
CISC 181 final overview

• Next Tuesday, May 25—10:30 am-12:30 pm, Memorial 113

• Worth 20% of your grade

• Covers topics from class in chapters listed on course page from
April 8 up to May 11 inclusive
– Will not test on gdb, OpenGL (or recursion or exception handling)

• Format: Just like the midterm…only no tic-tac-toe programs

1-1Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Topic list

• Classes Chap. 10.3, 14-14.1,
15-15.2 (through p. 678)

• Templates Chap. 16-16.2

• Linked data structures Chap. 17-17.2
(through p. 763)

• STL Chap. 7.3, 19-19.2
(through p. 872, + pp.
876-883)

1-2Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 10

Pointers, Dynamic
Arrays, & Classes

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Chap. 10.3 Learning Objectives

• Classes, Pointers, Dynamic Arrays
– The this pointer

– Destructors, copy constructors

10-4Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Back to Classes
• The -> operator

– Shorthand notation

• Combines dereference operator, *, and
dot operator

• Specifies member of class "pointed to"
by given pointer

• Example:
MyClass *p;
p = new MyClass;
p->grade = "A"; Equivalent to:
(*p).grade = "A";

10-5Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The this Pointer
• Member function definitions might need to refer

to calling object

• Use predefined this pointer
– Automatically points to calling object:

Class Simple
{
public:

void showStuff() const;
private:

int stuff;
};

• Two ways for member functions to access:
cout << stuff;
cout << this->stuff;

10-6Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Assignment Operator

• Assignment operator returns reference
– So assignment "chains" are possible

– e.g., a = b = c;
• Sets a and b equal to c

• Operator must return "same type" as its
left-hand side
– To allow chains to work

– The this pointer will help with this!

10-7Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Assignment Operator

• Recall: Assignment operator must be
member of the class
– It has one parameter

– Left-operand is calling object
s1 = s2;
• Think of like: s1.=(s2);

• s1 = s2 = s3;
– Requires (s1 = s2) = s3;

– So (s1 = s2) must return object of s1"s type
• And pass to " = s3";

10-8Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded = Operator Definition
• Uses string Class example:

StringClass& StringClass::operator=(const StringClass& rtSide)
{

if (this == &rtSide) // if right side same as left side
return *this;

else
{

capacity = rtSide.length;
length
length = rtSide.length;
delete [] a;
a = new char[capacity];
for (int I = 0; I < length; I++)

a[I] = rtSide.a[I];
return *this;

}
}

10-9Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Shallow and Deep Copies

• Shallow copy
– Assignment copies only member variable

contents over

– Default assignment and copy constructors

• Deep copy
– Pointers, dynamic memory involved

– Must dereference pointer variables to
"get to" data for copying

– Write your own assignment overload and
copy constructor in this case!

10-10Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Destructor Need

• Dynamically-allocated variables
– Do not go away until "deleted"

• If pointers are only private member data
– They dynamically allocate "real" data

• In constructor

– Must have means to "deallocate" when
object is destroyed

• Answer: destructor!

10-11Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Destructors

• Opposite of constructor

– Automatically called when object is out-of-scope

– Default version only removes ordinary
variables, not dynamic variables

• Defined like constructor, just add ~

– MyClass::~MyClass()
{

//Perform delete clean-up duties
}

10-12Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Copy Constructors

• Automatically called when:
1. Class object declared and initialized to other object

2. When function returns class type object

3. When argument of class type is "plugged in"
as actual argument to call-by-value parameter

• Requires "temporary copy" of object
– Copy constructor creates it

• Default copy constructor
– Like default "=", performs member-wise copy

• Pointers write own copy constructor!

10-13Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The “Big 3”

• If you do one, you’ll probably need to do all
because of new/delete issue

1. Overloading assignment operator

2. Copy constructor

3. Destructor

• Also, these are not inherited (nor is
constructor)

1-14Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 14

Inheritance

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Inheritance Basics

– Derived classes, with constructors

– Redefining member functions

– Non-inherited functions

14-16Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Introduction to Inheritance

• Object-oriented programming

– Powerful programming technique

– Provides abstraction dimension called inheritance

• General form of class is defined

– Specialized versions then inherit properties of
general class

– And add to it/modify its functionality for its
appropriate use

14-17Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Inheritance Basics

• New class inherited from another class

• Base class
– "General" class from which others derive

• Derived class
– New class

– Automatically has base class’s:
• Member variables

• Member functions

– Can then add additional member functions
and variables

14-18Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Derived Classes

• Consider example:
Class of "Employees"

• Composed of:

– Salaried employees

– Hourly employees

• Each is "subset" of employees

– Another might be those paid fixed wage each
month or week

14-19Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Derived Classes

• Don’t "need" type of generic "employee"

– Since no one’s just an "employee"

• General concept of employee helpful!

