CISC 181 final overview

Next Tuesday, May 25—10:30 am-12:30 pm, Memorial 113

Worth 20% of your grade

Covers topics from class in chapters listed on course page from
April 8 up to May 11 inclusive

— Will not test on gdb, OpenGL (or recursion or exception handling)

Format: Just like the midterm...only no tic-tac-toe programs ©

Topic list

Classes

Templates
Linked data structures

STL

Chap. 10.3, 14-14.1,
15-15.2 (through p. 678)

Chap. 16-16.2

Chap. 17-17.2
(through p. 763)

Chap. 7.3, 19-19.2
(through p. 872, + pp.
876-883)

c"l. 294
3
-
b |

| ABSOLUT
i Chapter 10

ANSI/1S0 Suwse

Sasn Tewras
Leaasy

- e E el Pointers, Dynamic
- e T /\rrays, & Classes

Smwss

Vecwss

Viouu. Fowcnoss
Excernon Hueuse
Snea 1/0

UL
Encesuanon

Panenss

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

Chap. 10.3 Learning Objectives

e (Classes, Pointers, Dynamic Arrays
— The this pointer
— DeStFUCtOFS, copy constructors

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 10-4

Back to Classes

The -> operator
— Shorthand notation

Combines dereference operator, *, and
dot operator

Specifies member of class "pointed to"
by given pointer

Example:

MyClass *p;

p = new MyClass;

p->grade ="A"; Equivalent to:
(*p).grade ="A",;

The this Pointer

* Member function definitions might need to refer
to calling object

e Use predefined this pointer

— Automatically points to calling object:
Class Simple

{
public:

void showStuff() const;
private:

int stuff;

};
* Two ways for member functions to access:

cout << stuff;
cout << this->stuff;

Overloading Assignment Operator

e Assignment operator returns reference
— So assignment "chains" are possible
—e.g.,a=b=c

* Setsaand b equaltoc

* Operator must return "same type" as its
left-hand side

— To allow chains to work
— The this pointer will help with this!

Overloading Assignment Operator

e Recall: Assignment operator must be
member of the class
— It has one parameter

— Left-operand is calling object
sl =s2;
* Think of like: s1.=(s2);

e 5] =52 =53;
— Requires (s1 =s2) =s3;

— So (s1 = s2) must return object of s1"s type
 And passto" =s3";

Overloaded = Operator Definition

e Uses string Class example:

StringClass& StringClass::operator=(const StringClass& rtSide)
{

if (this == &rtSide) // if right side same as left side
return *this;

else

{
capacity = rtSide.length;
length
length = rtSide.length;
delete [] a;
a = new char[capacity];
for (int I =0; | < length; |++)

a[l] = rtSide.a[l];

return *this;

}

Shallow and Deep Copies

e Shallow copy

— Assignment copies only member variable
contents over

— Default assignment and copy constructors

* Deep copy
— Pointers, dynamic memory involved

— Must dereference pointer variables to
"get to" data for copying

— Write your own assignment overload and
copy constructor in this case!

Destructor Need

* Dynamically-allocated variables
— Do not go away until "deleted"

* |f pointers are only private member data

— They dynamically allocate "real" data
* In constructor

— Must have means to "deallocate"” when
object is destroyed

e Answer: destructor!

Destructors

* Opposite of constructor
— Automatically called when object is out-of-scope

— Default version only removes ordinary
variables, not dynamic variables

* Defined like constructor, just add ~

— MyClass::~*MyClass()
{

//Perform delete clean-up duties

}

Copy Constructors

Automatically called when:
1. Class object declared and initialized to other object
2. When function returns class type object

3. When argument of class type is "plugged in"
as actual argument to call-by-value parameter

Requires "temporary copy" of object

— Copy constructor creates it

Default copy constructor

— Like default "=", performs member-wise copy

Pointers = write own copy constructor!

The “Big 3”

* |f you do one, you'll probably need to do all
because of new/delete issue

1. Overloading assignment operator
2. Copy constructor
3. Destructor

* Also, these are not inherited (nor is
constructor)

] " 3 . \7.. _‘\\“\‘\ 5)
1 - -)
! 125 <. ‘_\5. e

Chapter 14

ANSI/1S0 Suwse

Sasn Tewras
Leaasy

T R WU Inheritance
Nasespuces VA
Swss

Vecwis

Vi Foncnoss
Excernos Huwuse
Snea 1/0
UML
Enciesuanon

Panenss

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

k
. vy
. . \ 5
: » i

Learning Objectives

* Inheritance Basics
— Derived classes, with constructors
— Redefining member functions
— Non-inherited functions

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 14-16

Introduction to Inheritance

* Object-oriented programming
— Powerful programming technique
— Provides abstraction dimension called inheritance

e General form of class is defined

— Specialized versions then inherit properties of
general class

— And add to it/modify its functionality for its
appropriate use

Inheritance Basics

* New class inherited from another class

e Base class
— "General" class from which others derive

 Derived class
— New class

— Automatically has base class’s:
e Member variables
* Member functions

— Can then add additional member functions
and variables

Derived Classes

* Consider example:
Class of "Employees"

* Composed of:
— Salaried employees
— Hourly employees

 Eachis "subset" of employees

— Another might be those paid fixed wage each
month or week

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 14-19

Derived Classes

Don’t "need" type of generic "employee'
— Since no one’s just an "employee"

General concept of employee helpful!

