
Fall, 2011
CISC181 Final Review

Prof. Christopher Rasmussen

Course page: http://goo.gl/jJ8HT

Administrative details I

● Deadline for course evaluations: Thursday, Dec. 8, midnight
● Written comments are most helpful...

Administrative details II

● Preliminary grades posted on course page
● Vincent should have sent each of you a random "ID code" to

look yourself up...

Administrative details III

● You have one extra day to finish Project #3: the due date is
now Wednesday, December 7 (at midnight)

● You can still use late days after that if you have them
● Don't forget Lab #8 -- due at the usual time for your section

this week

Final Details
● Next Thursday, December 15
● Closed book, no notes, no calculators, cell phones, etc.
● Worth 15% of your grade (same as midterm)
● Covers all lectures from Tuesday, October 25 through

Tuesday, November 29 class
○ Pay close attention to exact pages in readings
○ Topics in the textbook: Assertions/exceptions, Swing
○ Topics totally outside the textbook: Unit testing, Android
○ Will NOT cover anything about Eclipse or its built-in debugging

facilities (including Android logging)
○ STUDY SAMPLE PROGRAMS WE WENT OVER IN CLASS!

● Question types
○ Language, API feature/concept definitions and explanations
○ Write a function that does X or a whole class with certain

variables and methods
○ If we call method f() with arguments a and b, what does it

return/print/do?

Topics Covered
● Exception handling, assertions
● Unit testing (separate slides #1)
● Deployment

○ JARs (separate slides #2)
○ Applets: no main(), derive your class from JApple, put set-up code in

init()
● Swing (separate slides #3)

○ Windows, button/mouse events, listeners
○ 2-D drawing
○ Layout managers, swapping panels
○ Timers, animation

● Android
○ Activities: concepts, starting, communicating between
○ Views, resources, layouts
○ 2-D graphics, animation
○ Storing preferences, reading text file
○ Sound, text-to-speech, vibration, accelerometer

try-throw-catch Mechanism

● A throw statement is similar to a method call:
 throw new ExceptionClassName(SomeString);

○ In the above example, the object of class
ExceptionClassName is created using a string as
its argument

○ This object, which is an argument to the throw
operator, is the exception object thrown

● Instead of calling a method, a throw statement
calls a catch block

9-6
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Defining Exception Classes

● A throw statement can throw an exception
object of any exception class

● Instead of using a predefined class, exception
classes can be programmer-defined

○ These can be tailored to carry the precise kinds of
information needed in the catch block

○ A different type of exception can be defined to
identify each different exceptional situation

9-17
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Multiple catch Blocks

● A try block can potentially throw any number of
exception values, and they can be of differing
types

○ In any one execution of a try block, at most one
exception can be thrown (since a throw statement
ends the execution of the try block)

○ However, different types of exception values can be
thrown on different executions of the try block

9-25
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Multiple catch Blocks

● Each catch block can only catch values of the
exception class type given in the catch block
heading

● Different types of exceptions can be caught by
placing more than one catch block after a try
block

○ Any number of catch blocks can be included, but
they must be placed in the correct order

9-26
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Pitfall: Catch the More Specific Exception
First

● When catching multiple exceptions, the
order of the catch blocks is important
○ When an exception is thrown in a try block,

the catch blocks are examined in order
○ The first one that matches the type of the

exception thrown is the one that is executed

9-27
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The finally Block
● The finally block contains code to be executed

whether or not an exception is thrown in a try
block

○ If it is used, a finally block is placed after a try block and
its following catch blocks

 try
 { . . . }
 catch(ExceptionClass1 e)
 { . . . }
 . . .
 catch(ExceptionClassN e)
 { . . . }
 finally
 {
 CodeToBeExecutedInAllCases
 }

9-46
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The finally Block
● If the try-catch-finally blocks are inside a method

definition, there are three possibilities when the code is
run:

1. The try block runs to the end, no exception is thrown, and the
finally block is executed

2. An exception is thrown in the try block, caught in one of the
catch blocks, and the finally block is executed

3. An exception is thrown in the try block, there is no matching
catch block in the method, the finally block is executed, and
then the method invocation ends and the exception object is
thrown to the enclosing method

9-47
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Catch or Declare Rule

● Most ordinary exceptions that might be thrown
within a method must be accounted for in one of
two ways:
1. The code that can throw an exception is placed

within a try block, and the possible exception is
caught in a catch block within the same method