– All have names

– All have social security numbers

– Associated functions for these "basics" are
same among all employees

• So "general" class can contain all these
"things" about employees

14-20Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Employee Class

• Many members of "employee" class apply
to all types of employees
– Accessor functions

– Mutator functions

– Most data items:
• SSN

• Name

• Pay

• We won’t have "objects" of this
class, however

14-21Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Employee Class

• Consider printCheck() function:

– Will always be "redefined" in derived classes

– So different employee types can have
different checks

– Makes no sense really for "undifferentiated"
employee

– So function printCheck() in Employee class
says just that
• Error message stating "printCheck called for

undifferentiated employee!! Aborting…"

14-22Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Deriving from Employee Class

• Derived classes from Employee class:

– Automatically have all member variables

– Automatically have all member functions

• Derived class said to "inherit" members
from base class

• Can then redefine existing members
and/or add new members

14-23Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 14.3 Interface for the Derived Class
HourlyEmployee (1 of 2)

14-24Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 14.3 Interface for the Derived Class
HourlyEmployee (2 of 2)

14-25Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

HourlyEmployee Class Interface

• Note definition begins same as any other

– #ifndef structure

– Includes required libraries

– Also includes employee.h!

• And, the heading:
class HourlyEmployee : public Employee
{ …

– Specifies "publicly inherited" from Employee
class

14-26Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

HourlyEmployee Class Additions

• Derived class interface only lists new or
"to be redefined" members

– Since all others inherited are already defined

– i.e.: "all" employees have ssn, name, etc.

• HourlyEmployee adds:

– Constructors

– wageRate, hours member variables

– setRate(), getRate(), setHours(), getHours()
member functions

14-27Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

HourlyEmployee Class Redefinitions

• HourlyEmployee redefines:

– printCheck() member function

– This "overrides" the printCheck() function
implementation from Employee class

• Its definition must be in HourlyEmployee
class’s implementation

– As do other member functions declared in
HourlyEmployee’s interface
• New and "to be redefined"

14-28Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Inheritance Terminology

• Common to simulate family relationships

• Parent class
– Refers to base class

• Child class
– Refers to derived class

• Ancestor class
– Class that’s a parent of a parent …

• Descendant class
– Opposite of ancestor

14-29Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructors in Derived Classes

• Base class constructors are NOT inherited in derived
classes!
– But they can be invoked within derived class

constructor
• Which is all we need!

• Base class constructor must initialize all
base class member variables
– Those inherited by derived class

– So derived class constructor simply calls it
• "First" thing derived class constructor does

14-30Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Derived Class Constructor Example

• Consider syntax for HourlyEmployee
constructor:
HourlyEmployee::HourlyEmployee(string theName,

string theNumber, double theWageRate,
double theHours)

: Employee(theName, theNumber),
wageRate(theWageRate), hours(theHours)

{
//Deliberately empty

}

• Portion after : is "initialization section"
– Includes invocation of Employee constructor

14-31Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor: No Base Class Call

• Derived class constructor should always
invoke one of the base class’s constructors

• If you do not:

– Default base class constructor automatically called

• Equivalent constructor definition:
HourlyEmployee::HourlyEmployee()

: wageRate(0), hours(0)
{ }

14-32Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 15

Polymorphism and
Virtual Functions

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Virtual Function Basics

– Late binding

– Implementing virtual functions

– When to use a virtual function

– Abstract classes and pure virtual functions

• Pointers and Virtual Functions

– Extended type compatibility

– Downcasting and upcasting

15-34Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Virtual Function Basics

• Polymorphism
– Associating many meanings to one function

– Virtual functions provide this capability

– Fundamental principle of object-oriented
programming!

• Virtual
– Existing in "essence" though not in fact

• Virtual Function
– Can be "used" before it’s "defined"

15-35Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Figures Example

• Best explained by example:

• Classes for several kinds of figures
– Rectangles, circles, ovals, etc.

– Each figure an object of different class
• Rectangle data: height, width, center point

• Circle data: center point, radius

• All derive from one parent-class: Figure

• Require function: draw()
– Different instructions for each figure

15-36Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Figures Example 2

• Each class needs different draw function

• Can be called "draw" in each class, so:
Rectangle r;
Circle c;
r.draw(); //Calls Rectangle class’s draw
c.draw(); //Calls Circle class’s draw

• Nothing new here yet…

15-37Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Figures Example: center()

• Parent class Figure contains functions
that apply to "all" figures; consider:
center(): moves a figure to center of screen

– Erases 1st, then re-draws

– So Figure::center() would use function draw()
to re-draw

– Complications!