— All have names

— All have social security numbers

— Associated functions for these "basics" are
same among all employees

So "general" class can contain all these
"things" about employees

Employee Class

* Many members of "employee" class apply
to all types of employees
— Accessor functions
— Mutator functions

— Most data items:
* SSN
* Name
* Pay
* We won’t have "objects" of this
class, however

Employee Class

e Consider printCheck() function:
— Will always be "redefined" in derived classes

— So different employee types can have
different checks

— Makes no sense really for "undifferentiated"
employee

— So function printCheck() in Employee class
says just that

* Error message stating "printCheck called for
undifferentiated employee!! Aborting..."

Deriving from Employee Class

* Derived classes from Employee class:
— Automatically have all member variables
— Automatically have all member functions

e Derived class said to "inherit" members
from base class

* Can then redefine existing members
and/or add new members

Display 14.3 Interface for the Derived Class
HourlyEmployee (1 of 2)

Display 14.3 Interface for the Derived Class HourlyEmployee

1

2 //This is the header file hourlyemployee.h.

3 //This is the interface for the class HourlyEmployee.
4 #ifndef HOURLYEMPLOYEE_H

5 #define HOURLYEMPLOYEE_H

6 #include <string>

7 #include "employee.h"
8 using std::string;

9 namespace SavitchEmployees
10 {

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 14-24

Display 14.3 Interface for the Derived Class
HourlyEmployee (2 of 2)

11 class HourlyEmployee : public Employee

12 {

13 public:

14 HourlyEmployee();

15 HourlyEmployee(string theName, string theSsn,

16 double theWageRate, double theHours);

17 void setRate(double newWageRate);

18 double getRate() const;

19 void setHours(double hoursWorked);

20 double getHours() const; You only list the declaration of an
21 void printCheck() ;«—— inherited member function if you
22 private: want to change the definition of the
23 double wageRate; function.

24 double hours;

25 b

26 }//SavitchEmployees

27 #endif //HOURLYEMPLOYEE_H

IBHE!

: .3

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 14-25

il

HourlyEmployee Class Interface

* Note definition begins same as any other
— #ifndef structure
— Includes required libraries
— Also includes employee.h!

* And, the heading:
class HourlyEmployee : public Employee

{..

— Specifies "publicly inherited" from Employee
class

HourlyEmployee Class Additions

e Derived class interface only lists new or
"to be redefined" members
— Since all others inherited are already defined
— i.e.: "all" employees have ssn, name, etc.

 HourlyEmployee adds:
— Constructors
— wageRate, hours member variables

— setRate(), getRate(), setHours(), getHours()
member functions

HourlyEmployee Class Redefinitions

 HourlyEmployee redefines:
— printCheck() member function
— This "overrides" the printCheck() function
implementation from Employee class
* |ts definition must be in HourlyEmployee
class’s implementation

— As do other member functions declared in
HourlyEmployee’s interface

e New and "to be redefined"

Inheritance Terminology

Common to simulate family relationships

Parent class
— Refers to base class

Child class

— Refers to derived class

Ancestor class

— Class that’s a parent of a parent ...

Descendant class
— Opposite of ancestor

Constructors in Derived Classes

e Base class constructors are NOT inherited in derived
classes!

— But they can be invoked within derived class
constructor
* Which is all we need!
e Base class constructor must initialize all
base class member variables

— Those inherited by derived class

— So derived class constructor simply calls it
* "First" thing derived class constructor does

Derived Class Constructor Example

* Consider syntax for HourlyEmployee

constructor:

HourlyEmployee::HourlyEmployee(string theName,
string theNumber, double theWageRate,
double theHours)
: Employee(theName, theNumber),
wageRate(theWageRate), hours(theHours)

{

}
* Portion after : is "initialization section”
— Includes invocation of Employee constructor

//Deliberately empty

Constructor: No Base Class Call

e Derived class constructor should always
invoke one of the base class’s constructors

* |f you do not:
— Default base class constructor automatically called
* Equivalent constructor definition:
HourlyEmployee::HourlyEmployeeg()

: wageRate(0), hours(0)
{}

c"l. 294
Y 'v
-
b |

| ABSOLUT
i Chapter 15

ANSI/1S0 Suwse

Sasn Tewras
Leaasy

- 5) el Polymorphism and
- S S \/irtual Functions

Smwss

Vecwss

Viouu. Fowcnoss
Excernon Hueuse
Snea 1/0

UL
Encesuanon

Panenss

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

Learning Objectives

* Virtual Function Basics
— Late binding
— Implementing virtual functions
— When to use a virtual function
— Abstract classes and pure virtual functions

e Pointers and Virtual Functions
— Extended type compatibility
— Downcasting and upcasting

Virtual Function Basics

* Polymorphism
— Associating many meanings to one function
— Virtual functions provide this capability

— Fundamental principle of object-oriented
programming!

* Virtual
— Existing in "essence" though not in fact

e Virtual Function
— Can be "used" before it’s "defined"

Figures Example

Best explained by example:

Classes for several kinds of figures
— Rectangles, circles, ovals, etc.

— Each figure an object of different class
* Rectangle data: height, width, center point
 Circle data: center point, radius

All derive from one parent-class: Figure

Require function: draw()
— Different instructions for each figure

Figures Example 2

e Each class needs different draw function

 Can be called "draw" in each class, so:

Rectangler;

Circle c;

r.draw(); //Calls Rectangle class’s draw
c.draw(); //Calls Circle class’s draw

* Nothing new here yet...

Figures Example: center()

e Parent class Figure contains functions
that apply to "all" figures; consider:
center(): moves a figure to center of screen

— Erases 1%, then re-draws

— So Figure::center() would use function draw()
to re-draw

— Complications!
* Which draw() function?

* From which class?

Figures Example: New Figure

Consider new kind of figure comes along:

Triangle class
derived from Figure class

Function center() inherited from Figure
— Will it work for triangles?
— It uses draw(), which is different for each figure!
— It will use Figure::draw() = won’t work for triangles

Want inherited function center() to use function
Triangle::draw() NOT function Figure::draw()

— But class Triangle wasn’t even WRITTEN when
Figure::center() was! Doesn’t know "triangles"!