2. The possible exception can be declared at the start
of the method definition by placing the exception
class name in a throws clause

9-32
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

When to Use Exceptions

● Exceptions should be reserved for situations
where a method encounters an unusual or
unexpected case that cannot be handled easily
in some other way

● When exception handling must be used, here
are some basic guidelines:

○ Include throw statements and list the exception classes in a
throws clause within a method definition

○ Place the try and catch blocks in a different method

9-40
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Assertion Checks
● An assertion is a sentence that says (asserts)

something about the state of a program
○ An assertion must be either true or false, and should be true if

a program is working properly
○ Assertions can be placed in a program as comments

● Java has a statement that can check if an assertion is
true

 assert Boolean_Expression;
○ If assertion checking is turned on and the

Boolean_Expression evaluates to false, the program ends,
and outputs an assertion failed error message

○ Otherwise, the program finishes execution normally

3-58
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Assertion Checks

● A program or other class containing assertions
is compiled in the usual way

● After compilation, a program can run with
assertion checking turned on or turned off

○ Normally a program runs with assertion checking
turned off

● In order to run a program with assertion
checking turned on, use the following command
(using the actual ProgramName):

 java –enableassertions ProgramName

3-59
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Miscellaneous + Swing
● Unit testing

○ Web slide show: http://www.slideshare.net/tom.
zimmermann/unit-testing-with-junit

○ Sample code: PokerTest.java (for CardGame)
● JARs:

○ Separate slides in java_jars.ppt
● Applets: Java apps embedded in web pages

○ No main()
○ Derive your class from JApplet
○ Put set-up code in init()
○ Create JAR
○ Link JAR in web page
○ Sample code: HelloApplet.java, HelloApplet.html;

DragMouseApplet.java
● Swing: Separate slides

1

• JAR: Java ARchive. A group of Java classes and
supporting files combined into a single file compressed
with ZIP format, and given .JAR extension.

• Advantages of JAR files:
 compressed; quicker download
 just one file; less mess
 can be executable

• The closest you can get to having a .exe
file for your Java application.

JAR Files (yousa likey!)

slides created by Marty Stepp
based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

http://www.cs.washington.edu/331/

http://www.cs.washington.edu/331/

2

Creating a JAR archive
• from the command line:

jar -cvf filename.jar files

 Example:
jar -cvf MyProgram.jar *.class *.gif *.jpg

• some IDEs (e.g. Eclipse) can create JARs automatically
 File → Export... → JAR file

3

Running a JAR
• Running a JAR from the command line:

 java -jar filename.jar

• Most OSes can run JARs directly by double-clicking
them:

4

Making a runnable JAR
•manifest file: Used to create a JAR runnable as a

program.
jar -cvmf manifestFile MyAppletJar.jar
 mypackage/*.class *.gif

Contents of MANIFEST file:
Main-Class: MainClassName

 Eclipse will automatically generate and insert a
proper manifest file into your JAR if you specify the
main-class to use.

5

Resources inside a JAR
• You can embed external resources inside your JAR:

 images (GIF, JPG, PNG, etc.)
 audio files (WAV, MP3)
 input data files (TXT, DAT, etc.)
 ...

• But code for opening files will look outside your JAR,
not inside it.
 Scanner in = new Scanner(new File("data.txt")); // fail
 ImageIcon icon = new ImageIcon("pony.png"); // fail
 Toolkit.getDefaultToolkit().getImage("cat.jpg"); // fail

6

Accessing JAR resources
• Every class has an associated .class object with these

methods:
 public URL getResource(String filename)
 public InputStream getResourceAsStream(String name)

• If a class named Example wants to load resources from
within a JAR, its code to do so should be the following:
 Scanner in = new Scanner(

 Example.class.getResourceAsStream("/data.txt"));
 ImageIcon icon = new ImageIcon(

 Example.class.getResource("/pony.png"));
 Toolkit.getDefaultToolkit().getImage(

 Example.class.getResource("/images/cat.jpg"));

 (Some classes like Scanner read from streams; some like Toolkit read from
URLs.)

 NOTE the very important leading / character; without it, you will get a null
result

Chapter
17

Swing I

Copyright © 2010 Pearson Addison-
Wesley. All rights reserved.