• Which draw() function?

• From which class?

15-38Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Figures Example: New Figure

• Consider new kind of figure comes along:
Triangle class

derived from Figure class

• Function center() inherited from Figure
– Will it work for triangles?

– It uses draw(), which is different for each figure!

– It will use Figure::draw() won’t work for triangles

• Want inherited function center() to use function
Triangle::draw() NOT function Figure::draw()
– But class Triangle wasn’t even WRITTEN when

Figure::center() was! Doesn’t know "triangles"!

15-39Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Figures Example: Virtual!

• Virtual functions are the answer

• Tells compiler:
– "Don’t know how function is implemented"

– "Wait until used in program"

– "Then get implementation from object
instance"

• Called late binding or dynamic binding
– Virtual functions implement late binding

15-40Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Virtual: How?

• To write C++ programs:

– Assume it happens by "magic"!

• But explanation involves late binding

– Virtual functions implement late binding

– Tells compiler to "wait" until function is used in
program

– Decide which definition to use based on
calling object

• Very important OOP principle!

15-41Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overriding

• Virtual function definition changed in a
derived class
– We say it’s been "overidden"

• Similar to redefined
– Recall: for standard functions

• So:
– Virtual functions changed: overridden

– Non-virtual functions changed: redefined

15-42Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Virtual Functions: Why Not All?

• Clear advantages to virtual functions as
we’ve seen

• One major disadvantage: overhead!

– Uses more storage

– Late binding is "on the fly", so programs run slower

• So if virtual functions not needed, should
not be used

15-43Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pure Virtual Functions

• Base class might not have "meaningful"
definition for some of its members!

– Its purpose is solely for others to derive from

• Recall class Figure

– All figures are objects of derived classes
• Rectangles, circles, triangles, etc.

– Class Figure has no idea how to draw!

• Make it a pure virtual function:
virtual void draw() = 0;

15-44Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Abstract Base Classes

• Pure virtual functions require no definition
– Forces all derived classes to define "their

own" version

• Class with one or more pure virtual
functions is: abstract base class
– Can only be used as base class

– No objects can ever be created from it
• Since it doesn’t have complete "definitions" of all

its members!

• If derived class fails to define all pure’s:
– It’s an abstract base class too

15-45Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Extended Type Compatibility

• Given:
Derived is derived class of Base

– Derived objects can be assigned to objects
of type Base

– But NOT the other way!

• Consider next example:

– A Dog "is a" Pet, but reverse not true

15-46Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Extended Type
Compatibility Example

• class Pet
{
public:

string name;
virtual void print() const;

};
class Dog : public Pet
{
public:

string breed;
virtual void print() const;

};

15-47Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Classes Pet and Dog

• Now given declarations:
Dog vdog;
Pet vpet;

• Notice member variables name and breed are
public!

– For example purposes only! Not typical!

15-48Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Using Classes Pet and Dog

• Anything that "is a" dog "is a" pet:

– vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

– These are allowable

• Can assign values to parent-types, but
not reverse

– vdog = vpet not allowed

15-49Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Slicing Problem

• Notice value assigned to vpet "loses" its
breed field!
– cout << vpet.breed;

• Produces ERROR msg!

– Called slicing problem

• Might seem appropriate
– Dog was moved to Pet variable, so it should

be treated like a Pet
• And therefore not have "dog" properties

– Makes for interesting philosphical debate

15-50Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Slicing Problem Fix

• In C++, slicing problem is nuisance

– It still "is a" Great Dane named Tiny

– We’d like to refer to its breed even if it’s been
treated as a Pet

• Can do so with pointers to dynamic variables

15-51Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Slicing Problem Example

• Pet *ppet;
Dog *pdog;
pdog = new Dog;
pdog->name = "Tiny";
pdog->breed = "Great Dane";
ppet = pdog;

• Cannot access breed field of object
pointed to by ppet:
cout << ppet->breed; //ILLEGAL!

15-52Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Slicing Problem Example

• Must use virtual member function:
ppet->print();

– Calls print member function in Dog class!

• Because it’s virtual

– C++ "waits" to see what object pointer ppet is
actually pointing to before "binding" call

15-53Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Virtual Destructors

• Recall: destructors needed to de-allocate
dynamically allocated data

• Consider:
Base *pBase = new Derived;
…
delete pBase;

– Would call base class destructor even though
pointing to Derived class object!

