
CISC 181 midterm overview
• This Thursday – 75 minutes

• Worth 20% of your grade

• Covers topics from class in chapters listed on course page up to 
March 18 inclusive
– Will not test on ncurses, specific time functions, cerr, Makefile/header file 

stuff (aka Chap. 11.1), formatting numbers for output, overloading as 
member, sorting, “static” functions/variables…

• Question types
– Language feature/concept definitions and explanations 

– Write a function that does X

– If we call function f() with args a, b, what does it return/print?

– Probably some “self-test exercises” from textbook
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Topic list

• C++ basics Chap. 1

• Control structures Chap. 2

• Functions Chap. 3

• Parameters Chap. 4-4.2

• Arrays & C strings Chap. 5 (skip 5.3), 9-9.1

• Structs, pointers,  Chap. 6.1, 10-10.2        
& dynamic allocation

• File I/O Chap. 9.2, 12-12.2

• Classes, C++ strings Chap. 6.2, 7-7.2, 8, 9.3
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Chap. 1: C++ basics

• Introduction to C++
– Origins, Object-Oriented Programming, Terms

• Variables, Expressions, and 
Assignment Statements

• Console Input/Output

• Program Style

• Libraries and Namespaces
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Chap. 2: Flow of Control

• Boolean Expressions
– Building, Evaluating & Precedence Rules

• Branching Mechanisms
– if-else
– switch
– Nesting if-else

• Loops
– While, do-while, for
– Nesting loops
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Chap. 3: Functions

• Predefined Functions
– Those that return a value and those that don’t

• Programmer-defined Functions
– Defining, Declaring, Calling
– Recursive Functions

• Scope Rules
– Local variables
– Global constants and global variables
– Blocks, nested scopes
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Chap. 4-4.2: Parameters

• Parameters
– Call-by-value
– Call-by-reference
– Mixed parameter-lists

• Overloading and Default Arguments
– Examples, Rules
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Chap. 5 (skip 5.3), 9-9.1: 
Arrays & C strings

• Introduction to Arrays
– Declaring and referencing arrays
– For-loops and arrays
– Arrays in memory

• Arrays in Functions
– Arrays as function arguments, return values

• Multidimensional Arrays
• An Array Type for Strings

– C-Strings
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Chap. 6.1, 10-10.2: Structs, 
pointers, & dynamic allocation

• Structures
– Structure types
– Structures as function arguments
– Initializing structures

• Pointers
– Pointer variables
– Memory management

• Dynamic Arrays
– Creating and using
– Pointer arithmetic
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Chap. 9.2, 12-12.2

• Character Manipulation Tools
– Character I/O
– get, put member functions

• I/O Streams
– File I/O
– Character I/O

• Tools for Stream I/O
– File names as input
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Chap. 6.2, 7-7.2: Class basics

• Classes
– Defining, member functions
– Public and private members
– Accessor and mutator functions
– Structures vs. classes

• Constructors
– Definitions
– Calling

• More Tools
– const parameter modifier
– Inline functions
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Chap. 8, 9.3: 
More on classes, C++ strings

• Basic Operator Overloading
– Unary operators
– As member functions

• Friends and Automatic Type Conversion
– Friend functions, friend classes
– Constructors for automatic type conversion

• References and More Overloading
– << and >>
– Not = , [], ++, --

• Standard Class string
– String processing
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Chapter 1

C++ Basics
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Learning Objectives

• Introduction to C++
– Origins, Object-Oriented Programming, Terms

• Variables, Expressions, and 
Assignment Statements

• Console Input/Output

• Program Style

• Libraries and Namespaces
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Display 1.1  
A Sample C++ Program (1 of 2); notice library 

include & namespace directive
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Data Types: 
Display 1.2 Simple Types (1 of 2)
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Data Types: 
Display 1.2 Simple Types (2 of 2)
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Assigning Data

• Initializing data in declaration statement
– Results "undefined" if you don’t!

• int myValue = 0;

• Assigning data during execution
– Lvalues (left-side) & Rvalues (right-side)

• Lvalues must be variables
• Rvalues can be any expression
• Example:

distance = rate * time;
Lvalue:  "distance"
Rvalue: "rate * time" 
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Assigning Data: Shorthand Notations

• Display, page 14
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Data Assignment Rules

• Compatibility of Data Assignments

– Type mismatches
• General Rule: Cannot place value of one type into variable of 

another type

– intVar = 2.99; // 2 is assigned to intVar!
• Only integer part "fits", so that’s all that goes
• Called "implicit" or "automatic type conversion" 

– Literals
• 2, 5.75, "Z", "Hello World"
• Considered "constants": can’t change in program

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 



1-20

Literal Data (& comments)

• Literals
– Examples:

• 2 // Literal constant int

• 5.75 /* Literal constant double */

• "Z" // Literal constant char

• "Hello World" // Literal constant string

• Cannot change values during execution

• Called "literals" because you "literally typed"
them in your program!
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Escape Sequences