Introduction to Swing
• The Java AWT (Abstract Window Toolkit) package

is the original Java package for doing GUIs
• A GUI (graphical user interface) is a windowing

system that interacts with the user
• The Swing package is an improved version of the

AWT
– However, it does not completely replace the AWT
– Some AWT classes are replaced by Swing classes, but

other AWT classes are needed when using Swing
• Swing GUIs are designed using a form of object-

oriented programming known as event-driven
programming

17-2
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Events

• Event-driven programming is a
programming style that uses a signal-and-
response approach to programming

• An event is an object that acts as a signal
to another object know as a listener

• The sending of an event is called firing the
event
– The object that fires the event is often a GUI

component, such as a button that has been
clicked

17-3
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners

• A listener object performs some
action in response to the event
– A given component may have any

number of listeners
– Each listener may respond to a different

kind of event, or multiple listeners might
may respond to the same events

17-4
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Exception Objects

• An exception object is an event
– The throwing of an exception is an

example of firing an event

• The listener for an exception object is
the catch block that catches the
event

17-5
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Event Handlers

• A listener object has methods that
specify what will happen when
events of various kinds are received
by it
– These methods are called event

handlers

• The programmer using the listener
object will define or redefine these
event-handler methods

17-6
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Event Firing and an Event
Listener

17-7
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Event-Driven Programming

• Event-driven programming is very
different from most programming seen up
until now
– So far, programs have consisted of a list of

statements executed in order
– When that order changed, whether or not to

perform certain actions (such as repeat
statements in a loop, branch to another
statement, or invoke a method) was controlled
by the logic of the program

17-8
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Event-Driven Programming

• In event-driven programming,
objects are created that can fire
events, and listener objects are
created that can react to the events

• The program itself no longer
determines the order in which things
can happen
– Instead, the events determine the order

17-9
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Event-Driven Programming

• In an event-driven program, the next thing
that happens depends on the next event

• In particular, methods are defined that will
never be explicitly invoked in any program
– Instead, methods are invoked automatically

when an event signals that the method needs
to be called

17-10
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A Simple Window
• A simple window can consist of an object of the
JFrame class
– A JFrame object includes a border and the usual three

buttons for minimizing, changing the size of, and closing
the window

– The JFrame class is found in the javax.swing package
JFrame firstWindow = new JFrame();

• A JFrame can have components added to it, such
as buttons, menus, and text labels
– These components can be programmed for action

firstWindow.add(endButton);
– It can be made visible using the setVisible method

firstWindow.setVisible(true);

17-11
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A First Swing Demonstration (Part 1 of
4)

17-12
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A First Swing Demonstration (Part 2 of
4)

17-13
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A First Swing Demonstration (Part 3 of
4)

17-14
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A First Swing Demonstration (Part 4 of
4)

17-15
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some Methods in the Class JFrame
(Part 1 of 3)

17-16
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some Methods in the Class JFrame
(Part 2 of 3)

17-17
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some Methods in the Class JFrame
(Part 3 of 3)

17-18
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Pitfall: Forgetting to Program the
Close-Window Button

• The following lines from the FirstSwingDemo
program ensure that when the user clicks the
close-window button, nothing happens
firstWindow.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

• If this were not set, the default action would
be JFrame.HIDE_ON_CLOSE
– This would make the window invisible and

inaccessible, but would not end the program
– Therefore, given this scenario, there would be no

way to click the "Click to end program" button
• Note that the close-window and other two

accompanying buttons are part of the JFrame
object, and not separate buttons

17-19
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Buttons

• A button object is created from the class
JButton and can be added to a JFrame
– The argument to the JButton constructor is

the string that appears on the button when it is
displayed

JButton endButton = new

 JButton("Click to end program.");

firstWindow.add(endButton);

17-20
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Action Listeners and Action
Events

• Clicking a button fires an event
• The event object is "sent" to another object

called a listener
– This means that a method in the listener object is

invoked automatically
– Furthermore, it is invoked with the event object as its

argument
• In order to set up this relationship, a GUI

program must do two things
1. It must specify, for each button, what objects are its

listeners, i.e., it must register the listeners
2. It must define the methods that will be invoked

automatically when the event is sent to the listener

17-21
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Action Listeners and Action
Events

EndingListener buttonEar = new

 EndingListener());

endButton.addActionListener(buttonEar);

• Above, a listener object named
buttonEar is created and registered as a
listener for the button named endButton
– Note that a button fires events known as

action events, which are handled by listeners
known as action listeners

17-22
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Action Listeners and Action
Events

• Different kinds of components require
different kinds of listener classes to handle
the events they fire

• An action listener is an object whose class
implements the ActionListener interface
– The ActionListener interface has one method

heading that must be implemented
public void actionPerformed(ActionEvent e)

17-23
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Action Listeners and Action
Events

public void actionPerformed(ActionEvent e)
{
 System.exit(0);
}

• The EndingListener class defines its
actionPerformed method as above
– When the user clicks the endButton, an action

event is sent to the action listener for that button
– The EndingListener object buttonEar is the

action listener for endButton
– The action listener buttonEar receives the action

event as the parameter e to its actionPerformed
method, which is automatically invoked

– Note that e must be received, even if it is not used

17-24
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Pitfall: Changing the Heading for
actionPerformed

• When the actionPerformed method is
implemented in an action listener, its header
must be the one specified in the ActionListener
interface
– It is already determined, and may not be changed
– Not even a throws clause may be added
public void actionPerformed(ActionEvent e)

• The only thing that can be changed is the name
of the parameter, since it is just a placeholder
– Whether it is called e or something else does not matter,

as long as it is used consistently within the body of the
method

17-25
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Tip: Ending a Swing
Program

• GUI programs are often based on a kind of infinite
loop
– The windowing system normally stays on the screen

until the user indicates that it should go away

• If the user never asks the windowing system to
go away, it will never go away

• In order to end a GUI program, System.exit must
be used when the user asks to end the program
– It must be explicitly invoked, or included in some library

code that is executed
– Otherwise, a Swing program will not end after it has

executed all the code in the program

17-26
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A Better Version of Our First Swing GUI

• A better version of FirstWindow makes it a
derived class of the class JFrame
– This is the normal way to define a windowing

interface
• The constructor in the new FirstWindow

class starts by calling the constructor for the
parent class using super();
– This ensures that any initialization that is normally

done for all objects of type JFrame will be done
• Almost all initialization for the window
FirstWindow is placed in the constructor for
the class

• Note that this time, an anonymous object is
used as the action listener for the endButton

17-27
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Normal Way to Define a JFrame
(Part 1 of 4)

17-28
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Normal Way to Define a JFrame
(Part 2 of 4)

17-29
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Normal Way to Define a JFrame
(Part 3 of 4)

17-30
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Normal Way to Define a JFrame
(Part 4 of 4)

17-31
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Labels

• A label is an object of the class JLabel
– Text can be added to a JFrame using a label
– The text for the label is given as an argument

when the JLabel is created
– The label can then be added to a JFrame

JLabel greeting = new JLabel("Hello");

add(greeting);

17-32
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Color
• In Java, a color is an object of the class Color

– The class Color is found in the java.awt package
– There are constants in the Color class that represent a

number of basic colors
• A JFrame can not be colored directly

– Instead, a program must color something called the
content pane of the JFrame

– Since the content pane is the "inside" of a JFrame,
coloring the content pane has the effect of coloring the
inside of the JFrame

– Therefore, the background color of a JFrame can be set
using the following code:
getContentPane().setBackground(Color);

17-33
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Color Constants

17-34
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A JFrame with Color (Part 1
of 4)

17-35
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A JFrame with Color (Part 2
of 4)

17-36
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A JFrame with Color (Part 3
of 4)

17-37
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

A JFrame with Color (Part 4
of 4)

17-38
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Containers and Layout
Managers

• Multiple components can be added to
the content pane of a JFrame using the
add method
– However, the add method does not specify

how these components are to be arranged
• To describe how multiple components

are to be arranged, a layout manager
is used
– There are a number of layout manager

classes such as BorderLayout,
FlowLayout, and GridLayout

– If a layout manager is not specified, a
default layout manager is used

17-39
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Border Layout Managers

• A BorderLayout manager places the
components that are added to a JFrame
object into five regions
– These regions are: BorderLayout.NORTH,
BorderLayout.SOUTH, BorderLayout.EAST,
BorderLayout.WEST, and
BorderLayout.Center