Figures Example: Virtual!

e Virtual functions are the answer

* Tells compiler:
— "Don’t know how function is implemented"
— "Wait until used in program"

— "Then get implementation from object
instance"

* Called late binding or dynamic binding
— Virtual functions implement late binding

Virtual: How?

 To write C++ programs:
— Assume it happens by "magic"!

* But explanation involves late binding
— Virtual functions implement late binding

— Tells compiler to "wait" until function is used in
program

— Decide which definition to use based on
calling object

* Very important OOP principle!

Overriding

e Virtual function definition changed in a
derived class

— We say it’s been "overidden”

* Similar to redefined
— Recall: for standard functions
* So:
— Virtual functions changed: overridden
— Non-virtual functions changed: redefined

Virtual Functions: Why Not All?

Clear advantages to virtual functions as
we’ve seen

One major disadvantage: overhead!

— Uses more storage

— Late binding is "on the fly", so programs run slower

So if virtual functions not needed, should
not be used

Pure Virtual Functions

Base class might not have "meaningful"
definition for some of its members!

— Its purpose is solely for others to derive from

Recall class Figure
— All figures are objects of derived classes

* Rectangles, circles, triangles, etc.

— Class Figure has no idea how to draw!

Make it a pure virtual function:
virtual void draw() = 0;

Abstract Base Classes

e Pure virtual functions require no definition
— Forces all derived classes to define "their
own" version
e (Class with one or more pure virtual
functions is: abstract base class
— Can only be used as base class

— No objects can ever be created from it

* Since it doesn’t have complete "definitions" of all
its members!

* If derived class fails to define all pure’s:
— It’s an abstract base class too

Extended Type Compatibility

 Given:
Derived is derived class of Base

— Derived objects can be assigned to objects
of type Base

— But NOT the other way!

* Consider next example:
— A Dog "is a" Pet, but reverse not true

Extended Type
Compatibility Example

class Pet
{
public:
string name;
virtual void print() const;
5
class Dog : public Pet
{
public:
string breed,;
virtual void print() const;

5

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

15-47

Classes Pet and Dog

* Now given declarations:
Dog vdog;
Pet vpet;

e Notice member variables name and breed are
public!
— For example purposes only! Not typical!

Using Classes Pet and Dog

* Anything that "is a" dog "is a" pet:

— vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

— These are allowable

e Can assign values to parent-types, but
not reverse
— vdog = vpet not allowed

Slicing Problem

* Notice value assigned to vpet "loses" its
breed field!

— cout << vpet.breed;
* Produces ERROR msg!

— Called slicing problem
* Might seem appropriate

— Dog was moved to Pet variable, so it should
be treated like a Pet

* And therefore not have "dog" properties
— Makes for interesting philosphical debate

Slicing Problem Fix

* |[n C++, slicing problem is nuisance
— It still "is @" Great Dane named Tiny

— We'd like to refer to its breed even if it’s been
treated as a Pet

e Can do so with pointers to dynamic variables

Slicing Problem Example

* Pet *ppet;

Dog *pdog;

pdog = new Dog;

pdog->name = "Tiny";
pdog->breed = "Great Dane";

ppet = pdog;
e Cannot access breed field of object

pointed to by ppet:
cout << ppet->breed:; //ILLEGAL!

Slicing Problem Example

e Must use virtual member function:
ppet->print();

— Calls print member function in Dog class!

* Because it’s virtual

— C++ "waits" to see what object pointer ppet is
actually pointing to before "binding" call

Virtual Destructors

e Recall: destructors needed to de-allocate
dynamically allocated data

* Consider:
Base *pBase = new Derived;

delete pBase;

— Would call base class destructor even though
pointing to Derived class object!

— Making destructor virtual fixes this!
e Good policy for all destructors to be virtual

] " , < \7.. _‘\\“\‘\ 5 X,
i) » o A
; i) s N

Chapter 16

ANSI/1S0 Susoaie

Sasn Tewras
Leaasy

e pe W Templates
Nasespuces TRING e P

Swss

Vecwis

Viouu Fowmoss

Excernon Huouss

Smsae 1/0

UML

Evcpsuanon

Panenss

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

.
. v
- 1
- 7 \ :Y.

Learning Objectives

* Function Templates
— Syntax, defining
— Compiler complications
* Class Templates
— Syntax
— Example: array template class

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 16-56

Introduction

e C++ templates

— Allow very "general"” definitions for functions and
classes

— Type names are "parameters” instead of
actual types

— Precise definition determined at run-time

Function Templates

e Recall function swapValues:
void swapValues(int& varl, int& var2)

{

int temp;

temp =varl;
varl =var2;
var2 = temp;

}
* Applies only to variables of type int

e But code would work for any types!

Function Templates vs. Overloading

Could overload function for char’s:
void swapValues(char& varl, char& var2)

{

char temp;

temp = varl;
varl =var2;
var2 = temp;

}
But notice: code is nearly identical!
— Only difference is type used in 3 places

Function Template Syntax

e Allow "swap values" of any type variables:

template<class T> // | use typename instead of class
void swapValues(T& varl, T& var2)

{
T temp;
temp =varl,;
varl =var2;
var2 = temp;
}

* First line called "template prefix"
— Tells compiler what’s coming is "template”
— And that T is a type parameter

Template Prefix

* Recall:
template<class T>

* |In this usage, "class" means "type", or
"classification”

e Can be confused with other "known" use
of word "class"!