• "Extend" character set

• Backslash, \ preceding a character
– Instructs compiler: a special "escape

character" is coming

– Following character treated as
"escape sequence char"

– Commonly-used: \n, \\ (not a comment!), \’, \”
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Constants

• Naming your constants
– Literal constants are "OK", but provide 

little meaning
• e.g., seeing “24” in a program tells nothing about

what it represents

• Use named constants instead
– Meaningful name to represent data

const int NUMBER_OF_STUDENTS = 24;
• Called a "declared constant" or "named constant"
• Now use its name wherever needed in program 
• Added benefit: changes to value result in one fix
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Arithmetic Precision

• Precision of Calculations
– VERY important consideration!

• Expressions in C++ might not evaluate as 
you’d "expect"!

– "Highest-order operand" determines type
of arithmetic "precision" performed

– Common pitfall!
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Arithmetic Precision Examples

• Examples:
– 17 / 5  evaluates to 3 in C++!

• Both operands are integers
• Integer division is performed!

– 17.0 / 5 equals 3.4 in C++!
• Highest-order operand is "double type"
• Double "precision" division is performed!

– int intVar1 =1, intVar2=2;
intVar1 / intVar2;

• Performs integer division!
• Result: 0!
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Type Casting 

• Casting for Variables
– Can add ".0" to literals to force precision

arithmetic, but what about variables?
• We can’t use "myInt.0"!

– static_cast<double>intVar 
– Explicitly "casts" or "converts" intVar to 

double type
• Result of conversion is then used
• Example expression:

doubleVar = static_cast<double>intVar1 / intVar2;
– Casting forces double-precision division to take place

among two integer variables!
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Type Casting 

• Two types

– Implicit—also called "Automatic"
• Done FOR you, automatically

17 / 5.5
This expression causes an "implicit type cast" to
take place, casting the 17  17.0

– Explicit type conversion
• Programmer specifies conversion with cast operator

(double)17 / 5.5
Same expression as above, using explicit cast

(double)myInt / myDouble
More typical use; cast operator on variable
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Shorthand Operators

• Increment & Decrement Operators
– Just short-hand notation

– Increment operator, ++
intVar++;  is equivalent to
intVar = intVar + 1;

– Decrement operator, --
intVar--;   is equivalent to
intVar = intVar – 1;
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Shorthand Operators: Two Options

• Post-Increment
intVar++
– Uses current value of variable, THEN increments it

• Pre-Increment
++intVar
– Increments variable first, THEN uses new value

• "Use" is defined as whatever "context"
variable is currently in

• No difference if "alone" in statement:
intVar++; and ++intVar;  identical result
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Console Input/Output

• I/O objects cin, cout

• Defined in the C++ library called
<iostream>

• Must have these lines (called pre-
processor directives) near start of file:
– #include <iostream>

using namespace std;

– Tells C++ to use appropriate library so we can
use the I/O objects cin, cout
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Console Output

• What can be outputted?
– Any data can be outputted to display screen

• Variables
• Constants
• Literals
• Expressions (which can include all of above)

– cout << numberOfGames << " games played.";
2 values are outputted:

"value" of variable numberOfGames,
literal string " games played."

• Cascading: multiple values in one cout
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Separating Lines of Output

• New lines in output
– Recall: "\n" is escape sequence for the 

char "newline"

• A second method: object endl

• Examples:
cout << "Hello World\n";

• Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line 

cout << "Hello World" << endl;
• Same result as above

Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 



1-32

Input Using cin

• cin for input, cout for output

• Differences:
– ">>" (extraction operator) points opposite

• Think of it as "pointing toward where the data goes"

– Object name "cin" used instead of "cout"
– No literals allowed for cin

• Must input "to a variable"

• cin >> num;
– Waits on-screen for keyboard entry
– Value entered at keyboard is "assigned" to num
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Chapter 2

Flow of Control
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Learning Objectives

• Boolean Expressions
– Building, Evaluating & Precedence Rules

• Branching Mechanisms
– if-else
– switch
– Nesting if-else

• Loops
– While, do-while, for
– Nesting loops

2-34Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Boolean Expressions:
Display 2.1 Comparison Operators

• Data type bool (true or false)

• Logical Operators
– Logical AND  (&&)

– Logical OR (||)
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Display 2.3  
Precedence of Operators (1 of 4)
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Display 2.3  
Precedence of Operators (2 of 4)
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Display 2.3  
Precedence of Operators (3 of 4)

2-38Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Display 2.3  
Precedence of Operators (4 of 4)
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Precedence Examples

• Arithmetic before logical
– x + 1 > 2 || x + 1 < -3 means:

• (x + 1) > 2  || (x + 1) < -3

• Short-circuit evaluation
– (x >= 0) && (y > 1)
– Be careful with increment operators!