– Making destructor virtual fixes this!

• Good policy for all destructors to be virtual

15-54Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 16

Templates

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Function Templates

– Syntax, defining

– Compiler complications

• Class Templates

– Syntax

– Example: array template class

16-56Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Introduction

• C++ templates

– Allow very "general" definitions for functions and
classes

– Type names are "parameters" instead of
actual types

– Precise definition determined at run-time

16-57Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Templates

• Recall function swapValues:
void swapValues(int& var1, int& var2)
{

int temp;
temp = var1;
var1 = var2;
var2 = temp;

}

• Applies only to variables of type int

• But code would work for any types!

16-58Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Templates vs. Overloading

• Could overload function for char’s:
void swapValues(char& var1, char& var2)
{

char temp;
temp = var1;
var1 = var2;
var2 = temp;

}

• But notice: code is nearly identical!
– Only difference is type used in 3 places

16-59Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Template Syntax

• Allow "swap values" of any type variables:
template<class T> // I use typename instead of class
void swapValues(T& var1, T& var2)
{

T temp;
temp = var1;
var1 = var2;
var2 = temp;

}

• First line called "template prefix"
– Tells compiler what’s coming is "template"

– And that T is a type parameter

16-60Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Template Prefix

• Recall:
template<class T>

• In this usage, "class" means "type", or
"classification"

• Can be confused with other "known" use
of word "class"!

– C++ allows keyword "typename" in place of
keyword "class" here

– But most use "class" anyway

16-61Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Template Prefix 2

• Again:
template<class T>

• T can be replaced by any type

– Predefined or user-defined (like a C++ class type)

• In function definition body:

– T used like any other type

• Note: can use other than "T", but T is
"traditional" usage

16-62Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Template Definition

• swapValues() function template is actually
large "collection" of definitions!

– A definition for each possible type!

• Compiler only generates definitions when
required

– But it’s "as if" you’d defined for all types

• Write one definition works for all types
that might be needed

16-63Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Compiler Complications

• Function declarations and definitions

– Typically we have them separate

– For templates not supported on
most compilers!

• Safest to place template function
definition in file where invoked

– Many compilers require it appear 1st

– Often we #include all template definitions

16-64Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

More Compiler Complications

• Check your compiler’s specific requirements

– Some need to set special options

– Some require special order of arrangement
of template definitions vs. other file items

• Most usable template program layout:

– Template definition in same file it’s used

– Ensure template definition precedes all uses
• Can #include it

16-65Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Multiple Type Parameters

• Can have:
template<class T1, class T2>

• Not typical (but gets used for STL maps…)

– Usually only need one "replaceable" type

– Cannot have "unused" template parameters

• Each must be "used" in definition

• Error otherwise!

16-66Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Algorithm Abstraction

• Refers to implementing templates

• Express algorithms in "general" way:
– Algorithm applies to variables of any type

– Ignore incidental detail

– Concentrate on substantive parts
of algorithm

• Function templates are one way C++
supports algorithm abstraction

16-67Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Defining Templates Strategies

• Develop function normally
– Using actual data types

• Completely debug "ordinary" function

• Then convert to template
– Replace type names with type parameter

as needed

• Advantages:
– Easier to solve "concrete" case

– Deal with algorithm, not template syntax

16-68Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Inappropriate Types in Templates

• Can use any type in template for which
code makes "sense"

– Code must behave in appropriate way

• e.g., swapValues() template function

– Cannot use type for which assignment operator isn’t
defined

– Example: an array:
int a[10], b[10];
swapValues(a, b);
• Arrays cannot be "assigned"!

16-69Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Templates

• Can also "generalize" classes
template<class T>

– Can also apply to class definition

– All instances of "T" in class definition replaced by
type parameter

– Just like for function templates!

• Once template defined, can declare
objects of the class

16-70Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Template Definition

• template<class T>
class Pair
{
public:

Pair();
Pair(T firstVal, T secondVal);
void setFirst(T newVal);
void setSecond(T newVal);
T getFirst() const;
T getSecond() const;

private:
T first; T second;

};

16-71Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Templates as Parameters

• Consider:
int addUP(const Pair<int>& the Pair);

– The type (int) is supplied to be used for T
in defining this class type parameter

– It "happens" to be call-by-reference here

• Again: template types can be used
anywhere standard types can

16-72Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Templates
Within Function Templates

• Rather than defining new overload:
template<class T>
T addUp(const Pair<T>& the Pair);
//Precondition: Operator + is defined for values

of type T
//Returns sum of two values in thePair

• Function now applies to all kinds
of numbers

16-73Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Restrictions on Type Parameter

• Only "reasonable" types can be substituted
for T

• Consider:

– Assignment operator must be "well-behaved"

– Copy constructor must also work

– If T involves pointers, then destructor must
be suitable!