• A BorderLayout manager is added to a
JFrame using the setLayout method
– For example:

setLayout(new BorderLayout());

17-40
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The BorderLayout Manager (Part 1 of
4)

17-41
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The BorderLayout Manager (Part 2 of
4)

17-42
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The BorderLayout Manager (Part 3 of
4)

17-43
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The BorderLayout Manager (Part 4 of
4)

17-44
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

BorderLayout Regions

17-45
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Border Layout Managers

• The previous diagram shows the arrangement of
the five border layout regions
– Note: None of the lines in the diagram are normally

visible

• When using a BorderLayout manager, the
location of the component being added is given
as a second argument to the add method
add(label1, BorderLayout.NORTH);
– Components can be added in any order since their

location is specified

17-46
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Flow Layout Managers

• The FlowLayout manager is the simplest
layout manager
setLayout(new FlowLayout());
– It arranges components one after the other,

going from left to right
– Components are arranged in the order in which

they are added
• Since a location is not specified, the add

method has only one argument when
using the FlowLayoutManager
add.(label1);

17-47
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Panels

• A GUI is often organized in a hierarchical
fashion, with containers called panels
inside other containers

• A panel is an object of the JPanel class
that serves as a simple container
– It is used to group smaller objects into a larger

component (the panel)
– One of the main functions of a JPanel object is

to subdivide a JFrame or other container

17-48
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Panels

• Both a JFrame and each panel in a JFrame can
use different layout managers
– Additional panels can be added to each panel, and

each panel can have its own layout manager
– This enables almost any kind of overall layout to be

used in a GUI
setLayout(new BorderLayout());
JPanel somePanel = new JPanel();
somePanel.setLayout(new FlowLayout());

• Note in the following example that panel and
button objects are given color using the
setBackground method without invoking
getContentPane
– The getContentPane method is only used when

adding color to a JFrame

17-49
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 1 of 8)

17-50
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 2 of 8)

17-51
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 3 of 8)

17-52
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 4 of 8)

17-53
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 5 of 8)

17-54
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 6 of 8)

17-55
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 7 of 8)

17-56
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using Panels (Part 8 of 8)

17-57
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes

• Often, instead of having one action
listener object deal with all the action
events in a GUI, a separate
ActionListener class is created for each
button or menu item
– Each button or menu item has its own unique

action listener
– There is then no need for a multiway if-else

statement
• When this approach is used, each class is

usually made a private inner class

17-58
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes (Part 1 of 6)

17-59
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes (Part 2 of 6)

17-60
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes (Part 3 of 6)

17-61
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes (Part 4 of 6)

17-62
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes (Part 5 of 6)

17-63
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Listeners as Inner Classes (Part 6 of 6)

17-64
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Chapter
18

Swing II

Copyright © 2010 Pearson Addison-
Wesley. All rights reserved.

Coordinate System for Graphics
Objects

• When drawing objects on the screen, Java uses a
coordinate system where the origin point (0,0) is
at the upper-left corner of the screen area used
for drawing
– The x-coordinate (horizontal) is positive and increasing

to the right
– The y- coordinate(vertical) is positive and increasing

down
– All coordinates are normally positive
– Units and sizes are in pixels
– The area used for drawing is typically a JFrame or
JPanel

18-2
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Coordinate System for Graphics
Objects

• The point (x,y) is located x pixels in from
the left edge of the screen, and down y
pixels from the top of the screen

• When placing a rectangle on the screen,
the location of its upper-left corner is
specified

• When placing a figure other than a
rectangle on the screen, Java encloses the
figure in an imaginary rectangle, called a
bounding box, and positions the upper-left
corner of this rectangle

18-3
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Screen Coordinate System

18-4
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Method paint and the Class
Graphics

• Almost all Swing and Swing-related
components and containers have a
method called paint

• The method paint draws the component
or container on the screen
– It is already defined, and is called

automatically when the figure is displayed on
the screen

– However, it must be redefined in order to draw
geometric figures like circles and boxes

– When redefined, always include the following:
super.paint(g);

18-5
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Method paint and the Class
Graphics

• Every container and component that can
be drawn on the screen has an associated
Graphics object
– The Graphics class is an abstract class found

in the java.awt package
• This object has data specifying what area

of the screen the component or container
covers
– The Graphics object for a JFrame specifies that

drawing takes place inside the borders of the
JFrame object

18-6
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Method paint and the Class
Graphics

