Name \qquad

CISC 440/640

Midterm

Thursday, March 27, 2014
Only graduate students are required to answer questions Q10 and Q11 of this exam. Point totals will be normalized to a common scale (the exam is worth 20% of your grade). Partial credit will be given in quarter-point gradations. Please use the backs of pages as needed to avoidly overly cramped answers.

Q1 [3 points]

Write OpenGL code, in as few lines as possible, to draw the 3 boxes above (not the arrows, text, or anything else). Assume that you have a function drawSquare() that renders a 1×1 square with its lower-left corner at the origin, where the x and y axes meet. Note that α and β indicate the relative angle in degrees of a box to the one to its left.

Q2 [2 points]

What is the ambient term in local lighting models meant to approximate and why is it necessary?

Q3 [2 points]

Define "BRDF" and characterize it for a perfectly diffuse material vs. a mirror-like material.

Q4 [2 points]

In OpenGL what is the canonical viewing volume? What transformation step in the geometry pipeline puts vertices into the coordinate system associated with this volume?

Q5 [2 points]

Suppose you are rasterizing a triangle whose corners in image coordinates are at (1, 1), (5, 1), and (2, 9), and the z values of those corners are $-22,-29$, and -25 , respectively. Using the bilinear interpolation scheme of z-buffering, what is the z value of the interior point at $(3,5)$?

Q6 [2 points]

A 3-D rigid transformation is the product of rotation and translation components. Explain what these mean in terms of the change from world coordinates to camera coordinates.

Q7 [2 points]

For the 2-D version of the Cohen-Sutherland line clipping algorithm, what is the meaning of an outcode? Given 2-D line endpoints \mathbf{v}_{1} and \mathbf{v}_{2}, explain which outcodes $\mathrm{o}\left(\mathbf{v}_{1}\right)$ and $\mathrm{o}\left(\mathbf{v}_{2}\right)$ would lead to either trivial acceptance (draw the line without clipping it at all) or trivial rejection (throw away the entire line).

Q8 [3 points]

When and why does Gouraud shading have problems with specular highlights? Why does Phong shading not have this problem? What is the trade-off in terms of computational cost?

Q9 [2 points]

Name and briefly explain the 3 behavior forces in Reynolds' original boids flocking algorithm. What other factors besides just distance might make the behaviors more realistic?

Q10 [3 points - GRADUATE STUDENTS ONLY]

Suppose you have constructed a binary space partitioning (BSP) tree T for a 3-D scene consisting solely of triangles. Given an eye position of \mathbf{e}, write pseudocode for a recursive function draw_bsp (T) to render the scene using the painter's algorithm. What effect does the height of T have on the running time of draw_bsp()?

Write your answers to Q10 and Q11 on the back of this page

Q11 [3 points - GRADUATE STUDENTS ONLY]

What is the significance of the "midpoint" in the midpoint line rasterization method? Show in detail (preferably with a diagram and a formula) how it is used in the algorithm. Does the basic algorithm work on lines with arbitrary slopes? Explain.

