Geometry:
Projection

Course web page:
http://goo.gl/EB3aA

March 13, 2012 < Lecture 9 @Iﬁm\%

Outline

— Orthographic
— Perspective
e Clipping

= Py

Orthographic Projection

— Not the same as image size

e No perspective effects—distant objects look
same as hear ones, so camera (X, y, Z) = image

(X, Y)
viewplane
- :
" camera w
view volume
/ far plane £

from Hill

Orthographic Projection in OpenGL

volume
« znear, zfar: Distances to front, back sides of VV
— Negative = Behind camera

— gluOrtho2D(): glOrtho () Withnear = -1, far =1

e Modifies top 4 x 4 matrix of GL PERSPECTIVE matrix
stack -

— Applied after GL. MODELVIEW transformation has put things in
camera coordinates

— Actual matrix scales VV to canonical VV (CVV): Cube extending
from -1 to 1 along each dimension

e This is properly a transformation; the projection is accomplished
later by stripping off the Z coordinate

= P)ELAARE

Simple Orthographic Projection Matrix

= Py

ST =

i ghfe T ; Y
! fop—bottom . !
! ! far —Eﬂem' !
0 0 0 1
rt'ghti—fe ft E 3
P = 0 top—bottom 3
0 0 far —iem‘
0 0 0

=
= = =i

q
i
1
0

_ right+left]

right—lIe ft
__ toptbottom

top—bottom
EE.T +near

~ far—near

1

Orthographic Projection Matrix for CVV

2
_ toptbottom

__ far+near
2

1

Perspective with a Pinhole Camera (i.e., no lens)

— — AR
plane _— e
T
/;/pinhnlec ' .-~ virtual

image

from Forsyth & Ponce

Instead of single direction d characteristic of parallel projections,
rays emanating from single point ¢ (or eye e) define perspective
p I’OJ eCtl O I"I @[ﬁmksmm

EIAWARE

Stenop.es project: Apartment as pinhole camera

/ERSITY o
™ WYEIAWARE

More Stenop.es (note projection is upside-down)

-
O
-
O
D
O
-
o
V
=
)
O
D
'l
(0p)
N
O
a¥

from Forsyth & Ponce

RSITYor
FIAWARE

e

Perspective Projection: Viewing Volume

— Far plane is arbitrary

Perspective Projection: Properties

- TN
LT ’/,/”’ n)
— Irid /l//' A
[| ——
- AT ! —
T \pg
ey
T
T o
L e A
— |
VU IU T J
v TT—
i . ‘ —
' 1 —_—
. : P

be ground) converge at infinity

— Horizon line defined by intersection of image plane
with plane parallel to IT that passes through the
pinhole horen

= e

from Hill g hﬁ&m

Pinhole Camera Terminology

plane
cal lengt
Y ("near“distance)
‘ S

Principal
oint/image center
C point/imag o= X am
G Xsm Camera point
center/pinhole/ X Image point
eye Y

Perspective Projection

Perspective Projection Matrix

1 0 0 0 55 55 —fx/z
01 0 O y | _ Y | /=
O O 1 O z z —f
0 0 —1/f O 1 —2/f 1

Last step accomplishes distance-dependent scaling
by the rule for converting between homogeneous
and regular coordinates. This is called the
perspective division

/ERSITY o1
EWHAWARE

Perspective Transformation Matrix

fdoes not mean

2
y " (rth) < same thing here
O <) as on previous slide!!
(J‘rb'n) “ “
9
Z X [

= Py

Perspective Transformation: Details

e WARNING: n7is image plane zvalue;
does not mean focal length on the next

slide!!!
T |

0 7 00 1)
b 0 7
b 0 1 1)

Perspective Transformation: Details

1 1) (] (]
(b n (] (]

0 0 n+f —fn
0 0 | i

o After applying this, multiply by orthographic
transform to scale everything to CVV and project to
image coordinates

— Project only after any steps that require depth
information

- RSITY or
EIAWARE.