• Similar issues as function templates

16-74Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 17

Linked Data
Structures

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Nodes and Linked Lists
– Creating, searching

• Linked List Applications
– Stacks

17-76Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Introduction

• Linked list

– Constructed using pointers

– Grows and shrinks during run-time

– Doubly Linked List : A variation with pointers in both
directions

• Pointers backbone of such structures

– Use dynamic variables

• Standard Template Library

– Has predefined versions of some structures

17-77Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Approaches

• Three ways to handle such data structures:
1. C-style approach: global functions and

structs with everything public

2. Classes with private member variables and
accessor and mutator functions

3. Friend classes

17-78Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Nodes and Linked Lists

• Linked list

– Simple example of "dynamic data structure"

– Composed of nodes

• Each "node" is variable of struct or class
type that’s dynamically created with new

– Nodes also contain pointers to other nodes

– Provide "links"

17-79Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.1 Nodes and Pointers

17-80Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Node Definition

• struct ListNode
{

string item;
int count;
ListNode *link;

};
typedef ListNode* ListNodePtr;

• Order here is important!
– Listnode defined 1st, since used in typedef

• Also notice "circularity"

17-81Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Head Pointer

• Box labeled "head" not a node:
ListNodePtr head;

– A simple pointer to a node

– Set to point to 1st node in list

• Head used to "maintain" start of list

• Also used as argument to functions

17-82Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Example Node Access

• (*head).count = 12;
– Sets count member of node pointed to by
head equal to 12

• Alternate operator, ->
– Called "arrow operator"

– Shorthand notation that combines * and .

– head->count = 12;
• Identical to above

• cin >> head->item
– Assigns entered string to item member

17-83Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

End Markers

• Use NULL for node pointer

– Considered "sentinel" for nodes

– Indicates no further "links" after this node

• Provides end marker similar to how we
use partially-filled arrays

17-84Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.2 Accessing Node Data

17-85Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Linked List

• Lists as illustrated called linked lists

• First node called head

– Pointed to by pointer named head

• Last node special also

– Its member pointer variable is NULL

– Easy test for "end" of linked list

17-86Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Linked List Class Definition

• class IntNode
{
public:

IntNode() { }
IntNode(int theData, IntNode* theLink)

: data(theData), link(theLink) { }
IntNode* getLink() const {return link;}
int getData() const {return data;}
void setData(int theData) {data = theData;}
void setLink(IntNode* pointer) {link=pointer;}

private:
int data;
IntNode *link;

};
typedef IntNode* IntNodePtr;

17-87Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Linked List Class

• Notice all member function definitions are
inline

– Small and simple enough

• Notice two-parameter constructor

– Allows creation of nodes with specific data
value and specified link member

– Example:
IntNodePtr p2 = new IntNode(42, p1);

17-88Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Create 1st Node

• IntNodePtr head;
– Declares pointer variable head

• head = new IntNode;
– Dynamically allocates new node

– Our 1st node in list, so assigned to head

• head->setData(3);
head->setLink(NULL);
– Sets head node data

– Link set to NULL since it’s the only node!

17-89Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.3
Adding a Node
to the Head of

a Linked List

17-90Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Lost Nodes Pitfall:
Display 17.5 Lost Nodes

17-91Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.6 Inserting in the Middle of a
Linked List (1 of 2)

17-92Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.6 Inserting in the Middle of a
Linked List (2 of 2)

17-93Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.7
Removing

a Node

17-94Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Searching a Linked List

• Function with two arguments:
IntNodePtr search(IntNodePtr head, int target);
//Precondition: pointer head points to head of
//linked list. Pointer in last node is NULL.
//If list is empty, head is NULL
//Returns pointer to 1st node containing target
//If not found, returns NULL

• Simple "traversal" of list

– Similar to array traversal

17-95Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pseudocode for search Function

• while (here doesn’t point to target node or
last node)

{
Make here point to next node in list

}
if (here node points to target)

return here;
else

return NULL;

17-96Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Algorithm for search Function

• while (here->getData() != target &&
here->getLink() != NULL)

here = here->getLink();

if (here->getData() == target)
return here;

else
return NULL;

