
  

Geometry:  
Projection 

 
Course web page: 

http://goo.gl/EB3aA 

March 13, 2012  Lecture 9 



  

Outline 

• Projections 

– Orthographic 

– Perspective 

• Clipping 



  

Orthographic Projection 

• Projection direction d is aligned with Z axis 

• Viewing volume is “brick”-shaped region in 
space 
– Not the same as image size 

• No perspective effects—distant objects look 
same as near ones, so camera (x, y, z)  image 
(x, y)  

 

from Hill 



  

Orthographic Projection in OpenGL 

• Setting up the viewing volume (VV): 
– glOrtho() 

• left, right, bottom, top: Coordinates of sides of viewing 
volume  

• znear, zfar: Distances to front, back sides of VV 
– Negative = Behind camera 

– gluOrtho2D(): glOrtho() with near = -1,   far = 1 

• Modifies top 4 x 4 matrix of GL_PERSPECTIVE matrix 
stack 
– Applied after GL_MODELVIEW transformation has put things in 

camera coordinates 
– Actual matrix scales VV to canonical VV (CVV): Cube extending 

from -1 to 1 along each dimension 
• This is properly a transformation; the projection is accomplished 

later by stripping off the Z coordinate 

 

 



  

Simple Orthographic Projection Matrix 



  

Orthographic Projection Matrix for CVV 

Translation to origin followed by scaling to 2 x 2 x 2 cube  
(If n & f are not distances then n > f, so it should be “n – f” instead 

of “f – n” below — see formula 7.3 on p. 145 of Shirley): 



  

Perspective with a Pinhole Camera (i.e., no lens) 

from Forsyth & Ponce 

Instead of single direction d characteristic of parallel projections,  
rays emanating from single point c (or eye e) define perspective  

projection 

c 



  

Stenop.es project: Apartment as pinhole camera 



  

More Stenop.es (note projection is upside-down) 



  

Perspective Projection 

from Forsyth & Ponce 

c 



  

Perspective Projection: Viewing Volume 

• Characteristic shape is a frustum—a 
truncated pyramid 

– Far plane is arbitrary 



  

Perspective Projection: Properties  

• Far objects appear smaller than near ones 

• Lines are preserved 

• Parallel lines in any plane  (could                    
be ground) converge at infinity 
– Horizon line defined by intersection of image plane 

with plane parallel to  that passes through the 
pinhole 

from Hill 



  

Pinhole Camera Terminology 

Camera  
center/pinhole/ 
eye 

Principal  
point/image center 

Image point 

Camera point 

Focal length 
(“near” distance) 

Optical axis 

Image plane 

Principal 
 plane 



  

• Letting the camera coordinates of the 
projected point be                           
leads by similar triangles to:   
      

 

 

Perspective Projection 



  

Perspective Projection Matrix 

• Using homogeneous coordinates, we can describe a 
perspective transformation with the image plane at  
z = -f (because f > 0 but z < 0) via a 4 x 4 matrix 
multiplication:       
         
         
         
  

       
   Last step accomplishes distance-dependent scaling 

by the rule for converting between homogeneous 
and regular coordinates.  This is called the 
perspective division 



  

Perspective Transformation Matrix 

• Intuitively, what we’re doing is transforming the 
viewing frustum into a “brick” (aka axis-aligned 
box), then doing orthographic projection  

f does not mean  
same thing here  
as on previous slide!! 



  

Perspective Transformation: Details 

• Another way to write the transformation 
is in terms of near and far view volume 
planes n and f (which are negative) 

• WARNING: n is image plane z value; f 
does not mean focal length on the next 
slide!!! 



  

Perspective Transformation: Details 

• Instead of simply projecting all z to near plane n, set 
matrix such that z = n maps to n and z = f maps to f 
(this is formula on p. 152 of Shirley): 
 
 
 
 
 
 

• After applying this, multiply by orthographic 
transform to scale everything to CVV and project to 
image coordinates 
– Project only after any steps that require depth 

information 

 



  

Perspective Projections in OpenGL 

• glFrustum() sets transformation to CVV 
– Arguments like glOrtho() (set left, right, bottom, top, near, 

far directly) but near, far are distances and must be positive  

– Vertical field of view (FOV): θ = 2 arctan(0.5 height / near), 
where height = top - bottom 

 
 

 
 
 
 
 

 
from Woo et al. 



  

gluPerspective() 

• Simplifies call to glFrustum() 

• Arguments:  
– fovy: Field of view angle (degrees) in Y direction 

– aspect: Ratio of width to height of viewing frustum 

– near, far: Same as glFrustum() 

 

 

 

 

 

• Example: Robins’ projection tutor 

 

from Woo et al. 