• (x > 1) && (y++)

• Integers as boolean values
– All non-zero values  true
– Zero value  false
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Branching Mechanisms

• if-else statements

– Choice of two alternate statements based
on condition expression

– Example:
if (hrs > 40)

grossPay = rate*40 + 1.5*rate*(hrs-40);
else

grossPay = rate*hrs;
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Compound/Block Statement

• Only "get" one statement per branch

• Must use compound statement {  }
for multiples
– Also called a "block" stmt

• Each block should have block statement
– Even if just one statement

– Enhances readability
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Compound Statement in Action
(one style of indenting)

• if (myScore > yourScore)
{

cout << "I win!\n";
wager = wager + 100;

}
else
{

cout << "I wish these were golf scores.\n";
wager = 0;

}
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Common Pitfalls

• Operator "=" vs. operator "=="
• One means "assignment" (=)
• One means "equality" (==)

– VERY different in C++!
– Example:

if (x = 12)  Note operator used!
Do_Something

else
Do_Something_Else
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The Optional else

• else clause is optional

– If, in the false branch (else), you want "nothing" to happen, 
leave it out

– Example:
if (sales >= minimum)

salary = salary + bonus;
cout << "Salary = %" << salary;

– Note: nothing to do for false condition, so there is no else 
clause!

– Execution continues with cout statement
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Nested Statements

• if-else statements contain smaller statements

– Compound or simple statements (we’ve seen)

– Can also contain any statement at all, including another if-
else stmt!

– Really should use { } to make block for clarity

– Example:
if (speed > 55)

if (speed > 80)
cout << "You’re really speeding!";

else
cout << "You’re speeding.";

• Note proper indenting!
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Multiway if-else

• Not new, just different indenting

• Avoids "excessive" indenting
– Syntax:
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switch Statement Syntax
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The switch Statement in Action
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The switch: multiple case labels
• Execution "falls through" until break

– switch provides a "point of entry"

– Example:
case "A":
case "a":

cout << "Excellent: you got an "A"!\n";
break;

case "B":
case "b":

cout << "Good: you got a "B"!\n";
break;

– Note multiple labels provide same "entry"
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Conditional Operator

• Also called "ternary operator"
– Allows embedded conditional in expression

– Essentially "shorthand if-else" operator

– Example:
if (n1 > n2)

max = n1;
else

max = n2;

– Can be written:
max = (n1 > n2) ? n1 : n2;

• "?" and ":" form this "ternary" operator

2-51Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Loops

• 3 Types of loops in C++

– while
• Most flexible

• No "restrictions"

– do-while
• Least flexible

• Always executes loop body at least once

– for
• Natural "counting" loop
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while Loops Syntax
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while Loop Example

• Consider:
count = 0; // Initialization
while (count < 3) // Loop Condition
{

cout << "Hi "; // Loop Body
count++; // Update expression

}

– Loop body executes how many times?
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do-while Loop Syntax
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do-while Loop Example

• count = 0; // Initialization
do   
{

cout << "Hi "; // Loop Body
count++; // Update expression

} while (count < 3); // Loop Condition

– Loop body executes how many times?

– do-while loops always execute body at least once!
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for Loop Syntax

for (Init_Action; Bool_Exp; Update_Action)

Body_Statement

• Like if-else, Body_Statement can be
a block statement
– Much more typical
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for Loop Example

• for (count=0;count<3;count++)   
{

cout << "Hi "; // Loop Body
}

• How many times does loop body execute?

• Initialization, loop condition and update all
"built into" the for-loop structure!

• A natural "counting" loop
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Loop Pitfalls: Misplaced ;

• Watch the misplaced ; (semicolon)
– Example:

while (response != 0) ;
{

cout << "Enter val: ";
cin >> response;

}
– Notice the ";" after the while condition!  

• Result here: INFINITE LOOP!
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Loop Pitfalls: Infinite Loops

• Loop condition must evaluate to false at
some iteration through loop
– If not  infinite loop.
– Example:

while (1)
{

cout << "Hello ";
}

– A perfectly legal C++ loop  always infinite!

• Infinite loops can be desirable
– e.g., "Embedded Systems"
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The break and continue Statements

• Flow of Control
– Recall how loops provide "graceful" and clear flow of 

control in and out
– In RARE instances, can alter natural flow

• break; 
– Forces loop to exit immediately.

• continue;
– Skips rest of loop body

• These statements violate natural flow
– Only used when absolutely necessary!
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Nested Loops

• Recall: ANY valid C++ statements can be
inside body of loop

• This includes additional loop statements!
– Called "nested loops"

• Requires careful indenting:
for (outer=0; outer<5; outer++)

for (inner=7; inner>2; inner--)
cout << outer << inner;

– Notice no { } since each body is one statement
– Good style dictates we use { } anyway
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Chapter 3

Function Basics
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Learning Objectives

• Predefined Functions
– Those that return a value and those that don’t

• Programmer-defined Functions
– Defining, Declaring, Calling
– Recursive Functions

• Scope Rules
– Local variables
– Global constants and global variables
– Blocks, nested scopes
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Predefined Functions

• Libraries full of functions for our use!

