rotation itself is a variable

• Three canonical rotation axes
are the coordinate axes X, Y, Z

• These are sometimes referred to
in aviation terms: pitch, yaw or
heading, and roll, respectively

from Hill

from Hill

3-D Rotation Matrices

• Similar form to 2-D rotation matrices, but with
coordinate corresponding to rotation axis held
constant

• E.g., a rotation about the X axis of θ radians:

3-D Rotation Matrices

• Similarly:

3-D Shears

• Basic form: 4 x 4 identity matrix with one non-zero off-
diagonal element in the upper-left 3 x 3 submatrix

• Six possibilities: HXY(s), HXZ(s), HYX(s), HYZ(s), HZX(s), HZY(s)

– 1st subscript: Which coordinate is changed by shear (row where s
appears)

– 2nd subscript: Which coordinate is the shearing proportional to
(column of s)

• E.g.:

HXY (s) HXZ (s)

OpenGL matrix stacks

• GL_MODELVIEW matrix is the 3-D transformation
matrix we’ve been talking about

• OpenGL maintains a stack; top matrix is one applied
to drawing commands
– Can “read” with glGet(GL_MODELVIEW_MATRIX)

• So pushing and popping (the right stack) save and
restore transformations
– glPushMatrix() pushes a copy of top of stack

• Postmultiplication automatically happens when
glTranslate(), glRotate(), etc. called
successively

OpenGL stacks: Modifying top matrix

• Why?

– OpenGL has no built-in shear function or
many other “exotic” transformations

• Replacement of current matrix

– glLoadIdentity()

– glLoadMatrix(M)

• Postmultiplication of current matrix

– glMultMatrix(M)

glLoadMatrix(), glMultMatrix()

• Allocate and initialize an array of 16
doubles or floats m

• Column-major format:

