Fau 2011
C BQ1181 Flnal Rewew

S

B Profl [IS@ er Ra ml.hss Y0 (U O
T O e TR EN RS

; / _,r 4
istrative details |

."
f

f"' | [J"I

f f | ' i : ! '
cadline for course evaluations: Thursday, Dec. 8, midnight
Nritten c,émrhen;ts are most helpful...

| Fis)

H B
| .
|
i |
1
= i Pl H R x
|
-

; / _,r
nistrative details |l

Administrative details Il

e You have one extra day to finish Project #3: the due date is
now Wednesday, December 7 (at midnight)

e You can still use late days after that if you have them

e Don't forget Lab #8 -- due at the usual time for your section
this week

Final Details

e Next Thursday, December 15

e Closed book, no notes, no calculators, cell phones, etc.
e \Worth 15% of your grade (same as midterm)

e Covers all lectures from Tuesday, October 25 through

Tuesday, November 29 class

o Pay close attention to exact pages in readings

o Topics in the textbook: Assertions/exceptions, Swing

o Topics totally outside the textbook: Unit testing, Android

o Will NOT cover anything about Eclipse or its built-in debugging
facilities (including Android logging)

o STUDY SAMPLE PROGRAMS WE WENT OVER IN CLASS!

e Question types

o Language, API feature/concept definitions and explanations

o Write a function that does X or a whole class with certain
variables and methods

o If we call method f() with arguments a and b, what does it

-. return/print/do?_ o —— e

.

Topics Covered

e Exception handling, assertions
e Unit testing (separate slides #1)

e Deployment
o JARs (separate slides #2)
o Applets: no main(), derive your class from JApple, put set-up code in
init()
e Swing (separate slides #3)
o Windows, button/mouse events, listeners
o 2-D drawing
o Layout managers, swapping panels
o Timers, animation

e Android

o Activities: concepts, starting, communicating between
o Views, resources, layouts

o 2-D graphics, animation

o Storing preferences, reading text file

o Sound, text-to-speech, vibration, accelerometer

try-throw-catch Mechanism

e A throw statement is similar to a method call:
throw new ExceptionClassName(SomeString);

o In the above example, the object of class
ExceptionClassName is created using a string as
its argument

o This object, which is an argument to the throw
operator, is the exception object thrown

e [nstead of calling a method, a throw statement
calls a catch block

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 9-6

Defining Exception Classes

e A throw statement can throw an exception
object of any exception class
e [nstead of using a predefined class, exception

classes can be programmer-defined
o These can be tailored to carry the precise kinds of
iInformation needed in the catch block
o A different type of exception can be defined to
identify each different exceptional situation

Multiple catch Blocks

e A try block can potentially throw any number of
exception values, and they can be of differing

types

o In any one execution of a try block, at most one
exception can be thrown (since a throw statement
ends the execution of the try block)

o However, different types of exception values can be
thrown on different executions of the try block

Multiple catch Blocks

e Each catch block can only catch values of the
exception class type given in the catch block
heading

e Different types of exceptions can be caught by
placing more than one catch block after a try
block

o Any number of catch blocks can be included, but
they must be placed in the correct order

Pitfall: Catch the More Specific Exception
First

e \When catching multiple exceptions, the

order of the catch blocks is important
o When an exception is thrown in a try block,
the catch blocks are examined in order
o The first one that matches the type of the
exception thrown is the one that is executed

The finally Block

e The finally block contains code to be executed
whether or not an exception is thrown in a try
block

o If it is used, a finally block is placed after a try block and
its following catch blocks
try
{...}

catch(ExceptionClass1 e)

{...}

catch(ExceptionClassN e)
{...}

finally
{
CodeToBeExecutedInAllCases

}

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 9-46

The finally Block

e If the try-catch-finally blocks are inside a method
definition, there are three possibilities when the code is

run.

1. The try block runs to the end, no exception is thrown, and the
finally block is executed

2. An exception is thrown in the try block, caught in one of the
catch blocks, and the finally block is executed

3. An exception is thrown in the try block, there is no matching
catch block in the method, the finally block is executed, and
then the method invocation ends and the exception object is
thrown to the enclosing method

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 9-47

The Catch or Declare Rule

e Most ordinary exceptions that might be thrown
within a method must be accounted for in one of

two ways:

1. The code that can throw an exception is placed
within a try block, and the possible exception is
caught in a catch block within the same method

2. The possible exception can be declared at the start
of the method definition by placing the exception
class name in a throws clause

When to Use Exceptions

e Exceptions should be reserved for situations
where a method encounters an unusual or
unexpected case that cannot be handled easily
In some other way

e \When exception handling must be used, here

are some basic guidelines:
o Include throw statements and list the exception classes in a
throws clause within a method definition
o Place the try and catch blocks in a different method

Assertion Checks

e An assertion is a sentence that says (asserts)

something about the state of a program
o An assertion must be either true or false, and should be true if
a program is working properly
o Assertions can be placed in a program as comments

e Java has a statement that can check if an assertion is

true
assert Boolean_ Expression;
o If assertion checking is turned on and the
Boolean_ Expression evaluates to false, the program ends,
and outputs an assertion failed error message
o Otherwise, the program finishes execution normally

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 3-58

Assertion Checks

e A program or other class containing assertions
Is compiled in the usual way
e After compilation, a program can run with

assertion checking turned on or turned off
o Normally a program runs with assertion checking
turned off

e [n order to run a program with assertion
checking turned on, use the following command

(using the actual ProgramName):
Java —enableassertions ProgramName

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 3-59

Miscellaneous + Swing

e Unit testing
o Web slide show: http://www.slideshare.net/tom.
zimmermann/unit-testing-with-junit
o Sample code: PokerTest.java (for CardGame)
e JARS:
o Separate slides in java_jars.ppt
e Applets: Java apps embedded in web pages
o No main()
o Derive your class from JApplet
o Put set-up code in init()
o Create JAR
o Link JAR in web page
o Sample code: HelloApplet.java, HelloApplet.html;
DragMouseApplet.java
e Swing: Separate slides

W * *— ?_ Y - - — . - . - - - =

JAR Files (yousa likey!)

* JAR: Java ARchive. A group of Java classes and
supporting files combined into a single file compressed
with ZIP format, and given .JAR extension.

* Advantages of JAR files:
" compressed; quicker download
= just one file; less mess
" can be executable

* The closest you can get to having a .exe
file for your Java application.

slides created by Marty Stepp
based on materials by M. Ernst, S. Reges, D. Notkin, R. Mercer, Wikipedia

_

http://www.cs.washington.edu/331/

Creating a JAR archive

* from the command line:
jar -cvf filename. jar files

" Example:
jar -cvf MyProgram.jar *.class *.gif *.jpg

L] L]
* some |IDEs (e Eclipse) can create JARs automaticall
]]
. L L]
File -» Export... = JAR file
[# Package Explorer ¥ Upen In New Window i
157 cse331-hwil-sho e =
1 coe331-nw2-sch Show In Shift+Alt+W > select A
07 cse331-hw3-rest |2 copy Cti+C Export resources into a JAR file on the local file system. g 5
&2 Copy Qualified Name
7 cse331-hws-tick |2 past Cirl+V Select an export destination:
17 cse331-hwé-tict 3¢ Delete Delete type filter text I |
27 gradeit-java
7 javarunner Remove from Context Shift+Ctri+Alt+Down + (= General
v - -l =EB
7 Practice-Tt LA - foEB)
7 Sandbox Source Shil"c+Nt+S ; E‘Java
7 Servers Refactor Shift+Alt+T ## Bug
S T JAR file
23 Impol
\ BN S /

Running a JAR

* Running a JAR from the command line:
" java -jar filename.jar

* Most OSes can run JARs directly by double-clicking
them:

Name W | Size Type
| | hw5-solution.bat 36 prlain text docume

& hw5-solution.jar

[] Open With "Archive Manager"

n Open With "Sun Java 6 Runtime" k
Open With Cther Application...