• Must make "special" case for empty list
– Not done here

17-97Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Doubly Linked Lists

• What we just described is a singly linked list

– Can only follow links in one direction

• Doubly Linked List

– Links to the next node and another link to the previous
node

– Can follow links in either direction

– NULL signifies the beginning and end of the list

– Can make some operations easier, e.g. deletion since we
don’t need to search the list to find the node before the
one we want to remove

17-98Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Doubly Linked Lists

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-99

class DoublyLinkedIntNode

{

public:

DoublyLinkedIntNode (){}

DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,

DoublyLinkedIntNode* next)

: data(theData), nextLink(next), previousLink(previous) {}

DoublyLinkedIntNode* getNextLink() const { return nextLink; }

DoublyLinkedIntNode* getPreviousLink() const { return previousLink; }

int getData() const { return data; }

void setData(int theData) { data = theData; }

void setNextLink(DoublyLinkedIntNode* pointer) { nextLink = pointer; }

void setPreviousLink(DoublyLinkedIntNode* pointer)

{ previousLink = pointer; }

private:

int data;

DoublyLinkedIntNode *nextLink;

DoublyLinkedIntNode *previousLink;

};

typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

Adding a Node to the Front of a
Doubly Linked List (1 of 2)

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-100

Adding a Node to the Front of a
Doubly Linked List (2 of 2)

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 17-101

Deleting a Node from a Doubly
Linked List

• Removing a node requires updating references
on both sides of the node we wish to delete

• Thanks to the backward link we do not need a
separate variable to keep track of the previous
node in the list like we did for the singly linked
list

– Can access via node->previous

17-102Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Deleting a Node from a Doubly
Linked List (1 of 2)

17-103Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Deleting a Node from a Doubly
Linked List (2 of 2)

17-104Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Stacks

• Stack data structure:
– Retrieves data in reverse order of how stored
– LIFO – last-in/first-out

• Our use:
– Use linked lists to implement stacks

17-105Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.17 Interface File for a Stack
Template Class (1 of 2)

17-106Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 17.17 Interface File for a Stack
Template Class (2 of 2)

17-107Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Iterators

• Construct for cycling through data

– Like a "traversal"

– Allows "whatever" actions required on data

• For arrays, iteration is incrementing integer
index

• For linked lists, iteration is pointer moving
from one node to next

• We will see more with STL

17-108Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 7

Constructors and
Other Tools

(like STL vectors)

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Vectors
– Introduction to vector class

7-110Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Vectors

• Vector Introduction

– Recall: arrays are fixed size

– Vectors: "arrays that grow and shrink"

• During program execution

– Formed from Standard Template Library
(STL)

• Using template class

7-111Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Vector Basics

• Similar to array:
– Has base type

– Stores collection of base type values

• Declared differently:
– Syntax: vector<Base_Type>

• Indicates template class

• Any type can be "plugged in" to Base_Type

• Produces "new" class for vectors with that type

– Example declaration:
vector<int> v;

7-112Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Vector Use

• vector<int> v;
– "v is vector of type int"

– Calls class default constructor
• Empty vector object created

• Indexed like arrays for access

• But to add elements:
– Must call member function push_back

• Member function size()
– Returns current number of elements

7-113Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Vector Example:
Display 7.7 Using a Vector (1 of 2)

7-114Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Vector Example:
Display 7.7 Using a Vector (2 of 2)

7-115Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 19

Standard Template
Library

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Iterators
– Reverse iterators

• Containers
– Sequential containers

– Container adapter stack

– Associative Containers set and map

19-117Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Introduction

• Recall stack data structure

– We created our own

– Large collection of standard data structures exists

– Make sense to have standard portable
implementations of them!

• Standard Template Library (STL)

– Includes libraries for all such data structures
• Like container classes: stacks

19-118Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Iterators

• Recall: generalization of a pointer

– Typically even implemented with pointer!

• "Abstraction" of iterators

– Designed to hide details of implementation

– Provide uniform interface across different
container classes

• Each container class has "own" iterator type

– Similar to how each data type has own
pointer type

19-119Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Manipulating Iterators

• Recall using overloaded operators:

– ++, --, ==, !=

– *
• So if p is iterator variable, *p gives access to data

pointed to by p

• Vector template class

– Has all above overloads

– Also has members begin() and end()
c.begin(); //Returns iterator for 1st item in c
c.end(); //Returns "test" value for end

19-120Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Cycling with Iterators

• Recall cycling ability:
for (p=c.begin();p!=c.end();p++)

process *p //*p is current data item

• Big picture so far…

• Keep in mind:

– Each container type in STL has own iterator types

• Even though they’re all used similarly

19-121Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 19.1
Iterators Used with a Vector (1 of 2)

19-122Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1 //Program to demonstrate STL iterators.