• Two types:
– Those that return a value
– Those that do not (void)

• Must "#include" appropriate library
– e.g.,

• <cmath>, <cstdlib> (Original "C" libraries)
• <iostream> (for cout, cin) 
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Using Predefined Functions

• Math functions very plentiful
– Found in library <cmath.h>
– Most return a value (the "answer")

• Example: theRoot = sqrt(9.0);
– Components:

sqrt = name of library function
theRoot = variable used to assign "answer" to
9.0 = argument or "starting input" for function

– In I-P-O:
• I = 9.0
• P = "compute the square root"
• O = 3, which is returned & assigned to theRoot
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The Function Call

• Back to this assignment:
theRoot = sqrt(9.0);

– The expression "sqrt(9.0)" is known as a
function call, or function invocation

– The argument in a function call (9.0) can be a
literal, a variable, or an expression

– The call itself can be part of an expression:
• bonus = sqrt(sales)/10;

• A function call is allowed wherever it’s legal to use
an expression of the function’s return type
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Even More Math Functions: 
Display 3.2  Some Predefined 

Functions (1 of 2)
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Even More Math Functions: 
Display 3.2  Some Predefined 

Functions (2 of 2)
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Remember use of time functions to get different seed for each program run



Predefined Void Functions

• No returned value

• Performs an action, but sends no "answer"

• When called, it’s a statement itself
– exit(1); // No return value, so not assigned

• This call terminates program

• void functions can still have arguments

• All aspects same as functions that "return
a value"
– They just don’t return a value!
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Random Number Generator
• Return "randomly chosen" number
• Used for simulations, games

– rand()
• Takes no arguments
• Returns value between 0 & RAND_MAX

– Scaling
• Squeezes random number into smaller range 

rand() % 6
• Returns random value between 0 & 5

– Shifting
rand() % 6 + 1

• Shifts range between 1 & 6 (e.g., die roll)

– Random double between 0.0 & 1.0:
(RAND_MAX – rand())/static_cast<double>(RAND_MAX)

• Type cast used to force double-precision division
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Random Number Seed

• Pseudorandom numbers
– Calls to rand() produce given "sequence"

of random numbers

• Use "seed" to alter sequence
srand(seed_value);
– void function

– Receives one argument, the "seed"

– Can use any seed value, including system time:
srand(time(0));

– time() returns system time as numeric value

– Library <time> contains time() functions
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Programmer-Defined Functions

• Write your own functions!
• Building blocks of programs

– Divide & Conquer
– Readability
– Re-use

• Your "definition" can go in either:
– Same file as main()
– Separate file so others can use it, too
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Components of Function Use

• 3 Pieces to using functions:
– Function Declaration/prototype

• Information for compiler
• To properly interpret calls

– Function Definition
• Actual implementation/code for what 

function does

– Function Call
• Transfer control to function 
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Function Declaration
• Also called function prototoype
• An "informational" declaration for compiler
• Tells compiler how to interpret calls

– Syntax:
<return_type> FnName(<formal-parameter-list>);

– Example:
double totalCost( int numberParameter,

double priceParameter);
• Placed before any calls

– In declaration space of main()
– Or above main() in global space
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Function Definition

• Implementation of function
• Just like implementing function main()
• Example:

double totalCost( int numberParameter,
double priceParameter)

{
const double TAXRATE = 0.05;
double subTotal;
subtotal = priceParameter * numberParameter;
return (subtotal + subtotal * TAXRATE);

}
• Notice proper indenting
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Function Definition Placement

• Placed after function main()
– NOT "inside" function main()!

• Functions are "equals"; no function is ever
"part" of another

• Formal parameters in definition
– "Placeholders" for data sent in

• "Variable name" used to refer to data in definition

• return statement
– Sends data back to caller
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Function Call

• Just like calling predefined function
bill = totalCost(number, price);

• Recall: totalCost returns double value
– Assigned to variable named "bill"

• Arguments here: number, price
– Recall arguments can be literals, variables,

expressions, or combination
– In function call, arguments often called 

"actual arguments"
• Because they contain the "actual data" being sent
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Alternative Function Declaration

• Recall: Function declaration is "information"
for compiler

• Compiler only needs to know:
• Return type
• Function name
• Parameter list

• Formal parameter names not needed:
double totalCost(int, double);
– Still "should" put in formal parameter names

• Improves readability
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Functions Calling Functions

• We’re already doing this!
– main() IS a function!

• Only requirement:
– Function’s declaration must appear first

• Function’s definition typically elsewhere
– After main()"s definition
– Or in separate file

• Common for functions to call many other
functions

• Function can even call itself  "Recursion"
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Boolean Return-Type Functions

• Return-type can be any valid type

– Given function declaration/prototype:
bool appropriate(int rate);

– And function’s definition:
bool appropriate (int rate)
{

return (((rate>=10)&&(rate<20))||(rate==0);
}

– Returns "true" or "false"

– Function call, from some other function:
if (appropriate(entered_rate))

cout << "Rate is valid\n";
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Declaring Void Functions

• Similar to functions returning a value

• Return type specified as "void"

• Example:
– Function declaration/prototype:

void showResults(     double fDegrees, 
double cDegrees);

• Return-type is "void" 

• Nothing is returned
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Declaring Void Functions

• Function definition:
void showResults(double fDegrees, double cDegrees)
{

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(1);
cout << fDegrees

<< " degrees fahrenheit equals \n"
<< cDegrees << " degrees celsius.\n";

}
• Notice: no return statement

– Optional for void functions
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Calling Void Functions

• Same as calling predefined void functions
• From some other function, like main():

– showResults(degreesF, degreesC);
– showResults(32.5, 0.3);

• Notice no assignment, since no 
value returned

• Actual arguments (degreesF, degreesC)
– Passed to function
– Function is called to "do its job" with the 

data passed in
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More on Return Statements

• Transfers control back to "calling" function
– For return type other than void, MUST have

return statement

– Typically the LAST statement in 
function definition

• return statement optional for void functions
– Closing } would implicitly return control from

void function
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Scope Rules

• Local variables
– Declared inside body of given function
– Available only within that function

• Can have variables with same names declared in different 
functions
– Scope is local: "that function is its scope"

• Local variables preferred
– Maintain individual control over data
– Need to know basis
– Functions should declare whatever local data needed to "do their job"
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Global Constants 
and Global Variables

• Declared "outside" function body
– Global to all functions in that file

• Declared "inside" function body
– Local to that function

• Global declarations typical for constants:
– const double TAXRATE = 0.05;

– Declare globally so all functions have scope

• Global variables?
– Possible, but SELDOM-USED

– Dangerous: no control over usage!
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Blocks

• Declare data inside compound statement
– Called a "block"

– Has "block-scope"

• Note: all function definitions are blocks!
– This provides local "function-scope"

• Loop blocks:
for (int ctr=0;ctr<10;ctr++)
{

sum+=ctr;
}
– Variable ctr has scope in loop body block only
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Learning Objectives

• Parameters
– Call-by-value
– Call-by-reference
– Mixed parameter-lists

• Overloading and Default Arguments
– Examples, Rules
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Parameters

• Two methods of passing arguments 
as parameters

• Call-by-value
– "copy" of value is passed

• Call-by-reference
– "address of" actual argument is passed
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Call-by-Value Parameters

• Copy of actual argument passed

• Considered "local variable" inside function

• If modified, only "local copy" changes
– Function has no access to "actual argument"

from caller

• This is the default method
– Used in all examples thus far
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Call-By-Reference Parameters

• Used to provide access to caller’s
actual argument

• Caller’s data can be modified by called function!

• Typically used for input function
– To retrieve data for caller

– Data is then "given" to caller

• Specified by ampersand, &, after type 
in formal parameter list
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Call-By-Reference Example: 
Display 4.1  Call-by-Reference Parameters (1 of 3)
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Call-By-Reference Example: 
Display 4.1  Call-by-Reference Parameters (2 of 3)
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Call-By-Reference Details

• What’s really passed in?

• A "reference" back to caller’s
actual argument!
– Refers to memory location of 

actual argument

– Called "address", which is a unique number
referring to distinct place in memory
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Constant Reference Parameters

• Reference arguments inherently
"dangerous"
– Caller’s data can be changed
– Often this is desired, sometimes not

• To "protect" data and still pass by reference:
– Use const keyword

• void sendConstRef( const int &par1,
const int &par2);

• Makes arguments "read-only" by function
• No changes allowed inside function body
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Mixed Parameter Lists

• Can combine passing mechanisms
• Parameter lists can include pass-by-value

and pass-by-reference parameters
• Order of arguments in list is critical:

void mixedCall(int & par1, int par2, double & par3);
– Function call:

mixedCall(arg1, arg2, arg3);
• arg1 must be integer type, is passed by reference
• arg2 must be integer type, is passed by value
• arg3 must be double type, is passed by reference
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Overloading

• Same function name

• Different parameter lists

• Two separate function definitions

• Function "signature"
– Function name & parameter list

– Must be "unique" for each function definition

• Allows same task performed on different data
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Overloading Example: Average

• Function computes average of 2 numbers:
double average(double n1, double n2)
{

return ((n1 + n2) / 2.0);
}

• Now compute average of 3 numbers:
double average(double n1, double n2, double n3)
{

return ((n1 + n2) / 2.0);
}

• Same name, two functions
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Overloaded Average() Cont’d

• Which function gets called?

• Depends on function call itself:
– avg = average(5.2, 6.7);

• Calls "two-parameter average()"

– avg = average(6.5, 8.5, 4.2);
• Calls "three-parameter average()"

• Compiler resolves invocation based on
signature of function call
– "Matches" call with appropriate function
– Each considered separate function
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Overloading Resolution

• 1st: Exact Match
– Looks for exact signature

• Where no argument conversion required

• 2nd: Compatible Match
– Looks for "compatible" signature where

automatic type conversion is possible:
• 1st with promotion (e.g., intdouble)

– No loss of data

• 2nd with demotion (e.g., doubleint)
– Possible loss of data
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Overloading Resolution Example

• Given following functions:
– 1.  void f(int n, double m);

2.  void f(double n, int m);
3.  void f(int n, int m);

– These calls:
f(98, 99);  Calls #3
f(5.3, 4);  Calls #2
f(4.3, 5.2);  Calls ???

• Avoid such confusing overloading

4-103Copyright © 2010 Pearson Addison-Wesley. All rights reserved. 



Automatic Type Conversion 
and Overloading

• Numeric formal parameters typically
made "double" type

• Allows for "any" numeric type
– Any "subordinate" data automatically promoted

• int  double

• float  double

• char  double *More on this later!

• Avoids overloading for different numeric types
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Automatic Type Conversion 
and Overloading Example

• double mpg(double miles, double gallons)
{

return (miles/gallons);
}

• Example function calls:
– mpgComputed = mpg(5, 20);

• Converts 5 & 20 to doubles, then passes

– mpgComputed = mpg(5.8, 20.2);
• No conversion necessary

– mpgComputed = mpg(5, 2.4);
• Converts 5 to 5.0, then passes values to function
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Default Arguments

• Allows omitting some arguments 

• Specified in function declaration/prototype
– void showVolume( int length,

int width = 1,
int height = 1);

• Last 2 arguments are defaulted

– Possible calls:
• showVolume(2, 4, 6); //All arguments supplied

• showVolume(3, 5); //height defaulted to 1

• showVolume(7); //width & height defaulted to 1
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Learning Objectives

• Introduction to Arrays
– Declaring and referencing arrays
– For-loops and arrays
– Arrays in memory

• Arrays in Functions
– Arrays as function arguments, return values

• Multidimensional Arrays
• An Array Type for Strings

– C-Strings
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Introduction to Arrays

• Array definition:
– A collection of data of same type

• First "aggregate" data type
– Means "grouping"
– int, float, double, char are  simple data types

• Used for lists of like items
– Test scores, temperatures, names, etc.
– Avoids declaring multiple simple variables
– Can manipulate "list" as one entity
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Declaring Arrays

• Declare the array  allocates memory
int score[5];
– Declares array of 5 integers named "score"
– Similar to declaring five variables:

int score[0], score[1], score[2], score[3], score[4]

• Individual parts called many things:
– Indexed or subscripted variables
– "Elements" of the array
– Value in brackets called index or subscript

• Numbered from 0 to size - 1
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Accessing Arrays

• Access using index/subscript
– cout << score[3];

• Note two uses of brackets:
– In declaration, specifies SIZE of array
– Anywhere else, specifies a subscript

• Size, subscript need not be literal
– int score[MAX_SCORES];
– score[n+1] = 99;

• If n is 2, identical to: score[3]
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Array Program Example: 
Display 5.1  Program Using an Array (1 of 2)
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Array Program Example: 
Display 5.1  Program Using an Array (2 of 2)
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for-loops with Arrays

• Natural counting loop
– Naturally works well "counting thru" elements

of an array

• Example:
for (idx = 0; idx<5; idx++)
{

cout << score[idx] << "off by "
<< max – score[idx] << endl;

}
– Loop control variable (idx) counts from 0 – 5
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Major Array Pitfall

• Array indexes always start with zero!

• Zero is "first" number to computer
scientists

• C++ will "let" you go beyond range
– Unpredictable results

– Compiler will not detect these errors!

• Up to programmer to "stay in range"
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Major Array Pitfall Example

• Indexes range from 0 to (array_size – 1)
– Example:

double temperature[24]; // 24 is array size
// Declares array of 24 double values called
temperature

• They are indexed as:
temperature[0], temperature[1] … temperature[23]

– Common mistake:
temperature[24] = 5;

• Index 24 is "out of range"!