— C++ allows keyword "typename" in place of
keyword "class"” here

— But most use "class" anyway

Template Prefix 2

Again:

template<class T>

T can be replaced by any type

— Predefined or user-defined (like a C++ class type)
In function definition body:

— T used like any other type

Note: can use other than "T", but T is
"traditional" usage

Function Template Definition

e swapValues() function template is actually
large "collection” of definitions!

— A definition for each possible type!
 Compiler only generates definitions when

required

— Butit’s "as if" you'd defined for all types

* Write one definition = works for all types
that might be needed

Compiler Complications

* Function declarations and definitions
— Typically we have them separate

— For templates = not supported on
most compilers!

e Safest to place template function
definition in file where invoked
— Many compilers require it appear 15
— Often we #include all template definitions

More Compiler Complications

e Check your compiler’s specific requirements
— Some need to set special options

— Some require special order of arrangement
of template definitions vs. other file items

* Most usable template program layout:
— Template definition in same file it’s used
— Ensure template definition precedes all uses

 Can #include it

Multiple Type Parameters

* Can have:
template<class T1, class T2>

* Not typical (but gets used for STL maps...)
— Usually only need one "replaceable" type

— Cannot have "unused" template parameters
* Each must be "used" in definition

* Error otherwise!

Algorithm Abstraction

* Refers to implementing templates

* Express algorithms in "general"” way:
— Algorithm applies to variables of any type
— Ignore incidental detail

— Concentrate on substantive parts
of algorithm

* Function templates are one way C++
supports algorithm abstraction

Defining Templates Strategies

Develop function normally
— Using actual data types

Completely debug "ordinary" function

Then convert to template

— Replace type names with type parameter
as needed

Advantages:
— Easier to solve "concrete" case
— Deal with algorithm, not template syntax

Inappropriate Types in Templates

e Can use any type in template for which
code makes "sense"

— Code must behave in appropriate way

e e.g., swapValues() template function

— Cannot use type for which assignment operator isn’t
defined

— Example: an array:
int a[10], b[10];
swapValues(a, b);

* Arrays cannot be "assigned"!

Class Templates

* Can also "generalize" classes
template<class T>
— Can also apply to class definition

— All instances of "T" in class definition replaced by
type parameter

— Just like for function templates!

* Once template defined, can declare
objects of the class

Class Template Definition

* template<class T>

class Pair

{

public:
Pair();
Pair(T firstVal, T secondVal);
void setFirst(T newVal);
void setSecond(T newVal);
T getFirst() const;
T getSecond() const;

private:
T first; T second;

5

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 16-71

Class Templates as Parameters

* Consider:
int addUP(const Pair<int>& the Pair);

— The type (int) is supplied to be used for T
in defining this class type parameter

— It "happens" to be call-by-reference here

* Again: template types can be used
anywhere standard types can

Class Templates
Within Function Templates

e Rather than defining new overload:
template<class T>
T addUp(const Pair<T>& the Pair);
//Precondition: Operator + is defined for values
of type T
//Returns sum of two values in thePair

* Function now applies to all kinds
of numbers

Restrictions on Type Parameter

* Only "reasonable" types can be substituted
forT

* Consider:
— Assignment operator must be "well-behaved"

— Copy constructor must also work

— If T involves pointers, then destructor must
be suitable!

e Similar issues as function templates

AW

k)

15 3 SRR A
1 - - N
1 oy <> . -\>

B

Chapter 17

ANSI/1S0 Suwse

Sasn Tewras
Leaasy

T R W e Linked Data
— o & % Structures
Swss R
Vecwis
Vi Foncnoss
Excernon Huwuse
Snea 1/0
UML
Enciesuanon

Panenss

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

-
. ’
. '
~ \ :Y'

Learning Objectives

e Nodes and Linked Lists
— Creating, searching

* Linked List Applications
— Stacks

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-76

Introduction

 Linked list

— Constructed using pointers
— Grows and shrinks during run-time

— Doubly Linked List : A variation with pointers in both
directions

e Pointers backbone of such structures

— Use dynamic variables

e Standard Template Library

— Has predefined versions of some structures

Approaches

 Three ways to handle such data structures:

1. C-style approach: global functions and
structs with everything public

2. Classes with private member variables and
accessor and mutator functions

3. Friend classes

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

17-78

Nodes and Linked Lists

* Linked list

— Simple example of "dynamic data structure”
— Composed of nodes

* Each "node" is variable of struct or class
type that’s dynamically created with new
— Nodes also contain pointers to other nodes
— Provide "links"

Display 17.1 Nodes and Pointers

Display 17.1 Nodes and Pointers

head

“rolls"

"tea"
2

end marker

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-80

(BESNEEEEEREERE

Node Definition

e struct ListNode

{
string item;
Int count;
ListNode *link;
}.

typedef ListNode* ListNodePtr;

* Order here is important!
— Listnode defined 1%, since used in typedef

* Also notice "circularity”

Head Pointer

e Box labeled "head" not a node:
ListNodePtr head;

— A simple pointer to a node
— Set to point to 15t node in list

 Head used to "maintain" start of list
* Also used as argument to functions

Example Node Access

* (*head).count =12;

— Sets count member of node pointed to by
head equal to 12

* Alternate operator, ->
— Called "arrow operator”
— Shorthand notation that combines * and .
— head->count =12;
* |dentical to above
e cin>> head->item
— Assigns entered string to item member

End Markers

 Use NULL for node pointer
— Considered "sentinel" for nodes

— Indicates no further "links" after this node

 Provides end marker similar to how we
use partially-filled arrays

|
|
[] []
Display 17.2 Accessing Node Data
Display 17.2 Accessing Node Data
head->count = 12;
head—>item = "bagels";
Before After
head head
"rolls" "bagels"
[-
10 12
i |
"jam" "jam"
3 3
|
o "tea" "tea"
hoe —
= 2 2
-~ NULL NULL
=
o
: Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-85