Send To >

¥ cut

Making a runnable JAR

* manifest file: Used to create a JAR runnable as a
program.

jar -cvmf manifestFile MyAppletJar.jar
mypackage/*.class *.gif

Main-Class: MainClassNa

Contents of MANIFEST file: rL

" Eclipse will automatically generate and insert a
proper manifest file into your JAR if you specify the
_ main-class to use. Y,

4

Resources inside a JAR

* You can embed external resources inside your JAR:
" images (GIF, JPG, PNG, etc.)
" audio files (WAV, MP3)
" input data files (TXT, DAT, etc.)

* But code for opening files will look outside your JAR,

not inside it.
" Scanner in = new Scanner(new File('"data.txt")); // fail
" ImageIcon icon = new ImageIcon('"pony.png"), // fail

" Toolkit.getDefaultToolkit().getImage("cat.jpg"); // fail

\- /

Accessing JAR resources

e Every class has an associated .class object with these
methods:

= public URL getResource(String filename)
" public InputStream getResourceAsStream(String name)

 If a class named Example wants to load resources from

within a JAR, its code to do so should be the following:

= Scanner 1in = new Scanner(
Example.class.getResourceAsStream("/data.txt"));

= ImageIcon icon = new ImageIcon(
Example.class.getResource("/pony.png"));

= Toolkit.getDefaultToolkit().getImage(
Example.class.getResource("/images/cat.jpg"));

= (Some classes like Scanner read from streams; some like Toolkit read from
URLSs.)

\ = NOTE the very important leading / character; without it, you will get a null/
6

rocult
uuuuuu

ASSOLUTE JAVA [N

17
Swing |

Cuasses o Memoos
Rergaemars

scanner (uss houi
Auowanc Booows
v £or Loce

benercs

Smeaws wo Fuz 1/0
Excernon Hasuws
ArrayList
Loy st

Simg GUs

Theteos

4..

EDITION

PEARSON

e e e
Addison
Wesley

Copyright © 2010 Pearson Addison-
Wesley. All rights reserved.

Introduction to Swing

The Java AWT (Abstract Window Toolkit) package
Is the original Java package for doing GUIs

A GUI (graphical user interface) is a windowing
system that Interacts with the user

The Swing package is an improved version of the

AWT

— However, it does not completely replace the AWT

— Some AWT classes are replaced by Swing classes, but
other AWT classes are needed when using Swing

Swing GUIs are designed using a form of object-

oriented programming known as event-driven

programming

Events

 Event-driven programming is a
programming style that uses a signal-and-
response approach to programming

* An event is an object that acts as a signal
to another object know as a listener

* The sending of an event is called firing the
event
— The object that fires the event is often a GUI

component, such as a button that has been
clicked

Listeners

* A listener object performs some
action in response to the event

— A given component may have any
number of listeners

— Each listener may respond to a different
kind of event, or multiple listeners might
may respond to the same events

Exception Objects

 An exception object is an event

—The throwing of an exception is an
example of firing an event

 The listener for an exception object is
the catch block that catches the

event

Event Handlers

* A listener object has methods that
specify what will happen when
events of various kinds are received
by it
— These methods are called event

handlers

* The programmer using the listener
object will define or redefine these
event-handler methods

Event Firing and an Event
Listener

Display 17.1 Event Firing and an Event Listener

The component (for
example, a button) fires an

event. \

component event listener

\

This listener object invokes an event handler
method with the event as an argument.

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-7

Event-Driven Programming

 Event-driven programming is very
different from most programming seen up
until now

— So far, programs have consisted of a list of
statements executed in order

— When that order changed, whether or not to
perform certain actions (such as repeat
statements in a loop, branch to another
statement, or invoke a method) was controlled
by the logic of the program

Event-Driven Programming

* In event-driven programming,
objects are created that can fire
events, and listener objects are
created that can react to the events

 The program itself no longer
determines the order in which things
can happen
—Instead, the events determine the order

Event-Driven Programming

* In an event-driven program, the next thing
that happens depends on the next event

* In particular, methods are defined that will
never be explicitly invoked in any program

— Instead, methods are invoked automatically
when an event signals that the method needs

to be called

A Simple Window

A simple window can consist of an object of the
JFrame class

— A JFrame object includes a border and the usual three
buttons for minimizing, changing the size of, and closing
the window

— The JFrame class is found in the javax.swing package
JFrame firstWindow = new JFrame();

* A JFrame can have components added to it, such
as buttons, menus, and text labels

— These components can be programmed for action
firstWindow.add(endButton);

— It can be made visible using the setvisible method
firstWindow.setVisible(true);

Copyright © 2010 Pearson Addison-Wesley. All rights 17-11
reserved. .

A First Swing Demonstration (Part 1 of
4)

Display 17.2 A First Swing Demonstration Program

1 import j .swing.JFrame; _ . .
P Javax.swing " This program is not typical of the

2 i tJ .swing.JButton; ,
HPOrE. javax.swing.Jbutton style we will use in Swing
3 public class FirstSwingDemo programs.
4 A
5 public static final int WIDTH = 300;
6 public static final int HEIGHT = 200;
7 public static void main(String[] args)
8 {
9 JFrame firstWindow = new JFrame();
10 firstWindow.setSize (WIDTH, HEIGHT);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-12

A First Swing Demonstration (Part 2 of
4)

ay 17.2 A First Swing Demonstration Program

11 firstWindow.setDefaultCloseOperation(

12 JFrame .DO_NOTHING_ON_CLOSE);

13 JButton endButton = new JButton("Click to end program.");
14 EndinglListener buttonEar = new EndingListener();

15 endButton.addActionListener(buttonEar);

16 firstWindow.add(endButton);

17 firstWindow.setVisible(true);

18 }

19 }

This is the file FirstSwingDemo. java.

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-13

A First Swing Demonstration (Part 3 of
4)

Display 17.2 A First Swing Demonstration Program

1 1import java.awt.event.ActionlListener;

2 import java.awt.event.ActionEvent; Thisis the file Endinglistener. java.
3 public class EndinglListener implements ActionlListener

4 A

5 public void actionPerformed(ActionEvent e)

6 {

7 System.exit(0);

8 }

9 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-14

A First Swing Demonstration (Part 4 of
4)

Display 17.2 A First Swing Demonstration Program

Minimize (iconify)

RESULTING GUI Change window size to full
screen.

- O
Close-window button

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-15

Some Methods in the Class JFrame
(Part 1 of 3)

Display 17.3 Some Methods in the Class JFrame

The class JFrame is in the javax.swing package.

public JFrame()

Constructor that creates an object of the class JFrame.

public JFrame(String title)

Constructor that creates an object of the class JFrame with the title given as the argument.

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-16

Some Methods in the Class JFrame
(Part 2 of 3)

Display 17.3 Some Methods in the Class 1Frame

public void setDefaultCloseOperation(int operation)

Sets the action that will happen by default when the user clicks the close-window button. The argument
should be one of the following defined constants:
JFrame .DO_NOTHING_ON_CLOSE: Do nothing. The JFrame does nothing, but if there are any regis-
tered window listeners, they are invoked. (Window listeners are explained in Chapter 19.)
JFrame .HIDE_ON_CLOSE: Hide the frame after invoking any registered WindowListener objects.
JFrame .DISPOSE_ON_CLOSE: Hide and dispose the frame after invoking any registered window lis-
teners. When a window is disposed it is eliminated but the program does not end. To end the program,
you use the next constant as an argument to setDefaultCloseOperation.
JFrame.EXIT_ON_CLOSE: Exit the application using the System exit method. (Do not use this for
frames in applets. Applets are discussed in Chapter 18.)
If no action is specified using the method setDefaultCloseOperation, then the default action taken
is JFrame .HIDE_ON_CLOSE.
Throws an I1legalArgumentException if the argument is not one of the values listed above.?
Throws a SecurityException if the argument is JFrame . EXIT_ON_CLOSE and the Security Manager
will not allow the caller to invoke System.exit. (You are not likely to encounter this case.)

public void setSize(int width, int height)

Sets the size of the calling frame so that it has the width and height specified. Pixels are the units of
length used.

Copyright © 2010 Pearson Addison-Wesley. All rights (continuedb .
reserved.)

Some Methods in the Class JFrame
(Part 3 of 3)

Some Methods in the Class JFrame

public void setTitle(String title)

Sets the title for this frame to the argument string.

public void add(Component componentAdded)

Adds a component to the JFrame.

public void setLayout(LayoutManager manager)

Sets the layout manager. Layout managers are discussed later in this chapter.

public void setJIMenuBar(JMenuBar menubar)

Sets the menubar for the calling frame. (Menus and menu bars are discussed later in this chapter.)

public void dispose()

Eliminates the calling frame and all its subcomponents. Any memory they use is released for reuse. If there
are items left (items other than the calling frame and its subcomponents), then this does not end the pro-
gram. (The method dispose is discussed in Chapter 19.)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-18

Pitfall: Forgetting to Program the
Close-Window Button

 The following lines from the FirstSwingDemo
program ensure that when the user clicks the
close-window button, nothing happens
firstWindow.setDefaultCloseOperation(
JFrame.DO_NOTHING_ON_CLOSE);

e |f this were not set, the default action would
be JFrame.HIDE ON CLOSE

— This would make the window invisible and
Inaccessible, but would not end the program

— Therefore, given this scenario, there would be no
way to click the "Click to end program" button
* Note that the close-window and other two
accompanying buttons are part of the JFrame
object, and not separate buttons

Copyright © 2010 Pearson Addison-Wesley. All rights 17-19
reserved. .

Buttons

* A button object is created from the class
JButton and can be added to a JFrame

— The argument to the JButton constructor is
the string that appears on the button when it is
displayed

JButton endButton = new

JButton("Click to end program.");
firstWindow.add(endButton);

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-20

Action Listeners and Action
Events

 Clicking a button fires an event

* The event object is "sent" to another object
called a listener

— This means that a method in the listener object is
invoked automatically

— Furthermore, it is invoked with the event object as its
argument
* In order to set up this relationship, a GUI
program must do two things

1. It must specify, for each button, what objects are its
listeners, i.e., it must register the listeners

2. It must define the methods that will be invoked
automatically when the event is sent to the listener

Action Listeners and Action
Events

EndingListener buttonEar = new
EndingListener());
endButton.addActionListener (buttonEar);

« Above, a listener object named
buttonEar Is created and registered as a
listener for the button named endButton

— Note that a button fires events known as
action events, which are handled by listeners
known as action listeners

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-22

Action Listeners and Action
Events

* Different kinds of components require
different kinds of listener classes to handle

the events they fire
* An action listener is an object whose class
Implements the ActionListener interface

— The ActionListener interface has one method

heading that must be implemented
public void actionPerformed(ActionEvent e)

Copyright © 2010 Pearson Addison-Wesley. All rights 17-23
reserved. .

Action Listeners and Action
Events

public void actionPerformed(ActionEvent e)

{
System.exit(0);

}
* The EndingListener class defines its
actionPerformed method as above

— When the user clicks the endButton, an action
event is sent to the action listener for that button

— The EndingListener object buttonEar is the
action listener for endButton

— The action listener buttonEar receives the action
event as the parameter e to its actionPerformed
method, which is automatically invoked

— Note that e must be received, even if it is not used

Copyright © 2010 Pearson Addison-Wesley. All rights 17-24
reserved. .

Pitfall: Changing the Heading for
actionPerformed

* When the actionPerformed method is
iImplemented in an action listener, its header
must be the one specified in the ActionListener
interface
— It is already determined, and may not be changed
— Not even a throws clause may be added
public void actionPerformed(ActionEvent e)

 The only thing that can be changed is the name
of the parameter, since it is just a placeholder

— Whether it is called e or something else does not matter,

as long as it is used consistently within the body of the
method

Copyright © 2010 Pearson Addison-Wesley. All rights 17.25
reserved. .

Tip: Ending a Swing
Program

 GUI programs are often based on a kind of infinite
loop
— The windowing system normally stays on the screen
until the user indicates that it should go away
* If the user never asks the windowing system to
go away, it will never go away

* |In order to end a GUI program, System.exit must
be used when the user asks to end the program

— It must be explicitly invoked, or included in some library
code that is executed

— Otherwise, a Swing program will not end after it has
executed all the code in the program

A Better Version of Our First Swing GUI

A better version of FirstWindow makes it a
derived class of the class JFrame

— This is the normal way to define a windowing
interface
* The constructor in the new FirstWindow
class starts by calling the constructor for the
parent class using super();

— This ensures that any initialization that is normally
done for all objects of type JFrame will be done
* Almost all initialization for the window
FirstWindow is placed in the constructor for
the class

* Note that this time, an anonymous object is
used as the action listener for the endButton

Copyright © 2010 Pearson Addison-Wesley. All rights 17-27
reserved. .

The Normal Way to Define a JFrame
(Part 1 of 4)

Display 17.4 The Normal Way to Define a JFrame

=

import javax.swing.JFrame;
2 import javax.swing.JButton;

3 public class FirstWindow extends JFrame
4 {

5 public static final int WIDTH = 300;
6 public static final int HEIGHT = 200;
7 public FirstWindow()

8 {

9 super();

10 setSize(WIDTH, HEIGHT);

11 setTitle("First Window Class");

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-28

The Normal Way to Define a JFrame
(Part 2 of 4)

Display 17., The Normal Way to Define a JFrame

12 setDefaultCloseOperation(

13 JFrame.DO_NOTHING_ON_CLOSE);

14 JButton endButton = new JButton("Click to end program.");
15 endButton.addActionListener(new EndinglListener());

16 add(endButton) ;

17 }

18 3}

The class Endinglistener is defined in Display
17.2.
This is the file FirstWindow. java.
(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-29

The Normal Way to Define a JFrame
(Part 3 of 4)

Display 17.4 The Normal Way to Define a JFrame

This is the file DemoWindow. java.

1 public class DemoWindow

2 {

3 public static void main(String[] args)
4 {

5 FirstWindow w = new FirstWindow();
6 w.setVisible(true);

7 }

8 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-30

The Normal Way to Define a JFrame
(Part 4 of 4)

Display 17., The Normal Way to Define a JFrame

RESULTING GUI

& First Window Class |:Hﬁ|g|
Click to end program.

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-31

Labels

A label is an object of the class JLabel
— Text can be added to a JFrame using a label

— The text for the label is given as an argument
when the JLabel is created

— The label can then be added to a JFrame
JLabel greeting = new JLabel("Hello");
add(greeting);

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-32

Color

* In Java, a color is an object of the class Color
— The class Color is found in the java.awt package
— There are constants in the Color class that represent a
number of basic colors
« A JFrame can not be colored directly

— Instead, a program must color something called the
content pane of the JFrame

— Since the content pane is the "inside" of a JFrame,
coloring the content pane has the effect of coloring the
Inside of the JFrame

— Therefore, the background color of a JFrame can be set
using the following code:

getContentPane().setBackground(Color),

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-33

The Color Constants

Display 17.5 The Color Constants

Color.BLACK
Color.BLUE
Color.CYAN
Color.DARK_GRAY
Color.GRAY
Color.GREEN
Color.LIGHT_GRAY

Color
Color
Color
Color
Color
Color

The class Color is in the java.awt package.

.MAGENTA
.ORANGE
. PINK
.RED
.WHITE
.YELLOW

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

17-34

A JFrame with Color (Part 1
of 4)

Display 17.6 A JFrame with Color

1 import javax.swing.JFrame;

2 import javax.swing.JLabel;

3 import java.awt.Color;

4 public class ColoredWindow extends JFrame

5 {

6 public static final int WIDTH = 300;

7 public static final int HEIGHT = 200;
public ColoredWindow(Color theColor)

9 {

10 super("No Charge for Color");

11 setSize(WIDTH, HEIGHT);

12 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-35

A JFrame with Color (Part 2
of 4)

Display 17.6 A JFrame with Color

13 getContentPane() .setBackground(theColor);

14 JLabel alLabel = new JLabel("Close-window button works.");
15 add(aLabel) ;

16 }

17 public ColoredWindow()

18 { This is an invocation of the other
19 this(Color.PINK); - constructor.

20 }

21}

This is the file ColoredWindow. java.

