Geometry:
Cameras

Course web page:
http://goo.gl/EB3aA

March 8, 2012 < Lecture 8 = ETANARE



Outline

— Setting up the camera

e Projections
— Orthographic
— Perspective



3-D Transformations:
Arbitrary Change of Coordinates

= Py



3-D Transformations:
Arbitrary Change of Coordinates

= Py



3-D Transformations:
Arbitrary Change of Coordinates

= Py



3-D Transformations:
Arbitrary Change of Coordinates




3-D Transformations:
_Translation-only Change of Coordinates

Z 1 X 1 Z 2 | Location of A’s origin in

3s coordinate system

OA/

= Py



3-D Transformations:
Arbitrary Change of Coordinates

Rotation that makes
A's axes parallel to 5,

creating translation-
only case




3-D Transformations:
Arbitrary Change of Coordinates




3-D Rigid Transformations

translation, without scaling, etc.
e "Moves” an object from one 3-D pose to

another
1 00 Az (711 ri2 13 0 (r11 T12 T13 A
O 1 0 Ay ro1 Too 103 O _ ro1 Too 123 Ay
0 01 Az r31 73> 133 O r31 T3> 133 Az
O 00 1 \ O 0 0O 1 \ O 0 0 1
T R M

= Py



Rigid Transformations: Homogeneous
Coordinates

o [
B. _BuwgA. _ R o4 \ 4
X—AM X — “3T ] X

e Rows of rotation matrix are B's axes “"in” A's
coordinate system
. CMNI takes the camera to the world origin,

transforming points expressed in world
coordinates into points expressed in camera

coordinates

— Info needed: Camera axes in world coordinates, world origin in
camera coordinates oy



Controlling the camera position

: gluLook?
— eye = (eyeX, eyeY, eyez)": Desired camera position

— center = (centerX, centerY, centerz)’: Point at which camera
is aimed (defining “gaze direction”)

— up = (upX, upy, upz)": ¥ v

Camera’s “up” vector A A

VJLTTW“ g

e Robins’ projection A L
tutor =z F

from Woo et al.



The Viewing Volume

e Depends on:

— Camera position,
orientation

— Field of view,

Image size
— Projection type
e Orthographic
e Perspective

/ERSITY o1
™ WYEIAWARE



gluLookAt () : Details (7.1.3 in Shirley)

® €pS
1. Compute vectors u, Vv, n defining new camera axes in world
coordinates (Shirley textbook uses w instead of n)
e "Old"axesareu’'=(1,0,0)7,v'=(0,1,07, n"=(0,0, 1)

2. Compute location Co,,, of old camera position in terms of new location’s
coordinate system

3. Fill in rigid transform matrix CWM

center <3

’ \ ’T'.RSTTY()»‘
from il ™ WYEIAWARE



gluLookAt () : Camera axes in world coords.

— New camera Y axis: v = n x u (not necessarily
same as Up)

e Normalize so that these are unit vectors

' RSITY or
from Hill @ EIAWARE




gluLookAt () : Camera axes in world coords.

— New camera Y axis: v = n x u (not necessarily
same as Up)

e Normalize so that these are unit vectors

' RSITY or
from Hill @ EIAWARE




gluLookAt () : Camera axes in world coords.

dont have to be orthogonal

— New camera Y axis: v = n x u (not necessarily
same as Up)

e Normalize so that these are unit vectors

up,
n c

15
center < =

' RSITY or
from Hill @ EIAWARE




gluLookAt () : Camera axes in world coords.

— New camera Y axis: v = n x u (not necessarily
same as Up)

e Normalize so that these are unit vectors

n Y C

15
center < =

' RSITY or
from Hill @ EIAWARE




gluLookAt () : Camera axes in world coords.

— New camera Y axis: v = n x u (not necessarily
same as UP)

e Normalize so that these are unit vectors

n Y C

15
center < =

' RSITY or
from Hill @ EIAWARE




gluLookAt () : Camera axes in world coords.

— New camera Y axis: v = n x u (not necessarily
same as UP)

e Normalize so that these are unit vectors

n Y C

15
center < =

' RSITY or
from Hill @ EIAWARE




gluLookAt () : Camera axes in world coords.

£
]
<
~

= Py



gluLookAt () : Location

center << —
origin

W S RSITY or

from Hill @ EIAWARE




gluLookAt () : Location

e -@ye is in world coordinates, so project
onto camera axes (and don't normalize):

Coyy = (—eye - u, —eye - v, —eye - n) !

center << —
origin

W S RSITY or
from Hill @@MAWA&




gluLookAt () : Matrix

components as U = (U,, U,, u,’, etc.,
the final transformation matrix is given by:

Uy Uy Uz tx

C _ Vr ’Uy VU~ ty
O O 0 1

= Py



Transformations vs. Projections

e Projection: Mapping from D space down to lower-dimensional

subspace
— E.g., point in 3-D space to point on plane (a 2-D entity) in that space

We will be interested in such 3-D to 2-D projections where the plane is
the image

Things to know: 0
e Where are the points? "
e Where is the plane? viewplane - p
e What kind of projection? Y

q
d

P

from Hill ERSITY o
Parallel projection along direction d onto a plane ¥ WYEIAWARE




Parallel Projections

from Hill

Oblique: d in general position Orthographic: d parallel to n
relative to plane normal n



Orthographic Projection

— Not the same as image size

e No perspective effects—distant objects look
same as hear ones, so camera (X, y, Z) = image

(X, Y)
viewplane
- :
" camera w
view volume
/ far plane £

from Hill



Simple Orthographic Projection Matrix

= Py