• No warning, possibly disastrous results
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Defined Constant as Array Size

• Always use defined/named constant for
array size

• Example:
const int NUMBER_OF_STUDENTS = 5;
int score[NUMBER_OF_STUDENTS];

• Improves readability

• Improves versatility

• Improves maintainability
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Arrays in Memory

• Recall simple variables:
– Allocated memory in an "address"

• Array declarations allocate memory for
entire array

• Sequentially-allocated
– Means addresses allocated "back-to-back"
– Allows indexing calculations

• Simple "addition" from array beginning (index 0)
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An Array in Memory
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Initializing Arrays

• As simple variables can be initialized at
declaration:
int price = 0; // 0 is initial value

• Arrays can as well:
int children[3] = {2, 12, 1};
– Equivalent to following:

int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;
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Auto-Initializing Arrays

• If fewer values than size supplied:
– Fills from beginning
– Fills "rest" with zero of array base type

• If array-size is left out
– Declares array with size required based on

number of initialization values
– Example:

int b[] = {5, 12, 11};
• Allocates array b to size 3
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Arrays in Functions

• As arguments to functions
– Indexed variables

• An individual "element" of an array can be 
function parameter

– Entire arrays
• All array elements can be passed as 

"one entity"

• As return value from function
– Can be done  chapter 10
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Indexed Variables as Arguments

• Indexed variable handled same as simple
variable of array base type

• Given this function declaration:
void myFunction(double par1);

• And these declarations:
int i;  double n, a[10];

• Can make these function calls:
myFunction(i); // i is converted to double
myFunction(a[3]); // a[3] is double
myFunction(n); // n is double
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Entire Arrays as Arguments

• Formal parameter can be entire array
– Argument then passed in function call

is array name

– Called "array parameter"

• Send size of array as well
– Typically done as second parameter

– Simple int type formal parameter
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Entire Array as Argument Example: 
Display 5.3 Function with an Array Parameter
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Entire Array as Argument Example

• Given previous example:

• In some main() function definition,
consider this calls:

int score[5], numberOfScores = 5;
fillup(score, numberOfScores);

– 1st argument is entire array

– 2nd argument is integer value

– Note no brackets in array argument!
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Array as Argument: How?

• What’s really passed?

• Think of array as 3 "pieces"
– Address of first indexed variable (arrName[0])

– Array base type

– Size of array

• Only 1st piece is passed!
– Just the beginning address of array

– Very similar to "pass-by-reference" 
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Array Parameters

• May seem strange
– No brackets in array argument
– Must send size separately

• One nice property:
– Can use SAME function to fill any size array!
– Exemplifies "re-use" properties of functions
– Example:

int score[5], time[10];
fillUp(score, 5);
fillUp(time, 10); 
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The const Parameter Modifier

• Recall: array parameter actually passes
address of 1st element
– Similar to pass-by-reference

• Function can then modify array!
– Often desirable, sometimes not!

• Protect array contents from modification
– Use "const" modifier before array parameter

• Called "constant array parameter"
• Tells compiler to "not allow" modifications
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Functions that Return an Array

• Functions cannot return arrays same way 
simple types are returned

• Requires use of a "pointer"

• Will be discussed in chapter 10…
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Multidimensional Arrays

• Arrays with more than one index
– char page[30][100];

• Two indexes: An "array of arrays"
• Visualize as [row][col]:

page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]
…
page[29][0], page[29][1], …, page[29][99]

• C++ allows any number of indexes
– Typically no more than two
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Multidimensional Array Parameters

• Similar to one-dimensional array
– 1st dimension size not given

• Provided as second parameter

– 2nd dimension size IS given

• Example:
void DisplayPage(const char p[][100], int sizeDimension1)
{

for (int index1=0; index1<sizeDimension1; index1++)
{

for (int index2=0; index2 < 100; index2++)
cout << p[index1][index2];

cout << endl;
}

}
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C-Strings

• Array with base type char
– One character per indexed variable

– One extra character: "\0"
• Called "null character"

• End marker

• We’ve used c-strings
– Literal "Hello" stored as c-string
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C-String Variable

• Array of characters:
char s[10];
– Declares a c-string variable to hold up to 

9 characters
– + one null character

• Typically "partially-filled" array
– Declare large enough to hold max-size string
– Indicate end with null

• Only difference from standard array:
– Must contain null character
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C-String Storage

• A standard array:
char s[10];

– If s contains string "Hi Mom", stored as:
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C-String Initialization

• Can initialize c-string:
char myMessage[20] = "Hi there.";

– Needn’t fill entire array

– Initialization places "\0" at end

• Can omit array-size:
char shortString[] = "abc";

– Automatically makes size one more than
length of quoted string

– NOT same as:
char shortString[] = {"a", "b", "c"};

9-136Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



C-String Index Manipulation

• Can manipulate indexed variables
char happyString[7] = "DoBeDo";
happyString[6] = "Z";

– Be careful!

– Here, "\0" (null) was overwritten by a "Z"!

• If null overwritten, c-string no longer "acts" 
like c-string!
– Unpredictable results!
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= and == with C-strings

• C-strings not like other variables
– Cannot assign or compare:

char aString[10];
aString = "Hello"; // ILLEGAL!

• Can ONLY use "=" at declaration of c-string!

• Must use library function for assignment:
strcpy(aString, "Hello");
– Built-in function (in <cstring>)
– Sets value of aString equal to "Hello"
– NO checks for size!