Linked List

e Lists as illustrated called linked lists
* First node called head

— Pointed to by pointer named head

* Last node special also
— Its member pointer variable is NULL
— Easy test for "end" of linked list

Linked List Class Definition

class IntNode

{
public:
IntNode() { }
IntNode(int theData, IntNode* thelLink)
: data(theData), link(thelLink) { }
IntNode* getLink() const {return link;}
int getData() const {return data;}
void setData(int theData) {data = theData;}
void setLink(IntNode* pointer) {link=pointer;}
private:
int data;
IntNode *link;
Iy

typedef IntNode* IntNodePtr;

Linked List Class

* Notice all member function definitions are
inline

— Small and simple enough

* Notice two-parameter constructor

— Allows creation of nodes with specific data
value and specified link member

— Example:
IntNodePtr p2 = new IntNode(42, pl);

Create 15t Node

* IntNodePtr head;
— Declares pointer variable head

* head = new IntNode;
— Dynamically allocates new node
— Our 1%t node in list, so assigned to head
* head->setData(3);
head->setLink(NULL);
— Sets head node data
— Link set to NULL since it’s the only node!

Display 17.3 Adding a Node to the Head of a Linked List

Display 17.3
Nod d b
Ad d i n g a N O d e Linked list before insertion new I:tlion?zz, :ead)

to the Head of / ™=

a Linked List “—— = !
! R S B

3
NULL Y
3
NULL
Linked list after execution of
head = new IntNode(12, head);
12
>
o head]‘L
poo == :l
om
o=
= Y
&= 3
pro o
= NULL
: Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-90
poaene

Lost Nodes Pitfall:
Display 17.5 Lost Nodes

Display 17.5 Lost Nodes

Linked list before insertion Situation after executing

head = new IntNode;
head->setData(theData) ;

head

head
15 - 12
= ?
|
1
3 5
NULL I
¢ >‘L05tnad65
o 3
- NULL
P—
_
o
—_
: Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-91
o

Display 17.6 Inserting in the Middle of a
Linked List (1 of 2)

Display 17.6 Inserting in the Middle of a Linked List

head

Node created by
new IntNode(5, afterMe->getLink());

- d

W |- N

afterMe

o [

-
|
¢ afterMe->getLink()
is highlighted.
18
NULL

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-92

Display 17.6 Inserting in the Middle of a
Linked List (2 of 2)

head

afterMe

Final result of / 4'/ D
afterMe->setlLink(°
I

new IntNode(theData, afterMe->getLink()));

(VU T N N

NULL

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-93

BESNUEHEEREERE

Display 17.7 Removing a Node

Display 17.7
Removing [
before->setlLink(discard->getLink());

a Node y /

before Y delete discard;
[— ;
| \
){
discard
3 head

Y

_——

———

A

NULL

before
[+
discard - S
[—F—= s
-/
5 _—1
NULL

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-94

Searching a Linked List

* Function with two arguments:
IntNodePtr search(IntNodePtr head, int target);
//Precondition: pointer head points to head of
//linked list. Pointer in last node is NULL.

//\f list is empty, head is NULL
//Returns pointer to 15t node containing target
//1f not found, returns NULL

* Simple "traversal" of list

— Similar to array traversal

Pseudocode for search Function

* while (here doesn’t point to target node or
last node)

{

Make here point to next node in list
}
if (here node points to target)

return here;
else

return NULL;

Algorithm for search Function

* while (here->getData() != target &&
here->getLink() = NULL)
here = here->getLink();

if (here->getData() == target)
return here;
else

return NULL;

 Must make "special” case for empty list
— Not done here

Doubly Linked Lists

 What we just described is a singly linked list

— Can only follow links in one direction

* Doubly Linked List

— Links to the next node and another link to the previous
node

— Can follow links in either direction
— NULL signifies the beginning and end of the list

— Can make some operations easier, e.g. deletion since we
don’t need to search the list to find the node before the
one we want to remove

Doubly Linked Lists

head

NULL
(=,
- - INULL

class DoublyLinkedIntNode
{
public:
DoublyLinkedIntNode () ({}
DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,
DoublyLinkedIntNode* next)
data (theData) , nextLink (next), previousLink (previous) ({}
DoublyLinkedIntNode* getNextLink() const { return nextLink; }
DoublyLinkedIntNode* getPreviousLink() const { return previousLink; }
int getData() const { return data; }
void setData(int theData) { data = theData; }
void setNextLink (DoublyLinkedIntNode* pointer) { nextLink = pointer; }
void setPreviousLink (DoublyLinkedIntNode* pointer)
{ previousLink = pointer; }
private:
int data;
DoublyLinkedIntNode *nextLink;
DoublyLinkedIntNode *previousLink;
};
typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-99

Adding a Node to the Front of a
Doubly Linked List (1 of 2)

Existing list before adding new node

head
— e T R =
2 5 1 5 6
— — NULL
Node created by

newHead = new DoublyLinkedIntNode (5, NULL, head) ;

newHead NULL | :/
[—/—=
— T
2 1 o 6
..f-""'j NULL

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-100

BESNEGEEUERERE

Adding a Node to the Front of a
Doubly Linked List (2 of 2)

Set the previous link of the original head node
haad->saetPraviousNodea (nawHaad) ;

N

newHead NULL |~ | |

‘_.,..v-"'
=— =

- NULL

____..-"
head e
head = newHead;

~a

newHead NULL NULL
| #__,,,,-"“" H_,/" ,...r"’"', NULL
head

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-101

S5et head to newHead

 BESNEGARHEEERE:

Deleting a Node from a Doubly
Linked List

* Removing a node requires updating references
on both sides of the node we wish to delete

* Thanks to the backward link we do not need a
separate variable to keep track of the previous
node in the list like we did for the singly linked
list

— Can access via node->previous

 BESNEGHEEERERER

Deleting a Node from a Doubly
Linked List (1 of 2)

Existing list before deleting discard

head

NULL | —
(=—_F .

- -1 MNULL

discard /

.

—

Set pointers to the previous and next nodes

DoublyLinkedIntNodePtr prewv
DoublyLinkedIntNodePtr next

discard->getPreviousLink(} ;
discard->getNextLink () ;

L_—— nuL [next
e e e e el

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-103

Deleting a Node from a Doubly
Linked List (2 of 2)

Bypassdiscard

prav->setNextLink (next) ;
next->setPreviocuslLink (prewv) ;

—£
| head \ /Z)

NULL — — next

prev z L — [1]

Delete discard

dalete discard;

head \

[—F—n~u next
=p e

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-104

BESNEGEEUERERE

Stacks

e Stack data structure:

— Retrieves data in reverse order of how stored
— LIFO — last-in/first-out

* QOur use:
— Use linked lists to implement stacks

A Stack

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-105

[J []
Display 17.17 Interface File for a Stack
Template Class (1 of 2)
Interface File for a Stack Template Class
1 //This is the header file stack.h. This is the interface for the class
2 //Stack, which is a template class for a stack of items of type T.
3 #ifndef STACK_H
4 #define STACK_H
You might prefer to replace the
5 namespace StackSavitch parameter type T with const T&.
6 {
7 template<class T>
8 class Node
9 {
10 public:
11 Node(T theData, Node<T>* thelLink) : data(theData), link(theLink){}
12 Node<T>* getlink() const { return link; }
13 const T getData() const { return data; }
- 14 void setData(const T& theData) { data = theData; }
o 15 void setLink(Node<T>* pointer) { link = pointer; }
e 16 private:
= 17 T data;
B 18 Node<T> *1ink;
oo 19 };
==
: Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-106

 BESNEGARHEEERE:

Display 17.17 Interface File for a Stack

Template Class (2 of 2)

Interface File for a Stack Template Class

20
21
22
23
24
25

26

P
o

Wl

F

i
o

[TV TN T WY Ry ¥
O T N B

d

L=l

template<class T»
class Stack
{
public:
Stack();
J/Initializes the object to an empty stack.
Copy constructor

[Sh

Stack(const Stack<T=& aStack};“’_‘_.-rr
Stack<T=& operator =(const S5tack<T=& rightSide);

the stack

virtual ~Stack();+=——o08 _ _ Thedestructor

and return

void push(T stackFrame); fresator
Jf/Postcondition: stackFrome has been odded to the stack.

T pop(J;

J/Precondition: The stack is not empty.

f/Returns the top stack frame and removes that top
J/istack frome from the stock.

bool isEmpty() const;

3 f/Returns true if the stock is empty. Returns false otherwise.
37 private:
1] Node<T> *top;
39 |
48 }//StackSavitch
41 #endif //STACK_H
Copyﬁght(D 2010 PealbullHULHDUH'VVCNCY.HHlIsHL)IC)CIVCU. 17-107

lterators

Construct for cycling through data

— Like a "traversal"
— Allows "whatever" actions required on data

For arrays, iteration is incrementing integer
index

For linked lists, iteration is pointer moving
from one node to next

We will see more with STL

ANSI/1S0 Suwse

Sasn Tewras
Leaasy

Tewpuues
Nawesauces
Swss

Vecois

Viouu. Fowcnoss
Excernon Hueuse
Snea 1/0

UL
Encesuanon

Panenss

- / 3 . Y

1 %
'5'/

ke

Chapter 7

_Q Constructors and

Other Tools
(like STL vectors)

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

Learning Objectives

* \Vectors
— Introduction to vector class

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 7-110

Vectors

* Vector Introduction
— Recall: arrays are fixed size

— Vectors: "arrays that grow and shrink"

* During program execution

— Formed from Standard Template Library
(STL)

* Using template class

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

7-111

Vector Basics

e Similar to array:

— Has base type
— Stores collection of base type values

e Declared differently:

— Syntax: vector<Base_Type>
* Indicates template class
* Any type can be "plugged in" to Base_Type
* Produces "new" class for vectors with that type

— Example declaration:
vector<int> v;

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

7-112

Vector Use

vector<int> v;
— "vis vector of type int"

— Calls class default constructor
* Empty vector object created

Indexed like arrays for access

But to add elements:
— Must call member function push_back

Member function size()
— Returns current number of elements

Vector Example:
Display 7.7 Using a Vector (1 of 2)

Display 7.7 Using a Vector

w N

0 ~N O LA

10
11
12
13
14
15
16
17

#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<int> v;
cout << "Enter a list of positive numbers.\n"
<< "Place a negative number at the end.\n";

int next;
cin >> next;
while (next > 0)

{
v.push_back(next) ;
cout << next << " added. ";
cout << "v.size() = " << v.size() << endl;
cin >> next;
}

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

7-114

Vector Example:
Display 7.7 Using a Vector (2 of 2)

18 cout << "You entered:\n";

19 for (unsigned int 1 = 0; 1 < v.size(); 1i++)
20 cout << v[i] << " ";

21 cout << endl;

22 return 0;

23}

SAMPLE DIALOGUE

Enter a list of positive numbers.
Place a negative number at the end.
2468 -1

2 added. v.size = 1

4 added. v.size = 2

6 added. v.size = 3

8 added. v.size = 4

You entered:

2468

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 7-115

AW

k)

R e NN N
1 - - N
d 125 - . \»

B

Chapter 19

ANSI/1S0 Suwse

Sasn Tewras
Leaasy

e E . W el Standard Template
— S &= % Library
Smwss ; _ v
Vecwis |
Vi Foncnoss
Excernon Huwuse
Snea 1/0
UML
Enciesuanon

Panenss

PEARSON
Addison

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved Wesley

-
> r
. \'4
o \ }Y'

Learning Objectives

* |terators
— Reverse iterators

* Containers
— Sequential containers
— Container adapter stack
— Associative Containers set and map

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 19-117

Introduction

e Recall stack data structure
— We created our own
— Large collection of standard data structures exists

— Make sense to have standard portable
implementations of them!

e Standard Template Library (STL)

— Includes libraries for all such data structures

e Like container classes: stacks

lterators

* Recall: generalization of a pointer
— Typically even implemented with pointer!

 "Abstraction" of iterators

— Designed to hide details of implementation

— Provide uniform interface across different

container classes

e Each container class has "own" iterator type

— Similar to how each data type has own

pointer type

Manipulating lterators

e Recall using overloaded operators:

* Soif pisiterator variable, *p gives access to data
pointed to by p

* Vector template class
— Has all above overloads

— Also has members begin() and end()
c.begin(); //Returns iterator for 1stitem in c
c.end(); //Returns "test" value for end

Cycling with lterators

e Recall cycling ability:
for (p=c.begin();p!=c.end();p++)
process *p //*pis current data item

* Big picture so far...

e Keep in mind:
— Each container type in STL has own iterator types

* Even though they’re all used similarly

oUndWDNRE

00 J

10
11

12
13
14
15
16

17
18
19

Display 19.1
Iterators Used with a Vector (1 of 2)

//Program to demonstrate STL iterators.
#include <iostream>

#include <vector>

using std::cout;

using std::endl;

using std: :vector;

int main()

{

vector<int> container;

for (int i = 1; i <= 4; i++)
container.push back(i);

cout << "Here is what is in the container:\n";

vector<int>::iterator p;

for (p = container.begin(); p !'= container.end(); p++)
cout << *p << " ",

cout << endl;

cout << "Setting entries to 0:\n";

for (p = container.begin(); p !'= container.end(); p++)
*n = O -
p_or

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 19-122

20
21

22
23

24
25

Display 19.1
lterators Used with a Vector (2 of 2)

cout << "Container now contains:\n";
for (p = container.begin(); p !=
container.end(); p++)
cout << *p <K " ",
cout << endl;

return O;

SAMPLE DIALOGUE
Here is what is in the container:

1234

Setting entries to O:
Container now contains:

0000

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

19-123

Vector lterator Types

* |terators for vectors of ints are of type:
std::vector<int>::iterator

* |terators for lists of ints are of type:
std::list<int>::iterator

* Vector is in std namespace, so need:
using std::vector<int>::iterator;

Kinds of Iterators

* Different containers = different iterators
 Vector iterators

— Most "general” form
— All operations work with vector iterators
— Vector container great for iterator examples

 BESRUCHEUGHRERER

co ~

10
11
12
13

14
15
16

17
18
19
20

21
22
23

24
25
26

Random Access:
Display 19.2 Bidirectional and
Random-Access Iterator Use

int main()

{

vector<char> container;

container.push_back('A"); Three different
container.push_back('B"); notations for the
container.push_back('C'); aame thing
container.push_back('D");

This notation is
for (int i = 0; i < 4; i) 5Pe¢faffzeddw
cout << "container[” << i << "] == " 23:3:?3”

<< container[i] << endl;
vector<char>::iterator p = container.begin(); ‘,x”//f
cout << "The third entry is " << container[2] << endl; These two work for
cout << "The third entry is " << p[2] << endl; any random-

cout << "The third entry is " << *(p + 2) << endl; access Iterator.

cout << "Back to container[0].\n";
p = container.begin();
cout << "which has value " << #*p << endl;

cout << "Two steps forward and one step back:\n";
p++; ~
cout << *p << endl;

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

19-126

Iterator Classifications

Forward iterators:
— ++ works on iterator

Bidirectional iterators:
— Both ++ and — work on iterator

Random-access iterators:

— ++, --, and random access [] all work
with iterator

These are "kinds" of iterators, not types!

Constant and Mutable Iterators

* Dereferencing operator’s behavior dictates

* Constant iterator:
— * produces read-only version of element

— Can use *p to assign to variable or output,
but cannot change element in container

e E.g., *p = <anything>; is illegal
 Mutable iterator:
— *p can be assigned value
— Changes corresponding element in container
— i.e.: *p returns an lvalue

Reverse lterators

* To cycle elements in reverse order
— Requires container with bidirectional iterators
* Might consider:

iterator p;

for (p=container.end();p!=container.begin(); p--)
cout<< *p<<"";

’

— But recall: end() is just "sentinel", begin() not!