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-36

A JFrame with Color (Part 3

Nicerlav
Display 1

7.6

of 4)

A JFrame with Color

1

~N Oy B WN

co

10
11

import java.awt.Color;

This is the file ColoredWindow. java.

public class DemoColoredWindow

{

public static void main(String[] args)

{

ColoredWindow wl = new ColoredWindow();
wl.setVisible(true);

ColoredWindow w2 = new ColoredWindow(Color.YELLOW) ;
w2.setVisible(true);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-37

A JFrame with Color (Part 4

of 4)

Display 17.6 A JFrame with Color

RESULTING GUI

& No Charge for Color Q@I@

Close-window button works.

Copyright © 2010 Pearson Addison-WesTey. Al fgnte

reserved.

You will need to use your mouse to
drag the top window or you will not see
the bottom window.

No Charge for Color Q@

Close-window button works.

17-38

Containers and Layout
Managers

* Multiple components can be added to
the content pane of a JFrame using the
add method

— However, the add method does not specify
how these components are to be arranged
* To describe how multiple components
are to be arranged, a layout manager
IS used

— There are a number of layout manager
classes such as BorderLayout,
FlowLayout, and GridLayout

— If a layout manager is not specified, a
default layout manager is used

Border Layout Managers

* A BorderLayout manager places the
components that are added to a JFrame
object into five regions
— These regions are: BorderLayout.NORTH,

BorderLayout.SOUTH, BorderLayout . EAST,

BorderLayout.WEST, and
BorderLayout.Center

* A BorderLayout manager is added to a
JFrame using the setLayout method
— For example:

setLayout (new BorderLayout());

Copyright © 2010 Pearson Addison-Wesley. All rights 17-40
reserved. .

The BorderLayout Manager (Part 1 of
4)

Display 17.7 The BorderLayout Manager

1 1import javax.swing.JFrame;

2 1import javax.swing.JLabel;

3 1import java.awt.BorderLayout;

4 public class BorderLayout]Frame extends JFrame
5 {

6 public static final int WIDTH = 500;

7 public static final int HEIGHT = 400;

8 public BorderLayoutJFrame()

9 {

10 super("BorderLayout Demonstration");
11 setSize(WIDTH, HEIGHT);
12 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-41

The BorderLayout Manager (Part 2 of
4)

Display 17.7 The BorderLayout Manager

13 setLayout(new BorderLayout());

14 JLabel labell = new JLabel("First label™);
15 add(labell, BorderLayout.NORTH) ;

16 JLabel label2 = new JLabel("Second label");
17 add(label2, BorderLayout.SOUTH) ;

18 JLabel label3 = new JLabel("Third label™);
19 add(label3, BorderLayout.CENTER);

20 }

21}

This iz the file BorderLayoutJFrame. java.

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-42

The BorderLayout Manager (Part 3 of
4)

Display 17.7 The BorderLayout Manager

This is the file BorderLayoutDemo. java.

1 public class BorderLayoutDemo

2 {

3 public static void main(String[] args)

4 {

5 BorderLayout]Frame gui = new BorderLayoutJFrame();
6 gui.setVisible(true);

7 }

8 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights 17-43
reserved.)

The BorderLayout Manager (Part 4 of
4)

Display 17.7 The BorderLayout Manager

RESULTING GUI

& BorderLayout Demonstration g@|

First label

Third label

Second label

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-44

BorderLayout Regions

Display 17.8 BorderLayout Regions

BorderLayout.NORTH

BorderLayout.
WEST

BorderLayout.CENTER

BorderLayout.
EAST

BorderLayout.SOUTH

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

17-45

Border Layout Managers

* The previous diagram shows the arrangement of
the five border layout regions

— Note: None of the lines in the diagram are normally
visible
* When using a BorderLayout manager, the
location of the component being added is given
as a second argument to the add method
add(labell, BorderLayout.NORTH);

— Components can be added in any order since their
location is specified

Copyright © 2010 Pearson Addison-Wesley. All rights 17-46
reserved. .

Flow Layout Managers

* The FlowLayout manager is the simplest
layout manager
setLayout(new FlowLayout());

— It arranges components one after the other,
going from left to right

— Components are arranged in the order in which
they are added
* Since a location is not specified, the add
method has only one argument when
using the FlowLayoutManager

add. (labell);

Copyright © 2010 Pearson Addison-Wesley. All rights 17-47
reserved. .

Panels

A GUI is often organized in a hierarchical
fashion, with containers called panels
Inside other containers

* A panel is an object of the JPanel class
that serves as a simple container

— It is used to group smaller objects into a larger
component (the panel)

— One of the main functions of a JPanel object is
to subdivide a JFrame or other container

Panels

* Both a JFrame and each panel in a JFrame can
use different layout managers

— Additional panels can be added to each panel, and
each panel can have its own layout manager

— This enables almost any kind of overall layout to be
used in a GUI

setLayout(new BorderLayout());
JPanel somePanel = new JPanel();
somePanel.setLayout(new FlowLayout());

* Note in the following example that panel and
button objects are given color using the
setBackground method without invoking
getContentPane

— The getContentPane method is only used when
adding color to a JFrame

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-49

Using Panels (Part 1 of 8)

Display 17.11 Using Panels
. . . In addition to being the GUI class, the
1 1import javax.swing.JFrame; , o
' . : class PanelDemo is the action listener
2 import javax.swing.JPanel; .
. : class. An object of the class PanelDemo
3 import java.awt.BorderLayout; _ _ , .
. : : is the action listener for the buttons in
4 import java.awt.GridlLayout; that obiect
5 import java.awt.FlowLayout; avodject-
6 import java.awt.Color;
7 import javax.swing.JButton;
8 1import java.awt.event.ActionlListener;
9 1import java.awt.event.ActionEvent;
10 public class PanelDemo extends JFrame implements ActionlListener
11 {
12 public static final int WIDTH = 300;

13

Copyright © 2010 Pearson Addison-Wesley. All rights

public static final int HEIGHT = 200;

(continued)

reserved. 17-50

Using Panels (Part 2 of 8)

Display 17.11 Using Panels

14 private JPanel redPanel; We made these instance variables

15 private JPanel whitePanel; —e— because we want to refer to them in

16 private JPanel bluePanel; both the constructor and the
method actionPerformed.

17 public static void main(String[] args)

18 {

19 PanelDemo gui = new PanelDemo();

20 gui.setVisible(true);

21 }

22 public PanelDemo()

23 {

24 super("Panel Demonstration");

25 setSize(WIDTH, HEIGHT);

26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

27 setLayout(new BorderLayout());

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-51

Using Panels (Part 3 of 8)

Display 17.11 Using Panels

28 JPanel biggerPanel = new JPanel();

29 biggerPanel.setLayout(new GridLayout(1l, 3));

30 redPanel = new JPanel();

31 redPanel.setBackground(Color.LIGHT_GRAY);

32 biggerPanel.add(redPanel);

33 whitePanel = new JPanel();

34 whitePanel.setBackground(Color.LIGHT_GRAY);

35 biggerPanel.add(whitePanel);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights 17-52

reserved.

Using Panels (Part 4 of 8)

Display 17.11 Using Panels

36 bluePanel = new JPanel();

37 bluePanel.setBackground(Color.LIGHT_GRAY);

38 biggerPanel.add(bluePanel);

39 add(biggerPanel, BorderLayout.CENTER);

40 JPanel buttonPanel = new JPanel();

41 buttonPanel.setBackground(Color.LIGHT_GRAY);

42 buttonPanel.setlLayout(new FlowLayout());

43 JButton redButton = new JButton("Red");

44 redButton.setBackground(Color.RED) ; An object of the class
45 redButton.addActionListener(this) ;=«——— PanelDemo is the action
46 buttonPanel.add(redButton); listener for the buttons in

that object.

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-53

Using Panels (Part 5 of 8)

Display 17.11 Using Panels
47 JButton whiteButton = new JButton("White");
48 whiteButton.setBackground(Color.WHITE);
49 whiteButton.addActionListener(this);
50 buttonPanel.add(whiteButton) ;
51 JButton blueButton = new JButton("Blue");
52 blueButton.setBackground(Color.BLUE);
53 blueButton.addActionListener(this);
54 buttonPanel.add(blueButton);
55 add(buttonPanel, BorderLayout.SOUTH);
56 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights 17-54
reserved. .

Using Panels (Part 6 of 8)

Display 17.11 Using Panels

57 public void actionPerformed(ActionEvent e)

58 {

59 String buttonString = e.getActionCommand();
60 if (buttonString.equals("Red"))

61 redPanel.setBackground(Color.RED);

62 else if (buttonString.equals("White™))

63 whitePanel.setBackground(Color.WHITE);
64 else if (buttonString.equals("Blue™))

65 bluePanel.setBackground(Color.BLUE);
66 else

67 System.out.println("Unexpected error.");
68 }

69 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-55

Using Panels (Part 7 of 8)

Display 17.11 Using Panels

RESULTING GUI (When first run)

& Panel Demonstration Q@@

NN e [

RESULTING GUI (After clicking Red button)
& Panel Demonstration g@@

=l e
Copyright © 2010 Pearson Addison-Wesley. All rights (continued1)7 56

reserved.

Using Panels (Part 8 of 8)

Display 17.11 Using Panels

RESULTING GUI (After clicking White button)

& Panel Demonstration Q@@

e |

RESULTING GUI (After clicking Blue button)

£ Panel Demonstration B@

e | BN

Copyright © 2010 Pearson Addison-Wesley. All rights
reserved.

17-57

Listeners as Inner Classes

e Often, instead of having one action
listener object deal with all the action
events in a GUI, a separate
ActionListener class is created for each
button or menu item

— Each button or menu item has its own unique
action listener

— There is then no need for a multiway if-else
statement
 When this approach is used, each class is
usually made a private inner class

Listeners as Inner Classes (Part 1 of 6)

Display 17.16 Listeners as Inner Classes

<Import statements are the same as in Display 17.14.>

1 public class InnerListenersDemo extends JFrame
2 A

3 public static final int WIDTH = 300;

4 public static final int HEIGHT = 200;

5 private JPanel redPanel;

6 private JPanel whitePanel;

7 private JPanel bluePanel;

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-59

Listeners as Inner Classes (Part 2 of 6)

Display 17.16 Listeners as Inner Classes

10
11
12
13
14

15
16
17
18
19
20
21

private class RedListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{
redPanel.setBackground(Color.RED);

}

} //End of RedListener inner class

private class WhitelListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{
whitePanel.setBackground(Color.WHITE);

}

} //End of WhitelListener inner class

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

(continued)

17-60

Listeners as Inner Classes (Part 3 of 6)

Display 17.16 Listeners as Inner Classes

22 private class BluelListener implements ActionListener
23 {

24 public void actionPerformed(ActionEvent e)

25 {

26 bluePanel.setBackground(Color.BLUE);

27 }

28 } //End of BluelListener inner class

29 public static void main(String[] args)

30 {

31 InnerListenersDemo gui = new InnerListenersDemo();
32 gui.setVisible(true);

33 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-61

Listeners as Inner Classes (Part 4 of 6)

Display 17.16 Listeners as Inner Classes

34 public InnerListenersDemo() The resulting GUI is the same as in
35 { Dieplay 17.14.

36 super("Menu Demonstration");

37 setSize(WIDTH, HEIGHT);

38 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
39 setLayout(new GridLayout(1l, 3));

40 redPanel = new JPanel();

41 redPanel.setBackground(Color.LIGHT_GRAY) ;

42 add(redPanel);

43 whitePanel = new JPanel();

44 whitePanel.setBackground(Color.LIGHT_GRAY);

45 add (whitePanel);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-62

Listeners as Inner Classes (Part 5 of 6)

Display 17.16 Listeners as Inner Classes

46 bluePanel = new JPanel();

47 bluePanel.setBackground(Color.LIGHT_GRAY);

48 add(bluePanel);

49 IJMenu colorMenu = new JMenu("Add Colors");

50 IMenuItem redChoice = new JMenuItem("Red");

51 redChoice.addActionListener(new RedListener());
52 colorMenu.add(redChoice);

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-63

Listeners as Inner Classes (Part 6 of 6)

Display 17.16 Listeners as Inner Classes
53 JMenuItem whiteChoice = new JIMenuItem("White");
54 whiteChoice.addActionListener(new WhitelListener());
55 colorMenu.add(whiteChoice);
56 JMenuItem blueChoice = new JIMenultem("Blue");
57 blueChoice.addActionListener(new BluelListener());
58 colorMenu.add(blueChoice);
59 JMenuBar bar = new IMenuBar();
60 bar.add(colorMenu) ;
61 setJMenuBar(bar);
62 }
63 }

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 17-64

ASSOLUTE JAVA [N

18
Swing Il

Cuasses o Memoos
Rergaemars

scanner (uss houi
Auowanc Booows
v £or Loce

benercs

Smeaws wo Fuz 1/0
Excernon Hasuws
ArrayList
Loy st

Simg GUs

Theteos

4..

EDITION

PEARSON

e e e
Addison
Wesley

Copyright © 2010 Pearson Addison-
Wesley. All rights reserved.

Coordinate System for Graphics
Objects

* When drawing objects on the screen, Java uses a
coordinate system where the origin point (0,0) is
at the upper-left corner of the screen area used
for drawing

— The x-coordinate (horizontal) is positive and increasing
to the right

— The y- coordinate(vertical) is positive and increasing
down

— All coordinates are normally positive
— Units and sizes are in pixels

— The area used for drawing is typically a JFrame or
JPanel

Coordinate System for Graphics
Objects

* The point (x, f) Is located x pixels in from
the left edge of the screen, and down y
pixels from the top of the screen

When placing a rectangle on the screen,
the location of its upper-left corner is
specified

When placing a figure other than a
rectangle on the screen, Java encloses the
figure In an imaginary rectangle, called a
bounding box, and positions the upper-left
corner of this rectangle

Screen Coordinate System

Screen Coordinate System

0, @)/

(200, 1500 -

-

| ’

Iy
I

I\,
[
positive y-direction. N

N

—

-

= DOSitive x-directiﬂn\

Copyright © 2010 Pearson Addison-Wesley. All rights
reserved.

18-4

The Method paint and the Class
Graphics

* Almost all Swing and Swing-related
components and containers have a
method called paint

* The method paint draws the component
or container on the screen

— It is already defined, and is called

automatically when the figure is displayed on
the screen

— However, it must be redefined in order to draw
geometric figures like circles and boxes

— When redefined, always include the following:
super.paint(g);

The Method paint and the Class
Graphics

* Every container and component that can

be drawn on the screen has an associated

Graphics object

— The Graphics class is an abstract class found
in the java.awt package

This object has data specifying what area

of the screen the component or container

covers

— The Graphics object for a JFrame specifies that
drawing takes place inside the borders of the
JFrame object

Copyright © 2010 Pearson Addison-Wesley. All rights 18-6
reserved. .

The Method paint and the Class
Graphics

* The object g of the class Graphics can
be used as the calling object for a
drawing method

— The drawing will then take place inside the
area of the screen specified by ¢

* The method paint has a parameter g
of type Graphics
— When the paint method is invoked, g is

replaced by the Graphics object
associated with the JFrame

— Therefore, the figures are drawn inside the
JFrame

Copyright © 2010 Pearson Addison-Wesley. All rights 18-7
reserved. .

Drawing a Very Simple Face (part 1 of

5)

Drawing a Very Simple Face

1 import javax.swing.JFrame;
2 import java.awt.Graphics;
3 import java.awt.Color;

4 public class Face extends JFrame

5 i

6 public static final int WINDOW_WIDTH = 400;
7 public static final int WINDOW_HEIGHT = 400;
8 public static final int FACE_DIAMETER = 200;
9 public static final int X_FACE = 100;

10 public static final int Y_FACE = 100;

Copyright © 2010 Pearson Addison-Wesley. All rights
reserved.

(continued)

18-8

Drawing a Very Simple Face (part 2 of

Drawing a Very Simple Face

5)

11
12
13
14
15

16
17
18

public
public
public
public
public

public
public
public

static
static
static
static
static

static
static
static

final
final
final
final
final

final
final
final

int
int
int
int
int

int
int
int

EYE_WIDTH = 20;

X_RIGHT_EYE = X_FACE + 55;
Y_RIGHT_EYE = Y_FACE + 60;
X_LEFT_EYE = X_FACE + 130;
Y_LEFT_EYE = Y_FACE + 60;

MOUTH_WIDTH = 100;
X_MOUTH = X_FACE + 50;
Y_MOUTH = Y_FACE + 150;

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

(continued)

18-9

Drawing a Very Simple Face (part 3 of
5)

Drawing a Very Simple Face

19 public static void main(5tring[] args)

20 {

21 Face drawing = new Face();

22 drawing.setVisible(true);

23 }

24 public Face()

25 {

26 super("First Graphics Demo");

27 setSize (WINDOW_WIDTH, WINDOW_HEIGHT);

28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 getContentPane() .setBackground(Color.white);
30 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-10

Drawing a Very Simple Face (part 4 of
5)

Drawing a Very Simple Face

31 public void paint(Graphics g)

32 {

33 super.paint(g);

34 g.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

35 //Draw Eyes:

36 g.drawLine(X_RIGHT_EYE, Y_RIGHT_EYE,

37 X_RIGHT_EYE + EYE_WIDTH,Y_RIGHT_EYE);
38 g.drawLine(X_LEFT_EYE, Y_LEFT_EYE,

39 X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE);
40 //Draw Mouth:

41 g.drawLine(X_MOUTH, Y_MOUTH, X_MOUTH + MOUTH_WIDTH, Y_MOUTH);
42 }

43 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-11

Drawing a Very Simple Face (part 5 of
5)

Drawing a Very Simple Face

REsuLTING GUI

(X_FACE, Y_FACE)

& First Graphics Demo

The red box is not
shown on the screen. It
is there to help you
understand the
relationship between
the paint method
code and the resulting
drawing.

(X_MOUTH, Y_MOUTH) —

FACE_DIAMETER

Copyright © 2010 Pearson Addison-Wesley. All rights 18-12
reserved.)

Some Methods in the Class Graphics
(part 1 of 4)

Some Methods in the Class Graphics

Graphics is an abstract class in the java.awt package.
Although many of these methods are abstract, we always use them with objects of a concrete descendent
class of Graphics, even though we usually do not know the name of that concrete class.

public abstract void drawLine(int x1, int yl, int x2, int y2)

Draws a line between points (x1, y1) and (x2, y2).

public abstract void drawRect(int x, int vy,
int width, int height)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner of the rectangle.

public abstract void fillRect(int x, int vy,
int width, int height)

Fills the specified rectangle. (x, y) is the location of the upper-left corner of the rectangle.

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-13

Some Methods in the Class Graphics
(part 3 of 4)

Some Methods in the Class Graphics

public abstract void drawRoundRect(int x, int vy,
int width, int height, int arcWidth, int arcHeight)

Draws the outline of the specified round-cornered rectangle. (x, y) is the location of the upper-left corner
of the enclosing regular rectangle. arcWidth and arcHeight specify the shape of the round corners. See
the text for details.

public abstract void fillRoundRect(int x, int vy,
int width, int height, int arcWidth, int arcHeight)

Fills the rounded rectangle specified by
drawRoundRec(x, y, width, height, arcWidth, arcHeight)

public abstract void drawOval(int x, int vy,
int width, int height)

Draws the outline of the oval with the smallest enclosing rectangle that has the specified width and height.
The (imagined) rectangle has its upper-left corner located at (x, y).

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-14

Some Methods in the Class Graphics
(part 4 of 4)

Some Methods in the Class Graphics

public abstract void fillOval(int x, int vy,
int width, int height)
Fills the oval specified by
drawOval(x, y, width, height)

public abstract void drawArc(int x, int vy,
int width, int height,
int startAngle, int arcSweep)

Draws part of an oval that just fits into an invisible rectangle described by the first four arguments. The
portion of the oval drawn is given by the last two arguments. See the text for details.

public abstract void fillArc(int x, int vy,
int width, int height,
int startAngle, int arcSweep)

Fills the partial oval specified by
drawArc(x, y, width, height, startAngle, arcSweep)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-15

Drawing Ovals

 An oval is drawn by the method drawOval

— The arguments specify the location, width, and
height of the smallest rectangle that can
enclose the oval

g.drawOval(100, 50, 300, 200);
A circle is a special case of an oval in

which the width and height of the
rectangle are equal

g.drawOval(X_FACE, Y_FACE,
FACE_DIAMETER, FACE_DIAMETER);

Copyright © 2010 Pearson Addison-Wesley. All rights 18-16
reserved. i

paintComponent for Panels

* A JPanel is a JComponent, but a JFrame Is
a Component, not a JComponent

— Therefore, they use different methods to paint
the screen

* Figures can be drawn on a JPanel, and the
JPanel can be placed in a JFrame

— When defining a JPanel class in this way, the

paintComponent method is used instead of the
paint method

— Otherwise the details are the same as those for
a JFrame

Copyright © 2010 Pearson Addison-Wesley. All rights 18-17
reserved. i

Action Drawings and
repaint

* The repaint method should be invoked
when the graphics content of a window is
changed
— The repaint method takes care of some

overhead, and then invokes the method paint,
which redraws the screen

— Although the repaint method must be
explicitly invoked, it is already defined

— The paint method, in contrast, must often be
defined, but is not explicitly invoked

An Action Drawing (Part 1 of
/)

An Action Drawing

1 import javax.swing.JFrame;

2 import javax.swing.JButton;

3 import java.awt.event.ActionListener;

4 1import java.awt.event.ActionEvent;

5 1import java.awt.BorderLayout;

6 1import java.awt.Graphics;

7 import java.awt.Color;

& public class ActionFace extends JFrame

9 {
10 public static final int WINDOW_WIDTH = 400;
11 public static final int WINDOW_HEIGHT = 400;

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-19

An Action Drawing (Part 2 of

An Action Drawing

7)

12
13
14

15
16
17
18
19
20

public static
public static
public static

public static
public static
public static
public static
public static
public static

final
final
final

final
final
final
final
final
final

int
int
int

int
int
int
int
int
int

FACE_DIAMETER = 200;
X_FACE = 100;
Y_FACE = 100;

EYE_WIDTH = 20;

EYE_HEIGHT = 10;
X_RIGHT_EYE = X_FACE + 55;
Y_RIGHT_EYE = Y_FACE + 60;
X_LEFT_EYE = X_FACE + 130;
Y_LEFT_EYE = Y_FACE + 60;

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

(continued)

18-20

An Action Drawing (Part 3 of

An Action Drawing

7)

21
22
23
24
25
26

27

28
29
30
31
32
33
34
35

public static
public static
public static
public static
public static
public static

final
final
final
final
final
final

int
int
int
int
int
int

private boolean wink;

MOUTH_WIDTH = 100;
MOUTH_HEIGHT = 50;
X_MOUTH = X_FACE + 50;
Y_MOUTH = Y_FACE + 100;
MOUTH_START_ANGLE = 180;
MOUTH_ARC_SWEEP = 180;

private class WinkAction implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

wink = true;

repaint();

}

} // End of WinkAction inner class

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

(continued)

18-21

An Action Drawing (Part 4 of

7)

An Action Drawing

36
37
38
39
40

41
42
43
44
45
46
47

48
49
50
51
52

Copyright © 2010 Pearson Addison-Wesley. All rights

public static void main(String[] args)

{

}

ActionFace drawing = new ActionFace();
drawing.setVisible(true);

public ActionFace()

{

setSize (WINDOW_WIDTH, WINDOW_HEIGHT);
setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
setTitle("Hello There!");

setLayout(new BorderLayout());
getContentPane().setBackground(Color.white);

JButton winkButton = new JButton("Click for a Wink.");
winkButton.addActionListener(new WinkAction());
add(winkButton, BorderLayout.SOUTH);

wink = false:

(continued)

reserved. 18-22

An Action Drawing (Part 5 of

7)

An Action Drawing

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

Copyright © 2010 Pearson Addison-Wesley. All rights

public void paint(Graphics g)

{

super.paint(g);
g.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
//Draw Right Eye:
g.fi110val (X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
//Draw Left Eye:
if (wink)

g.drawLine(X_LEFT_EYE, Y_LEFT_EYE,

X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE);

else

g.fil1l0val (X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);
//Draw Mouth:
g.drawArc (X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,

MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);

(continued)

reserved. 18-23

An Action Drawing (Part 6 of

An Action Drawing

7)

RESULTING GUI (When started)

& Hello There!

Click for a Wink.

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

(continued)

18-24

An Action Drawing (Part 7 of
7)

An Action Drawing

RESULTING GUI (After clicking the button)

& Hello There!

Click for a Wink.

Copyright © 2010 Pearson Addison-Wesley. All rights
reserved.

18-25

Some More Details on Updating a GUI

 With Swing, most changes to a GUI are updated
automatically to become visible on the screen
— This is done by the repaint manager object

* Although the repaint manager works
automatically, there are a few updates that it
does not perform
— For example, the ones taken care of by validate or

repaint

 One other updating method is pack

— pack resizes the window to something known as the
preferred size

The validate Method

e An invocation of validate causes a container to
lay out its components again

— It is a kind of "update" method that makes changes in
the components shown on the screen

— Every container class has the validate method, which
has no arguments
* Many simple changes made to a Swing GUI
happen automatically, while others require an
invocation of validate or some other "update”
method

— When in doubt, it will do no harm to invoke validate

Specifying a Drawing Color

* Using the method drawLine inside the
paint method is similar to drawing with a
pen that can change colors

— The method setColor will change the color of
the pen

— The color specified can be changed later on
with another invocation of setColor so that a
single drawing can have multiple colors

g.setColor(Color.BLUE)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-28

Adding Color

Adding Color

1 public void paint(Graphics g)

2 {

3 super.paint(g);

4 //Default is equivalent to: g.setColor(Color.black);

5 g.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
6 //Draw Eyes:

7 g.setColor(Color.BLUE);

8 g.fil10val (X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
9 g.fil1l0Oval (X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);
10 //Draw Mouth:

11 g.setColor(Color.RED);

12 g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,

13 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);

14 }

If you replace the paint method in Display 18.13 with
this version then the happy face will have blue eyes

Copyrightadqg)f(ﬁlfialrisfas Addison-Wesley. All rights

reserved. 18-29

Defining Colors

 Standard colors in the class Color are
already defined
— These are listed in Display 17.5 in Chapter 17,
and shown on the following slide
* The Color class can also be used to define
additional colors

— It uses the RGB color system in which different
amounts of red, green, and blue light are used
to produce any color

The Color Constants

The Color Constants

Color.BLACK
Color.BLUE
Color.CYAN
Color.DARK_GRAY
Color.GRAY
Color.GREEN
Color.LIGHT_GRAY

Color.MAGENTA
Color.ORANGE
Color.PINK
Color.RED
Color.WHITE
Color.YELLOW

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved.

18-31

Defining Colors

* Integers or floats may be used when
specifying the amount of red, green,
and/or blue in a color

— Integers must be in the range 0-255 inclusive
Color brown = new Color(200, 150, 0);

— float values must be in the range 0.0-1.0
Inclusive
Color brown = new Color(
(float)(200.0/255), (float) (150.0/255),
(float)0.0);

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-32

The drawString Method

* The method drawString is similar to
the drawing methods in the
Graphics class

— However, it displays text instead of a
drawing

—|f no font is specified, a default font is
used

g.drawString(theText, X_START, Y_Start),

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-33

Using drawString (Part 1 of
7)

Using drawString

1 import javax.swing.JFrame;

2 import javax.swing.JlPanel;

3 import javax.swing.JButton;

4 import java.awt.event.ActionlListener;
5 import java.awt.event.ActionEvent;

6 import java.awt.BorderlLayout;
import java.awt.Graphics;
import java.awt.Color;

import java.awt.Font;

W 0o =~

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-34

Using drawString (Part 2 of
7)

10 public class DrawStringDemo extends JFrame

Using drawString

11 implements ActionListener
12 {

13 public static final int WIDTH = 350;

14 public static final int HEIGHT = 200;

15 public static final int X_START = 20;

16 public static final int Y_START = 100;

17 public static final int POINT_SIZE = 24;

18 private String theText = "Push the button.";

19 private Color penColor = Color.BLACK;

20 private Font fontObject =

21 new Font("SansSerif", Font.PLAIN, POINT_SIZE):
22 public static void main(String[] args)

23 {

24 DrawStringDemo gui = new DrawStringDemo();

25 gui.setVisible(true),;

26 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-35

Using drawString (Part 3 of
7)

Using drawString

27 public DrawStringDemo()

28 {

29 setSize(WIDTH, HEIGHT);

30 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
31 setTitle("drawString Demonstration");

32 getContentPane() .setBackground(Color.WHITE);

33 setLayout(new BorderlLayout());

34 JPanel buttonPanel = new JPanel();

35 buttonPanel.setBackground(Color.GRAY) ;

36 buttonPanel.setLayout(new BorderLayout());

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-36

Using drawString (Part 4 of
7)

Using drawString

37 JButton theButton = new JButton("The Button");
38 theButton.addActionListener(this);

39 buttonPanel.add(theButton, BorderlLayout.CENTER);
40 add (buttonPanel, BorderLayout.SOUTH);

41 }

42 public void paint(Graphics g)

43 {

44 super.paint(g);

45 g.setFont(fontObject);

46 g.setColor(penColor);

47 g.drawString(theText, X_START, Y_START);

48 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-37

Using drawString (Part 5 of
7)

Using drawString

49 public void actionPerformed(ActionEvent e)

50 {

51 penColor = Color.RED;

52 fontObject =

53 new Font("Serif", Font.BOLD|Font.ITALIC, POINT_SIZE);
54 theText = "Thank you. I needed that.";

55 repaint();

56 }

57 }

(continued)

Copyright © 2010 Pearson Addison-Wesley. All rights

reserved. 18-38

Android Introduction

Application Fundamentals

R

Google

@2011 Mihail L. Sichitiu

Goal

e Understand applications and their components

e Concepts:
o activity,
O Service,
o broadcast receiver,
o content provider,
o Intent,
o AndroidManifest

@2011 Mihail L. Sichitiu

Applications

e \Written in Java (it's possible to write native code
— will not cover that here)
e Good separation (and corresponding security)

from other applications:
o Each application runs in its own process
o Each process has its own separate VM
o Each application is assigned a unique Linux user ID
— by default files of that application are only visible to
that application (can be explicitly exported)

@2011 Mihail L. Sichitiu

Application Components

e Activities — visual user interface focused on a
single thing a user can do

e Services — no visual interface — they run in the
background

e Broadcast Recelvers — receive and react to
broadcast announcements

e Content Providers — allow data exchange
between applications

@2011 Mihail L. Sichitiu

Activities

e Basic component of most applications

e Most applications have several activities that
start each other as needed

e Each is implemented as a subclass of the base
Activity class

@2011 Mihail L. Sichitiu

Activities — The View

e Each activity has a default window to draw in
(although it may prompt for dialogs or

notifications)
e The content of the window is a view or a group
of views (derived from or)

e Example of views: buttons, text fields, scroll
bars, menu items, check boxes, etc.
e View(Group) made visible via
method.

@2011 Mihail L. Sichitiu

Services

e Does not have a visual interface
e Runs in the background indefinitely

e Examples
o Network Downloads
o Playing Music
o TCP/UDP Server
e You can bind to a an existing service and

control its operation

@2011 Mihail L. Sichitiu

Intents

e An intent is an object with a message content.
e Activities, services and broadcast receivers are started
by intents. ContentProviders are started by

ContentResolvers:
o An activity is started by Context.startActivity(Intent intent) or
Activity.startActivityForResult(Intent intent, int RequestCode)
o A service is started by Context.startService(Intent service)
o An application can initiate a broadcast by using an Intent in any
of Context.sendBroadcast(Intent intent), Context.
sendOrderedBroadcast(), and Context.sendStickyBroadcast()

@2011 Mihail L. Sichitiu

Shutting down components

e Activities
o Can terminate itself via finish();
o Can terminate other activities it started via finishActivity();

® Services
o Can terminate via stopSelf(); or Context.stopService();

e Content Providers
o Are only active when responding to ContentResolvers

e Broadcast Recelvers
o Are only active when responding to broadcasts

@2011 Mihail L. Sichitiu

lﬁl
Android Manifest

e Its main purpose in life is to declare the components to the system:
<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
<application ... >
<activity android:name="com.example.project.FreneticActivity"
android:icon="@drawable/small_pic.png"

android:label="@string/freneticLabel”
>

</activity>

</application>
</manifest>

@2011 Mihail L. Sichitiu

Intent Filters

e Declare Intents handled by the current application (in the
AndroidManifest):