2 #include <iostream>

3 #include <vector>

4 using std::cout;

5 using std::endl;

6 using std::vector;

7 int main()

8 {

9 vector<int> container;

10 for (int i = 1; i <= 4; i++)

11 container.push_back(i);

12 cout << "Here is what is in the container:\n";

13 vector<int>::iterator p;

14 for (p = container.begin(); p != container.end(); p++)

15 cout << *p << " ";

16 cout << endl;

17 cout << "Setting entries to 0:\n";

18 for (p = container.begin(); p != container.end(); p++)

19 *p = 0;

Display 19.1
Iterators Used with a Vector (2 of 2)

19-123Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

20 cout << "Container now contains:\n";

21 for (p = container.begin(); p !=

container.end(); p++)

22 cout << *p << " ";

23 cout << endl;

24 return 0;

25 }

SAMPLE DIALOGUE

Here is what is in the container:

1 2 3 4

Setting entries to 0:

Container now contains:

0 0 0 0

Vector Iterator Types

• Iterators for vectors of ints are of type:
std::vector<int>::iterator

• Iterators for lists of ints are of type:
std::list<int>::iterator

• Vector is in std namespace, so need:
using std::vector<int>::iterator;

19-124Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Kinds of Iterators

• Different containers different iterators

• Vector iterators

– Most "general" form

– All operations work with vector iterators

– Vector container great for iterator examples

19-125Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Random Access:
Display 19.2 Bidirectional and
Random-Access Iterator Use

19-126Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Iterator Classifications

• Forward iterators:
– ++ works on iterator

• Bidirectional iterators:
– Both ++ and – work on iterator

• Random-access iterators:
– ++, --, and random access [] all work

with iterator

• These are "kinds" of iterators, not types!

19-127Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constant and Mutable Iterators

• Dereferencing operator’s behavior dictates

• Constant iterator:
– * produces read-only version of element

– Can use *p to assign to variable or output,
but cannot change element in container
• E.g., *p = <anything>; is illegal

• Mutable iterator:
– *p can be assigned value

– Changes corresponding element in container

– i.e.: *p returns an lvalue

19-128Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Reverse Iterators

• To cycle elements in reverse order

– Requires container with bidirectional iterators

• Might consider:
iterator p;
for (p=container.end();p!=container.begin(); p--)

cout << *p << " " ;

– But recall: end() is just "sentinel", begin() not!

– Might work on some systems, but not most

19-129Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Reverse Iterators Correct

• To correctly cycle elements in reverse
order:
reverse_iterator p;
for (rp=container.rbegin();rp!=container.rend(); rp++)

cout << *rp << " " ;

• rbegin()

– Returns iterator at last element

• rend()

– Returns sentinel "end" marker

19-130Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Containers

• Container classes in STL
– Different kinds of data structures

– Like lists, queues, stacks

• Each is template class with parameter for particular data type
to be stored
– e.g., Lists of ints, doubles or myClass types

• Each has own iterators
– One might have bidirectional, another might just have forward

iterators

• But all operators and members have same meaning

19-131Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Sequential Containers

• Arranges list data
– 1st element, next element, … to last element

• Linked list is sequential container
– Earlier linked lists were "singly linked lists"

• One link per node

• STL has no "singly linked list"
– Only "doubly linked list": template class list

19-132Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 19.4 Two Kinds of Lists

19-133Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 19.5
Using the list Template Class(1 of 2)

19-134Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1 //Program to demonstrate the STL template class list.

2 #include <iostream>

3 #include <list>

4 using std::cout;

5 using std::endl;

6 using std::list;

7 int main()

8 {

9 list<int> listObject;

10 for (int i = 1; i <= 3; i++)

11 listObject.push_back(i);

12 cout << "List contains:\n";

13 list<int>::iterator iter;

14 for (iter = listObject.begin(); iter != listObject.end();

iter++)

15 cout << *iter << " ";

16 cout << endl;

Display 19.5
Using the list Template Class(2 of 2)

19-135Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

17 cout << "Setting all entries to 0:\n";

18 for (iter = listObject.begin(); iter != listObject.end();

iter++)

19 *iter = 0;

20 cout << "List now contains:\n";

21 for (iter = listObject.begin(); iter != listObject.end();

iter++)

22 cout << *iter << " ";

23 cout << endl;

24 return 0;