— Might work on some systems, but not most

Reverse lterators Correct

* To correctly cycle elements in reverse
order:
reverse_iterator p;

for (rp=container.rbegin();rp!=container.rend(); rp++)
cout<< *rp<< nmn o,

* rbegin()
— Returns iterator at last element

* rend()

— Returns sentinel "end" marker

Containers

Container classes in STL
— Different kinds of data structures
— Like lists, queues, stacks

Each is template class with parameter for particular data type
to be stored

— e.g., Lists of ints, doubles or myClass types

Each has own iterators

— One might have bidirectional, another might just have forward
iterators

But all operators and members have same meaning

Sequential Containers

* Arranges list data
— 15t element, next element, ... to last element

* Linked list is sequential container

— Earlier linked lists were "singly linked lists"
* One link per node

e STL has no "singly linked list"
— Only "doubly linked list": template class list

Display 19.4 Two Kinds of Lists

Display 19.4 Two Kinds of Lists

slist: A singly linked list list: A doubly linked list
++ defined; —— not defined Both ++ and — defined
begin() begin()

\ : \]

|
¢ slist is not part of the ¢ T
STL and may not always |

be implemented. 1ist is

2 part of the STL. 2
| 4
|
3 3
end() ——— end()

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 19-133

Display 19.5
Using the list Template Class(1 of 2)

//Program to demonstrate the STL template class list.

o ndWDN PR

0 J

10
11

12
13
14

15
16

#include <iostream>
#include <list>
using std::cout;
using std::endl;
using std::list;

int main()

{

list<int> listObject;

for (int i = 1; i <= 3;

it++)

listObject.push back (i) ;

cout << "List contains:\n";
list<int>::iterator iter;

for (iter = listObject.begin(); iter !'= listObject.end();

iter++)
cout << *iter <K "
cout << endl;

LI

14

17
18

19

20
21

22
23

24
25

Display 19.5
Using the list Template Class(2 of 2)

cout << "Setting all entries to 0:\n";
for (iter = listObject.begin(); iter !'= listObject.end()
iter++)
*iter = 0;

cout << "List now contains:\n";
for (iter = listObject.begin(); iter !'= listObject.end();
iter++)
cout << *jiter <« " ";
cout << endl;

return O;

SAMPLE DIALOGUE
List contains:

123

Setting all entries to O:
List now contains:

00O

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 19-135

Container Adapter stack

 Container adapters are template classes
— Implemented "on top of" other classes

 Example:
stack template class by default implemented on
top of deque template class

— Buried in stack’s implementation is deque where all data
resides

— top() returns reference to first item on stack without
removing it

— pop() removes it without returning a reference

Associative Containers

* Associative container: simple database
* Store data
— Each data item has key

* Example:
data: employee’s record as struct
key: employee’s SSN

— Items retrieved based on key

set Template Class

Simplest container possible

Stores elements without repetition
15t insertion places element in set
Each element is own key
Capabilities:

— Add elements

— Delete elements
— Ask if element is in set

o ndWDN PR

0 J

10
11
12
13
14
15

16
17
18
19
20

Program Using the set Template
Class (1 of 2)

//Program to demonstrate use of the set template class.
#include <iostream>

#include <set>

using std::cout;

using std::endl;

using std::set;

int main()

{

set<char> s;

.insert('A’);

W o n n n

cout << "The set contains:\n";
set<char>::const_iterator p;

for (p = s.begin(); p !'= s.end(); p++)
cout < *p K " ";

cout << endl;

21
22
23
24
26

27
28
29
30
31

32
33
34
35
36

37
38

Program Using the set Template
Class (2 of 2)

cout << "Set contains 'C': ";
if (s.find('C')==s.end())
cout << " no " << endl;
else
cout << " yes " << endl;

cout << "Removing C.\n";

s.erase('C’);

for (p = s.begin(); p !'= s.end(); p++)

cout << *p << " ",

cout << endl;
cout << "Set contains 'C': "; SAMPLE DIALOGUE
if (s.find('C')==s.end())

cout << " no " << endl; The set contains:
else ABCD
cout << " yes " << endl; Set contains 'C': yes
Removing C.
return O; ABD

} Set contains 'C': no

Map Template Class

A function given as set of ordered pairs

— For each value first, at most one value
second in map

Example map declaration:
map<string, int> numberMap;

Can use [] notation to access the map
— For both storage and retrieval

Stores in sorted order, like set

— Second value can have no ordering impact

O Jdo U dWN

10
11

12
13
14
15
16
17
18
19
20

Program Using the map Template

Class (1 of 3)

//Program to demonstrate use of the map template class.
#include <iostream>
#include <map>
#include <string>
using std::cout;
using std::endl;
using std::map;
using std::string;

int main()

{

map<string, string> planets;

planets["Mercury"] = "Hot planet";
planets["Venus"] = "Atmosphere of sulfuric acid";
planets["Earth"] = "Home";

planets["Mars"] = "The Red Planet";
planets["Jupiter"] = "Largest planet in our solar
planets["Saturn"] = "Has rings";
planets["Uranus"] = "Tilts on its side";

planets["Neptune"] = "1500 mile per hour winds";
planets["Pluto"] = "Dwarf planet";

system";

Program Using the map Template
Class (2 of 3)

21 cout << "Entry for Mercury - " << planets|['"Mercury"]

22 << endl << endl;

23 if (planets.find("Mercury") != planets.end())

24 cout << "Mercury is in the map." << endl;

25 if (planets.find("Ceres") == planets.end())

26 cout << "Ceres is not in the map." << endl << endl;
27 cout << "Iterating through all planets: " << endl;

28 map<string, string>::const iterator iter;

29 for (iter = planets.begin(); iter '= planets.end(); iter++)
30 {

31 cout << iter->first << " - " << iter->second << endl;
32 }

The iterator will output the map in order sorted by the key. In this case
the output will be listed alphabetically by planet.

33 return O;
34 }

Program Using the map Template
Class (3 of 3)

SAMPLE DIALOGUE

Entry for Mercury - Hot planet

Mercury is in the map.
Ceres is not in the map.

Iterating through all planets:

Earth - Home

Jupiter - Largest planet in our solar system
Mars - The Red Planet

Mercury - Hot planet

Neptune - 1500 mile per hour winds

Pluto - Dwarf planet

Saturn - Has rings

Uranus - Tilts on its side

Venus - Atmosphere of sulfuric acid