Shows in the

<,? . —n) H =" 3 ur)>
?xml version="1.0" encoding="utf-8"" Launcher and

<manifest...>

<application . . . > IS thg main
<activity android:name="com.example.project.FreneticActivity" activity to start
android:icon="@drawable/small_pic.png"

android:label="@string/freneticLabel"
>

<intent-filter . . . >

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter . . . >

<action android:name="com.example.project. BOUNCE" />

<data android:mimeType="image/jpeg" />

<category android:name="android.intent.category.DEFAULT" /> Handles JPEG
</intent-filter> images in
</activity> some way
application>

@2011 Mihail L. Sichitiu

Android Introduction

Hello World

@2011 Mihail L. Sichitiu

Package Content

 [# Package Explorer 2

All source code here

=

. 7 Java code for our activity

&

E] N

\quj; HelloAndroid
= src
: #} com.example.helloandroi

#- [J] Helloandraid. java

B, Android 2.2
LB gen [Generated Java Files]

& # com.example.helloandroid
All non-code s DR Genera}ted Java code
= assets
reSOUCes I S Helps link resources to
=)= drawable-hdpi Java COde

+

Images

m- l

a

=

default.properties

=
= drawable-ldpi
= drawable-mdpi

= layout /
|X| main.xml

= values
X| strings.xml

AndroidManifest. xml

Layout of the activity

Strings used in the
program

Android Manifest

@2011 Mihail L. Sichitiu

Android Manifest

<?xml version="1.0" encoding="utf-8"?>

<manifest xmIns:android="http.//schemas.android.com/apk/res/android"
package="com.example.helloandroid”

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".HelloAndroid"
android:label="@string/app _name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>

</activity>

e </application>

e </manifest>

@2011 Mihail L. Sichitiu

Activity "Lifecycle”

e An Android activity is &ED

fo_cused on a single ? —ﬂ_“‘?“‘_

thing a user can do. T o —]
e Most applications ; |

have multiple = ?

activities] |

Other ap;incaﬂons ‘
need memory

onFreeze()

+ Your activity

'—T onPause() r— foraground
*

Your activity is no longer visible

[
\J

—ﬂ onStop()
_x—

Y
onDestroy()

1
(&)

@2011 Mihail L. Sichitiu

Activities start each other

dit conta

! Phone-only (unsynced...

My First

My First Contact

Second One

CER— ©

Phone 0

You should understand the differences between
startActivity() and startActivityForResult()--see
sample code in HelloWidgetMania

@2011 Mihail L. Sichitiu

Revised HelloAndroid.java

k m.example.helloandroid; Inherit
package com.example.helloandroid; er
: : . Activit
import android.app.Activity; Classy

Import android.os.Bundle;

public class HelloAndroid extends Activity {
/** Called when the activity is first created. */

@Override
public void onCreate(Bundle savedinstanceState) {

super.onCreate(savedlnstanceState);

\ Set the view “by hand” —

) from the program

@2011 Mihail L. Sichitiu

Run it!

Ml €@ 9:45em

Hello, Android - by hand

J

@2011 Mihail L. Sichitiu

/res/layout/main.xmil

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlIns:android="http.//schemas.android.com/apk/res/android”
android:orientation="vertical"

android:layout_width="fill_parent”

android:layout_height="fill _parent”

>

<TextView

android:layout_width="fill _parent"

android:layout_height="wrap content”

android:text="@string/hello" \
[>

</LinearLayout> Further redirection to
/res/values/strings.xml

@2011 Mihail L. Sichitiu

/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Hello World, HelloAndroid — by resources!</string>
<string name="app_name">Hello, Android</string>

</resources>

@2011 Mihail L. Sichitiu

HelloAndroid.java

package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
public class HelloAndroid extends Activity {

[** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedlnstanceState); setContentView(R.layout.main);

}
\ Set the layout of the view

}
as described in the main.
xml layout

@2011 Mihail L. Sichitiu

Android Introduction

Graphical User Interface

Google

@2011 Mihail L. Sichitiu

Goal

e Be familiar with the main types of GUI

concepts:

o Layouts
o Widgets
o Events

@2011 Mihail L. Sichitiu

View Hierarchy

e All the views in a window are arranged in a tree
e You show the tree by calling
In the activity

‘Connectivity

=
,
W | 1
Wi 120000

ver] [er] [o]

120000

12000

@2011 Mihail L. Sichitiu

Layout

e Defines how elements
are positioned relative
to each other (next to

=

each other, under each —
other, in a table, grid, L,—(:)

ew

(=)

etc.)

e Can have a different
layouts for each
ViewGroup

lew
Relativelayout.
LayoutParams

@2011 Mihail L. Sichitiu

Vi
RelativeLayout.
L@,._.

LinearLayout
Vi
LinearLayout.
LayoutParams
ew

‘Vvew
Relasvelayout.
LayoutParams

Linear Layout (Horizontal vs. vertical)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmIns:android="http://schemas.android.
com/apk/res/android”
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:layout_weight="1">
<TextView
android:text="red"
android:gravity="center_horizontal"

Lo] r'oOw one

</LinearLayout>

<LinearLayout [O W t W O

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" - A
android:layout_weight="1"> l OW th ' e e
<TextView
android:text="row one" - -
android:textSize="15pt" l OW fo u’
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
<TextView
android:text="row two"
android:textSize="15pt"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>

[Jhttp://developer.android.com/resources/tutorials/views/hello-linearlayout.html

@2011 Mihail L. Sichitiu

Widgets

e All are View objects S— AT e
® ExampleSZ | nable wi] pisabte i |

o TextFields

o E dItFlel dS Start Wifi Toggle | Stop Wifi Toggle

o Buttons Wifi on (ms}{ 120000

o Checkboxes R 20000

o RadioButtons Cycles done:0

o efc. Start Screen Toggle fl Stop Screen Toggle

UG mBY 120000

HEHAMBY 12000

Cycles done:0

Start MMS i Stop MMS

@2011 Mihail L. Sichitiu

Ul Events

e Usually handled by defining a Listener of the
form On<something>Listener and register it

with the View

e For example:
o OnClickListener() for handling clicks on Buttons or
Lists
o OnTouchListener() for handling touches
o OnKeyListerner() for handling key presses
e Alternatively, Override an existing callback if we

Implemented our own class extending View
Lots of sample code in HelloWidgetMania

@2011 Mihail L. Sichitiu

Eclipse layout Manager: Two views

1 mainem

Ecking config: defadt Explode | | Ousdne

.arclroiad.com/ epk/res/ enadrozd"

Devioss ADPY ¥ Config Landscaps, dosed ¥ Locds ¥ | Theme v || Cede...

layout width="£211 perent”™
layout height="riil2 parent" o olayouts
[E AbsoluteLayout
ceT D) CidarFitar
vidch="7r211 par t IE o
b |E Expandabielbsty,

[l»_ FramaLayout

(G Grictviens

(1) Horaonkatserol

“ Lirnaaaiauscher
Vews

d5) GeehuraCrnrlay .,

(‘f, Surface'ion

@) Vew

@) Venstud

bifj Vel

f'f;(; Arakagchek

.f fadatomaletal.,

Layek man ol Layoul meincml

XML File vs Layout Preview

@2011 Mihail L. Sichitiu

More Android Concepts

e The basic structure of an animated game
o Represent state of game in variables
o Render state of game by drawing from variables
o Update state of game through:
m User input (touch, keypad, acclerometer, etc.)
m "Physics": Simulate forces, continue motion, check for collisions,
etc.

e 2-D graphics: Familiarity with how to draw shapes, images
(loaded from res/drawable), text, change colors, etc.

e Sample code: Be familiar with doDraw() & updatePhysics()
iIn MarsLander

e Miscellaneous
o Storing/loading preferences, reading text file
o Sound: SoundPool vs. MediaPlayer -- what each is best suited for
o Text-to-speech, vibration, accelerometer only at the level of what do
ey do--not how they do it