Perspective Projections in OpenGL

= Py

gluPerspective ()

— aspect: Ratio of width to height of viewing frustum
— near, far: Same as glFrustum/()

—w
aspact = H

T

| -
far from Woo et al.

e Example: Robins’ projection tutor

Field of View

close viewpoint far viewpoint
wide angle narrow angle
prominent foreshortening little foreshortening

p =
(O]
c
{5
O
7}
p -
(O
=
w
Y
o
>
0
g
A
>3
o
O

/ERSITY ¢

Viewport Transform

you have after perspective divide) to image
coordinate origin and scales to fit window

e This is what makes x = 0, y = 0 go to corner
of window instead of center

e glViewport(x, y, w, h)
— Lower left corner and width, height of viewport

— Default is (0, 0) and width, height of window

— Often put in GLUT resize () callback for when
window size changes

= P)ELAARE

Applications of viewport transform

where buttons, text, etc. are grouped

e Stereo
— Draw scene twice—once for each “eye”

— Change viewport for left, right views:
glViewport (0, 0, w/2, h);

glViewport(w/2, 0, w/2, h);

Geometry pipeline

Camera coordinates
Clip coordinates

Normalized device coordinates

Window coordinates

Screen coordinates

Clipping

— Optimization that saves computation which
would otherwise be wasted on lighting,
texturing, etc.

e (Cases

— Trivial acceptance: Complete inside VV

— Trivial rejection: Completely outside VV

— Crossing clip plane(s): Partially outside,
so must trim to fit

o Different primitives require different
methods

— Points: Only trivial accept/reject

— Lines: Chop at intersection with clip plane

— Polygons: Must trim so as to maintain connectivity

courtesy of L. McMillan

JERSITY or
™ WYEIAWARE

When to clip?

o However...difficulty of clipping problem depends on
stage of geometry pipeline

— Camera coordinates: VV is a frustum, so clip planes are
angled (dot product necessary for inside/outside (I0) test)

— Clip coordinates: CVV is an axis-aligned box (cube with
corners at +1 after perspective division), so clip planes are
simple (IO test is simple greater-than/less-than comparison)

— NDC: Perspective division destroys true sign of point’s z---can't
distinguish between point at (x, y, z) and one at (-x, -y, -2).
This allows points behind eye to be erroneously displayed

— Screen coordinates: Too late—nearly all of the work has
already been done

= Py

Clipping: Basic issues

e How to trim primitives that span VV border

— Find the intersection of a line segment and a clip
plane

Cohen-Sutherland 2-D line clipping
(not in textbook)

planes defined by sides

|
|
ymin
Xmin Xmax

Cohen-Sutherland clipping: Outcodes

utsie h I-planr not (or F |
e These four T/F bits are p’s outcode o(p)

|
NSTIE
____________________ : Is P to th\e left of W Is P below W?

' code for P:|T|T|F F*’//

window i / \
o W9
' Is Pabove W [s P to the right of W?

= Py

Cohen-Sutherland clipping

FTFF

FFFF

rivial line clipping cases vindo

TFFT FFFT FFTT
— Accept line (p,;, p,): Both endpoints
are inside the rectangle
e In terms of outcodes, this means window (V) - C
o(p;) = FFFFand o(p,) = FFFF | N | \
— Reject line: Both endpoints outside ’
rectangle on same side) /

e This means both points’ outcodes have a
T at the same bit position—e.qg.,
o(p;) = FTTF and o(p,) = FFTF

from Hill

Cohen-Sutherland clipping

adapted from E. Angel

e Basic idea: Subdivide non-trivial lines by sequentially
removing (aka clipping) portions outside rectangle
edge lines until what's left is trivial

— Arbitrary order: Left, right, bottom, top

Cohen-Sutherland: Algorithm

int clipSegment(Point2& pl, Point2& p2, RealRect W)
{

if (trivial accept) return 1; // some portion survives
if (trivial reject) return 0; // no portion survives

it (pl is outside)
compute outcodes {
ifiplistothe left) chop against the left edge

else 1f(plistothe right) chop against the right edge
else if(plisbelow) chop against the bottom edge
else if(plisabove) chop against the top edge

1
1

elze [/ p2 iz outside
i comp te Intersection
11 (p2 ix to the left) chop against the left edee
else 1if(p2isto the right) chop against the right edge
elae Af(p2isbelow) chop against the hottom edge
elee if(plisabove)chop against the top edge

1
1

twhile(1):

Computing the intersection point

e A similar approach works for the other clip lines

I
I
A | N
window | JT
Ymax [r——_x____c?
| e Ay
I
I
I b e —I Y
Y | T - AX
I
I
I
] | -
Xmin Xmax
adapted from Hil @[ﬁm&m

Line clipping: Notes

— E.qg., Liang-Barsky method can |,
be faster

e C-S generalizable to 3-D

— Instead of 4 half-planes
there are 6 half-spaces
(3-D volumes)

