

Geometry:
Cameras

Course web page:

http://goo.gl/EB3aA

March 8, 2012  Lecture 8

Outline

• More 3-D transformations

– Setting up the camera

• Projections

– Orthographic

– Perspective

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Arbitrary Change of Coordinates

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Arbitrary Change of Coordinates

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Arbitrary Change of Coordinates

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Arbitrary Change of Coordinates

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Translation-only Change of Coordinates

Location of A’s origin in
B’s coordinate system

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Arbitrary Change of Coordinates

Rotation that makes
A’s axes parallel to B’s,

creating translation-
only case

• A rigid transformation is used to represent a
change in the coordinate system that “expresses”
a point’s location

3-D Transformations:
 Arbitrary Change of Coordinates

3-D Rigid Transformations

• Combination of rotation followed by
translation, without scaling, etc.

• “Moves” an object from one 3-D pose to
another

T R M

• Points in one coordinate system are transformed
to the other as follows:

• Rows of rotation matrix are B ’s axes “in” A ’s
coordinate system

• takes the camera to the world origin,
transforming points expressed in world
coordinates into points expressed in camera
coordinates
– Info needed: Camera axes in world coordinates, world origin in

camera coordinates

Rigid Transformations: Homogeneous
Coordinates

Controlling the camera position

• Standard OpenGL position: At (0, 0, 0)T in world coordinates
looking in -Z direction (0, 0, -1) with up vector (0, 1, 0)T

– Up vector controls camera roll (rotation around Z axis)

• Changing position: gluLookAt()
– eye = (eyeX, eyeY, eyeZ)T: Desired camera position

– center = (centerX, centerY, centerZ)T: Point at which camera
is aimed (defining “gaze direction”)

– up = (upX, upY, upZ)T:
Camera’s “up” vector

• Robins’ projection
tutor

from Woo et al.

The Viewing Volume

• Definition: The region of 3-D space visible in
the image

• Depends on:
– Camera position,

orientation

– Field of view,
image size

– Projection type
• Orthographic

• Perspective

courtesy of N. Robins

gluLookAt(): Details (7.1.3 in Shirley)

• Moves scene points so that camera is at origin, “look at” point is on
-Z axis, and camera +Y axis is aligned with up vector
– Create and execute rigid transformation making a change from

world to camera coordinates

• Steps
1. Compute vectors u, v, n defining new camera axes in world

coordinates (Shirley textbook uses w instead of n)
• “Old” axes are u’ = (1, 0, 0)T, v’ = (0, 1, 0)T, n’ = (0, 0, 1)T

2. Compute location of old camera position in terms of new location’s
coordinate system

3. Fill in rigid transform matrix

from Hill

center

C

W

gluLookAt(): Camera axes in world coords.

• Form basis vectors

– New camera Z axis: n = eye - center

– New camera X axis: u = up x n

– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

C

W

gluLookAt(): Camera axes in world coords.

• Form basis vectors

– New camera Z axis: n = eye - center

– New camera X axis: u = up x n

– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

C

W

gluLookAt(): Camera axes in world coords.

• Form basis vectors

– New camera Z axis: n = eye - center

– New camera X axis: u = up x n

– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

up
C

W

up and n define a plane
which u is normal to—they
don’t have to be orthogonal

gluLookAt(): Camera axes in world coords.

• Form basis vectors

– New camera Z axis: n = eye - center

– New camera X axis: u = up x n

– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

C

W

gluLookAt(): Camera axes in world coords.

• Form basis vectors

– New camera Z axis: n = eye - center

– New camera X axis: u = up x n

– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

C

W

gluLookAt(): Camera axes in world coords.

• Form basis vectors

– New camera Z axis: n = eye - center

– New camera X axis: u = up x n

– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

C

W

gluLookAt(): Camera axes in world coords.

• Now make 3 x 3 rotation matrix from
formula on rigid transform slide:

gluLookAt(): Location

• : World origin in camera coordinates

from Hill

center
origin

-eye

C

W

gluLookAt(): Location

• : World origin in camera coordinates

• -eye is in world coordinates, so project
onto camera axes (and don’t normalize):

from Hill

center
origin

-eye

C

W

gluLookAt(): Matrix

• Letting and writing the vector

components as u = (ux, uy, uz)
T, etc.,

the final transformation matrix is given by:

Transformations vs. Projections

• Transformation: Mapping within n-D space that moves points
around
– Linear transformations (e.g. matrix multiplication) preserve straight lines
– Some nonlinear transformations in n-D can be expressed by linear ones

in (n + 1)-D – the idea behind homogeneous coordinates

• Projection: Mapping from n-D space down to lower-dimensional
subspace
– E.g., point in 3-D space to point on plane (a 2-D entity) in that space
– We will be interested in such 3-D to 2-D projections where the plane is

the image
– Things to know:

• Where are the points?
• Where is the plane?
• What kind of projection?

Parallel projection along direction d onto a plane
from Hill

Parallel Projections

Oblique: d in general position
relative to plane normal n

Orthographic: d parallel to n

from Hill

Orthographic Projection

• Projection direction d is aligned with Z axis

• Viewing volume is “brick”-shaped region in
space
– Not the same as image size

• No perspective effects—distant objects look
same as near ones, so camera (x, y, z)  image
(x, y)

from Hill

Simple Orthographic Projection Matrix