• The object g of the class Graphics can
be used as the calling object for a
drawing method
– The drawing will then take place inside the

area of the screen specified by g
• The method paint has a parameter g

of type Graphics
– When the paint method is invoked, g is

replaced by the Graphics object
associated with the JFrame

– Therefore, the figures are drawn inside the
JFrame

18-7
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Drawing a Very Simple Face (part 1 of
5)

18-8
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Drawing a Very Simple Face (part 2 of
5)

18-9
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Drawing a Very Simple Face (part 3 of
5)

18-10
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Drawing a Very Simple Face (part 4 of
5)

18-11
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Drawing a Very Simple Face (part 5 of
5)

18-12
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some Methods in the Class Graphics
(part 1 of 4)

18-13
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some Methods in the Class Graphics
(part 3 of 4)

18-14
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some Methods in the Class Graphics
(part 4 of 4)

18-15
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Drawing Ovals

• An oval is drawn by the method drawOval
– The arguments specify the location, width, and

height of the smallest rectangle that can
enclose the oval
g.drawOval(100, 50, 300, 200);

• A circle is a special case of an oval in
which the width and height of the
rectangle are equal

g.drawOval(X_FACE, Y_FACE,
 FACE_DIAMETER, FACE_DIAMETER);

18-16
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

paintComponent for Panels

• A JPanel is a JComponent, but a JFrame is
a Component, not a JComponent
– Therefore, they use different methods to paint

the screen
• Figures can be drawn on a JPanel, and the
JPanel can be placed in a JFrame
– When defining a JPanel class in this way, the
paintComponent method is used instead of the
paint method

– Otherwise the details are the same as those for
a JFrame

18-17
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Action Drawings and
repaint

• The repaint method should be invoked
when the graphics content of a window is
changed
– The repaint method takes care of some

overhead, and then invokes the method paint,
which redraws the screen

– Although the repaint method must be
explicitly invoked, it is already defined

– The paint method, in contrast, must often be
defined, but is not explicitly invoked

18-18
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 1 of
7)

18-19
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 2 of
7)

18-20
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 3 of
7)

18-21
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 4 of
7)

18-22
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 5 of
7)

18-23
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 6 of
7)

18-24
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

An Action Drawing (Part 7 of
7)

18-25
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Some More Details on Updating a GUI

• With Swing, most changes to a GUI are updated
automatically to become visible on the screen
– This is done by the repaint manager object

• Although the repaint manager works
automatically, there are a few updates that it
does not perform
– For example, the ones taken care of by validate or
repaint

• One other updating method is pack
– pack resizes the window to something known as the

preferred size

18-26
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The validate Method

• An invocation of validate causes a container to
lay out its components again
– It is a kind of "update" method that makes changes in

the components shown on the screen
– Every container class has the validate method, which

has no arguments

• Many simple changes made to a Swing GUI
happen automatically, while others require an
invocation of validate or some other "update"
method
– When in doubt, it will do no harm to invoke validate

18-27
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Specifying a Drawing Color

• Using the method drawLine inside the
paint method is similar to drawing with a
pen that can change colors
– The method setColor will change the color of

the pen
– The color specified can be changed later on

with another invocation of setColor so that a
single drawing can have multiple colors
g.setColor(Color.BLUE)

18-28
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Adding Color

18-29
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

If you replace the paint method in Display 18.13 with
this version then the happy face will have blue eyes
and red lips.

Defining Colors

• Standard colors in the class Color are
already defined
– These are listed in Display 17.5 in Chapter 17,

and shown on the following slide

• The Color class can also be used to define
additional colors
– It uses the RGB color system in which different

amounts of red, green, and blue light are used
to produce any color

18-30
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The Color Constants

18-31
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Defining Colors

• Integers or floats may be used when
specifying the amount of red, green,
and/or blue in a color
– Integers must be in the range 0-255 inclusive
 Color brown = new Color(200, 150, 0);
– float values must be in the range 0.0-1.0

inclusive
 Color brown = new Color(
 (float)(200.0/255),(float)(150.0/255),
 (float)0.0);

18-32
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

The drawString Method

• The method drawString is similar to
the drawing methods in the
Graphics class
– However, it displays text instead of a

drawing
– If no font is specified, a default font is

used
g.drawString(theText, X_START, Y_Start);