25 }

SAMPLE DIALOGUE

List contains:

1 2 3

Setting all entries to 0:

List now contains:

0 0 0

Container Adapter stack

• Container adapters are template classes

– Implemented "on top of" other classes

• Example:
stack template class by default implemented on
top of deque template class

– Buried in stack’s implementation is deque where all data
resides

– top() returns reference to first item on stack without
removing it

– pop() removes it without returning a reference

19-136Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Associative Containers

• Associative container: simple database

• Store data

– Each data item has key

• Example:
data: employee’s record as struct
key: employee’s SSN

– Items retrieved based on key

19-137Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

set Template Class

• Simplest container possible

• Stores elements without repetition

• 1st insertion places element in set

• Each element is own key

• Capabilities:
– Add elements

– Delete elements

– Ask if element is in set

19-138Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Program Using the set Template
Class (1 of 2)

19-139Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1 //Program to demonstrate use of the set template class.

2 #include <iostream>

3 #include <set>

4 using std::cout;

5 using std::endl;

6 using std::set;

7 int main()

8 {

9 set<char> s;

10 s.insert(’A’);

11 s.insert(’D’);

12 s.insert(’D’);

13 s.insert(’C’);

14 s.insert(’C’);

15 s.insert(’B’);

16 cout << "The set contains:\n";

17 set<char>::const_iterator p;

18 for (p = s.begin(); p != s.end(); p++)

19 cout << *p << " ";

20 cout << endl;

Program Using the set Template
Class (2 of 2)

19-140Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

21 cout << "Set contains 'C': ";

22 if (s.find('C')==s.end())

23 cout << " no " << endl;

24 else

26 cout << " yes " << endl;

27 cout << "Removing C.\n";

28 s.erase(’C’);

29 for (p = s.begin(); p != s.end(); p++)

30 cout << *p << " ";

31 cout << endl;

32 cout << "Set contains 'C': ";

33 if (s.find('C')==s.end())

34 cout << " no " << endl;

35 else

36 cout << " yes " << endl;

37 return 0;

38 }

SAMPLE DIALOGUE

The set contains:

A B C D

Set contains 'C': yes

Removing C.

A B D

Set contains 'C': no

Map Template Class

• A function given as set of ordered pairs

– For each value first, at most one value
second in map

• Example map declaration:
map<string, int> numberMap;

• Can use [] notation to access the map

– For both storage and retrieval

• Stores in sorted order, like set

– Second value can have no ordering impact
19-141Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Program Using the map Template
Class (1 of 3)

19-142Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1 //Program to demonstrate use of the map template class.

2 #include <iostream>

3 #include <map>

4 #include <string>

5 using std::cout;

6 using std::endl;

7 using std::map;

8 using std::string;

9 int main()

10 {

11 map<string, string> planets;

12 planets["Mercury"] = "Hot planet";

13 planets["Venus"] = "Atmosphere of sulfuric acid";

14 planets["Earth"] = "Home";

15 planets["Mars"] = "The Red Planet";

16 planets["Jupiter"] = "Largest planet in our solar system";

17 planets["Saturn"] = "Has rings";

18 planets["Uranus"] = "Tilts on its side";

19 planets["Neptune"] = "1500 mile per hour winds";

20 planets["Pluto"] = "Dwarf planet";

Program Using the map Template
Class (2 of 3)

19-143Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

21 cout << "Entry for Mercury - " << planets["Mercury"]

22 << endl << endl;

23 if (planets.find("Mercury") != planets.end())

24 cout << "Mercury is in the map." << endl;

25 if (planets.find("Ceres") == planets.end())

26 cout << "Ceres is not in the map." << endl << endl;

27 cout << "Iterating through all planets: " << endl;

28 map<string, string>::const_iterator iter;

29 for (iter = planets.begin(); iter != planets.end(); iter++)

30 {

31 cout << iter->first << " - " << iter->second << endl;

32 }

The iterator will output the map in order sorted by the key. In this case

the output will be listed alphabetically by planet.

33 return 0;

34 }

Program Using the map Template
Class (3 of 3)

19-144Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

SAMPLE DIALOGUE

Entry for Mercury - Hot planet

Mercury is in the map.

Ceres is not in the map.

Iterating through all planets:

Earth - Home

Jupiter - Largest planet in our solar system

Mars - The Red Planet

Mercury - Hot planet

Neptune - 1500 mile per hour winds

Pluto - Dwarf planet

Saturn - Has rings

Uranus - Tilts on its side

Venus - Atmosphere of sulfuric acid