  

Field of View  

• Controls “strength” of perspective effects 

co
u
rt

e
sy

 o
f 

S
. 
M

a
rs

ch
n
e
r 



  

Viewport Transform 

• A final transform, GL_VIEWPORT, shifts 

normalized device coordinates (NDC—what 
you have after perspective divide) to image 
coordinate origin and scales to fit window 

• This is what makes x = 0, y = 0 go to corner 
of window instead of center 

• glViewport(x, y, w, h) 

– Lower left corner and width, height of viewport 

– Default is (0, 0) and width, height of window 

– Often put in GLUT resize() callback for when 

window size changes 

 



  

Applications of viewport transform 

• Drawing space vs. controls 

– Separate viewports for rendered image and area 
where buttons, text, etc. are grouped   

• Stereo 

– Draw scene twice—once for each “eye” 

– Change viewport for left, right views: 

 glViewport(0, 0, w/2, h); 

 ... 

 glViewport(w/2, 0, w/2, h); 



  

Geometry pipeline 

Coordinate change rigid transform 
(GL_MODELVIEW) 

Perspective transformation  
(and orthographic scaling) 
(GL_PERSPECTIVE) 

2-D scale and shift 
(GL_VIEWPORT) 

Perspective division 

Orthographic projection 

Camera coordinates 

Clip coordinates 

Normalized device coordinates 

Window coordinates 

Screen coordinates 

World coordinates 



  

Clipping 

• Removal of portions of geometric    
primitives outside viewing volume (VV) 

• Why? 
– Optimization that saves computation which         

would otherwise be wasted on lighting,     
texturing, etc.  

• Cases 
– Trivial acceptance: Complete inside VV 
– Trivial rejection: Completely outside VV 
– Crossing clip plane(s): Partially outside,               

so must trim to fit 

• Different primitives require different    
methods  
– Points: Only trivial accept/reject 
– Lines: Chop at intersection with clip plane 
– Polygons: Must trim so as to maintain connectivity 

 

courtesy of L. McMillan 



  

When to clip? 

• The earlier in the pipeline invisible primitives are 
removed, the less computation is wasted on them 

• However...difficulty of clipping problem depends on 
stage of geometry pipeline 
– Camera coordinates: VV is a frustum, so clip planes are 

angled (dot product necessary for inside/outside (IO) test) 
– Clip coordinates: CVV is an axis-aligned box (cube with 

corners at ±1 after perspective division), so clip planes are 
simple (IO test is simple greater-than/less-than comparison) 

– NDC: Perspective division destroys true sign of point’s z---can’t 
distinguish between point at (x, y, z) and one at (-x, -y, -z).  
This allows points behind eye to be erroneously displayed 

– Screen coordinates: Too late—nearly all of the work has 
already been done 

 

 



  

Clipping: Basic issues 

• Testing which side of a clip plane a point is on 

– Which side of a line in 2-D 

• How to trim primitives that span VV border 

– Find the intersection of a line segment and a clip 
plane 

 

from E. Angel 



  

Cohen-Sutherland 2-D line clipping 
(not in textbook) 

• Idea: Consider rectangle (the “viewing 
area” (VA)) as intersection of 4 half-
planes defined by sides 

VA 

xmin xmax 

ymax 

ymin 

adapted from F. Pfenning 

y <  ymax 

y >  ymin 

x >  xmin x <  xmax 

= ∩ 



  

Cohen-Sutherland clipping: Outcodes 

• Test a line endpoint p = (x, y) against each 
of 4 half-planes and record whether it is 
outside the half-plane or not (T or F) 

• These four T/F bits are p’s outcode o(p) 

 

from Hill 



  

Cohen-Sutherland clipping 

• Outcodes partition plane around 
the viewing area 

• Trivial line clipping cases 

– Accept line (p1, p2): Both endpoints 
are inside the rectangle  

• In terms of outcodes, this means     
o(p1) = FFFF and o(p2) = FFFF  

– Reject line: Both endpoints outside 
rectangle on same side  

• This means both points’ outcodes have a 
T at the same bit position—e.g.,      
o(p1) = FTTF and o(p2) = FFTF  

 

from Hill 



  

Cohen-Sutherland clipping 

• Tougher cases are what’s left 

 

 

 

 

 

 
• Basic idea: Subdivide non-trivial lines by sequentially 

removing (aka clipping) portions outside rectangle 
edge lines until what’s left is trivial 
– Arbitrary order: Left, right, bottom, top 

adapted from E. Angel 



  

Cohen-Sutherland: Algorithm 

compute outcodes 

compute intersection 



  

Computing the intersection point 

• What is c = (cx, cy)? 
– Obviously, in this case cx = xmax and cy = ay - d 
– Noting that e = ax - xmax and  e/Δx = d/Δy , we can 

compute d = e Δy/Δx and obtain cy 

• A similar approach works for the other clip lines 

adapted from Hill 

Δx 

Δy 
c 

a 

b 

xmin xmax 

ymax 

ymin 



  

Line clipping: Notes 

• C-S’s recursive clipping (up to    
4 passes) is not optimal  
– E.g., Liang-Barsky method can            

be faster 

• C-S generalizable to 3-D 
– Instead of 4 half-planes       

there are 6 half-spaces                  
(3-D volumes) 

– Outcode has 6 bits (two more                
for near and far Z clip planes) 

from E. Angel 

from Hill 