18-33
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using drawString (Part 1 of
7)

18-34
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using drawString (Part 2 of
7)

18-35
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using drawString (Part 3 of
7)

18-36
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using drawString (Part 4 of
7)

18-37
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

Using drawString (Part 5 of
7)

18-38
Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

@2011 Mihail L. Sichitiu

Android Introduction
Application Fundamentals

@2011 Mihail L. Sichitiu

Goal
● Understand applications and their components
● Concepts:

○ activity,
○ service,
○ broadcast receiver,
○ content provider,
○ intent,
○ AndroidManifest

@2011 Mihail L. Sichitiu

Applications
● Written in Java (it’s possible to write native code

– will not cover that here)
● Good separation (and corresponding security)

from other applications:
○ Each application runs in its own process
○ Each process has its own separate VM
○ Each application is assigned a unique Linux user ID

– by default files of that application are only visible to
that application (can be explicitly exported)

@2011 Mihail L. Sichitiu

Application Components
● Activities – visual user interface focused on a

single thing a user can do
● Services – no visual interface – they run in the

background
● Broadcast Receivers – receive and react to

broadcast announcements
● Content Providers – allow data exchange

between applications

@2011 Mihail L. Sichitiu

Activities
● Basic component of most applications
● Most applications have several activities that

start each other as needed
● Each is implemented as a subclass of the base

Activity class

@2011 Mihail L. Sichitiu

Activities – The View
● Each activity has a default window to draw in

(although it may prompt for dialogs or
notifications)

● The content of the window is a view or a group
of views (derived from View or ViewGroup)

● Example of views: buttons, text fields, scroll
bars, menu items, check boxes, etc.

● View(Group) made visible via Activity.
setContentView() method.

@2011 Mihail L. Sichitiu

Services
● Does not have a visual interface
● Runs in the background indefinitely
● Examples

○ Network Downloads
○ Playing Music
○ TCP/UDP Server

● You can bind to a an existing service and
control its operation

@2011 Mihail L. Sichitiu

Intents
● An intent is an Intent object with a message content.
● Activities, services and broadcast receivers are started

by intents. ContentProviders are started by
ContentResolvers:

○ An activity is started by Context.startActivity(Intent intent) or
Activity.startActivityForResult(Intent intent, int RequestCode)

○ A service is started by Context.startService(Intent service)
○ An application can initiate a broadcast by using an Intent in any

of Context.sendBroadcast(Intent intent), Context.
sendOrderedBroadcast(), and Context.sendStickyBroadcast()

@2011 Mihail L. Sichitiu

Shutting down components
● Activities

○ Can terminate itself via finish();
○ Can terminate other activities it started via finishActivity();

● Services
○ Can terminate via stopSelf(); or Context.stopService();

● Content Providers
○ Are only active when responding to ContentResolvers

● Broadcast Receivers
○ Are only active when responding to broadcasts

@2011 Mihail L. Sichitiu

Android Manifest
● Its main purpose in life is to declare the components to the system:

<?xml version="1.0" encoding="utf-8"?>
<manifest . . . >
 <application . . . >
 <activity android:name="com.example.project.FreneticActivity"
 android:icon="@drawable/small_pic.png"
 android:label="@string/freneticLabel"
 . . . >
 </activity>
 . . .
 </application>
</manifest>

@2011 Mihail L. Sichitiu

Intent Filters
● Declare Intents handled by the current application (in the

AndroidManifest):

<?xml version="1.0" encoding="utf-8"?>
<manifest . . . >
 <application . . . >
 <activity android:name="com.example.project.FreneticActivity"
 android:icon="@drawable/small_pic.png"
 android:label="@string/freneticLabel"
 . . . >
 <intent-filter . . . >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter . . . >
 <action android:name="com.example.project.BOUNCE" />
 <data android:mimeType="image/jpeg" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 . . .
 </application>
</manifest>

Shows in the
Launcher and
is the main
activity to start

Handles JPEG
images in
some way

@2011 Mihail L. Sichitiu

Android Introduction
Hello World

@2011 Mihail L. Sichitiu

Package Content

Java code for our activityAll source code here

Generated Java code
Helps link resources to
Java code

Layout of the activity

Strings used in the
program

All non-code
resources

Android Manifest

Images

@2011 Mihail L. Sichitiu

Android Manifest
● <?xml version="1.0" encoding="utf-8"?>
● <manifest xmlns:android="http://schemas.android.com/apk/res/android"
● package="com.example.helloandroid"
● android:versionCode="1"
● android:versionName="1.0">
● <application android:icon="@drawable/icon" android:label="@string/app_name">
● <activity android:name=".HelloAndroid"
● android:label="@string/app_name">
● <intent-filter>
● <action android:name="android.intent.action.MAIN" />
● <category android:name="android.intent.category.LAUNCHER" />
● </intent-filter>
● </activity>

● </application>

● </manifest>

@2011 Mihail L. Sichitiu

Activity "Lifecycle"
● An Android activity is

focused on a single
thing a user can do.

● Most applications
have multiple
activities

@2011 Mihail L. Sichitiu

Activities start each other

You should understand the differences between
startActivity() and startActivityForResult()--see

sample code in HelloWidgetMania

@2011 Mihail L. Sichitiu

Revised HelloAndroid.java
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
 tv.setText("Hello, Android – by hand");
 setContentView(tv);
 }
}

Set the view “by hand” –
from the program

Inherit
from the
Activity
Class

@2011 Mihail L. Sichitiu

Run it!

@2011 Mihail L. Sichitiu

/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>
</LinearLayout> Further redirection to

/res/values/strings.xml

@2011 Mihail L. Sichitiu

/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Hello World, HelloAndroid – by resources!</string>
<string name="app_name">Hello, Android</string>
</resources>

@2011 Mihail L. Sichitiu

HelloAndroid.java
package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
public class HelloAndroid extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState); setContentView(R.layout.main);
}
}

Set the layout of the view
as described in the main.
xml layout

@2011 Mihail L. Sichitiu

Android Introduction
Graphical User Interface

@2011 Mihail L. Sichitiu

Goal
● Be familiar with the main types of GUI

concepts:
○ Layouts
○ Widgets
○ Events

@2011 Mihail L. Sichitiu

View Hierarchy
● All the views in a window are arranged in a tree
● You show the tree by calling setContentView(rootNode)

in the activity

@2011 Mihail L. Sichitiu

Layout
● Defines how elements

are positioned relative
to each other (next to
each other, under each
other, in a table, grid,
etc.)

● Can have a different
layouts for each
ViewGroup

@2011 Mihail L. Sichitiu

Linear Layout (Horizontal vs. vertical)
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.
com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">
 <TextView
 android:text="red"
 android:gravity="center_horizontal"
[…………………….]
 </LinearLayout>

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">
 <TextView
 android:text="row one"
 android:textSize="15pt"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"/>
 <TextView
 android:text="row two"
 android:textSize="15pt"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"/>
[…………………………………..]
 </LinearLayout>

</LinearLayout>

http://developer.android.com/resources/tutorials/views/hello-linearlayout.html

@2011 Mihail L. Sichitiu

Widgets
● All are View objects
● Examples:

○ TextFields
○ EditFields
○ Buttons
○ Checkboxes
○ RadioButtons
○ etc.

@2011 Mihail L. Sichitiu

UI Events
● Usually handled by defining a Listener of the

form On<something>Listener and register it
with the View

● For example:
○ OnClickListener() for handling clicks on Buttons or

Lists
○ OnTouchListener() for handling touches
○ OnKeyListerner() for handling key presses

● Alternatively, Override an existing callback if we
implemented our own class extending View

Lots of sample code in HelloWidgetMania

@2011 Mihail L. Sichitiu

Eclipse layout Manager: Two views

XML File vs Layout Preview

More Android Concepts

● The basic structure of an animated game
○ Represent state of game in variables
○ Render state of game by drawing from variables
○ Update state of game through:

■ User input (touch, keypad, acclerometer, etc.)
■ "Physics": Simulate forces, continue motion, check for collisions,

etc.
● 2-D graphics: Familiarity with how to draw shapes, images

(loaded from res/drawable), text, change colors, etc.
● Sample code: Be familiar with doDraw() & updatePhysics()

in MarsLander
● Miscellaneous

○ Storing/loading preferences, reading text file
○ Sound: SoundPool vs. MediaPlayer -- what each is best suited for
○ Text-to-speech, vibration, accelerometer only at the level of what do

they do--not how they do it