• Up to programmer, just like other arrays!
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Comparing C-strings

• Also cannot use operator ==
char aString[10] = "Hello";
char anotherString[10] = "Goodbye";

– aString == anotherString;   // NOT allowed!

• Must use library function again:
if (strcmp(aString, anotherString))

cout << "Strings NOT same.";
else

cout << "Strings are same.";

9-139Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



The <cstring> Library: 
Display 9.1 Some Predefined C-String Functions 

in <cstring> (1 of 2)

• Full of string manipulation functions
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The <cstring> Library: 
Display 9.1 Some Predefined C-String Functions 

in <cstring> (2 of 2)
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C-string Arguments and Parameters

• Recall: c-string is array

• So c-string parameter is array parameter
– C-strings passed to functions can be changed

by receiving function!

• Like all arrays, typical to send size as well
– Function "could" also use "\0" to find end

– So size not necessary if function won’t change
c-string parameter

– Use "const" modifier to protect c-string arguments
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C-String Output

• Can output with insertion operator, <<

• As we’ve been doing already:
cout << news << " Wow.\n";
– Where news is a c-string variable

• Possible because << operator is
overloaded for c-strings!
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C-String Input

• Can input with extraction operator, >>
– Issues exist, however

• Whitespace is "delimiter"
– Tab, space, line breaks are "skipped"
– Input reading "stops" at delimiter

• Watch size of c-string
• Must be large enough to hold entered string!
• C++ gives no warnings of such issues!
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C-String Input Example

• char a[80], b[80];
cout << "Enter input: ";
cin >> a >> b;
cout << a << b << "END OF OUTPUT\n";

• Dialogue offered:
Enter input: Do be do to you!
DobeEND OF OUTPUT

– Note: Underlined portion typed at keyboard

• C-string a receives: "do"

• C-string b receives: "be"
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Example: Command Line 
Arguments

• Programs invoked from the command line 
(e.g. a UNIX shell, DOS command prompt) can 
be sent arguments
– Example:     COPY  C:\FOO.TXT   D:\FOO2.TXT

• This runs the program named “COPY” and sends in two 
C-String parameters, “C:\FOO.TXT” and “D:\FOO2.TXT”

• It is up to the COPY program to process the inputs 
presented to it; i.e. actually copy the files

• Arguments are passed as an array of C-Strings 
to the main function
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Example: Command Line 
Arguments

• Header for main
– int main(int argc,  char *argv[])

– argc specifies how many arguments are supplied.  
The name of the program counts, so argc will be 
at least 1.

– argv is an array of C-Strings.
• argv[0] holds the name of the program that is invoked

• argv[1] holds the name of the first parameter

• argv[2] holds the name of the second parameter

• Etc.
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Learning Objectives

• Structures
– Structure types
– Structures as function arguments
– Initializing structures

• Pointers
– Pointer variables
– Memory management

• Dynamic Arrays
– Creating and using
– Pointer arithmetic
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Structures

• 2nd aggregate data type: struct

• Recall: aggregate meaning "grouping"
– Recall array: collection of values of same type

– Structure: collection of values of different types

• Treated as a single item, like arrays

• Major difference: Must first "define" struct
– Prior to declaring any variables
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Structure Types

• Define struct globally (typically)

• No memory is allocated
– Just a "placeholder" for what our struct

will "look like"

• Definition:
struct CDAccountV1   Name of new struct "type"
{

double balance; member names
double interestRate;
int term;

};    //  REQUIRED semicolon!
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Declare Structure Variable

• With structure type defined, now declare
variables of this new type:
CDAccountV1 account;
– Just like declaring simple types

– Variable account now of type CDAccountV1

– It contains "member values"
• Each of the struct "parts"
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Accessing Structure Members

• Dot Operator to access members
– account.balance

– account.interestRate

– account.term

• Called "member variables"
– The "parts" of the structure variable

– Different structs can have same name 
member variables

• No conflicts
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Structure Assignments

• Given structure named CropYield

• Declare two structure variables:
CropYield apples, oranges;

– Both are variables of "struct type CropYield"

– Simple assignments are legal:
apples = oranges;

• Simply copies each member variable from apples
into member variables from oranges
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Structures as Function Arguments

• Passed like any simple data type
– Pass-by-value
– Pass-by-reference
– Or combination

• Can also be returned by function
– Return-type is structure type
– Return statement in function definition

sends structure variable back to caller
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Initializing Structures

• Can initialize at declaration
– Example:

struct Date
{

int month;
int day;
int year;

};
Date dueDate = {12, 31, 2003};

– Declaration provides initial data to all three member 
variables
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Pointer Introduction

• Pointer definition:
– Memory address of a variable

• Recall: memory divided
– Numbered memory locations
– Addresses used as name for variable

• You’ve used pointers already!
– Call-by-reference parameters

• Address of actual argument was passed
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Pointer Variables

• Pointers are "typed"
– Can store pointer in variable

– Not int, double, etc.
• Instead: A POINTER to int, double, etc.!

• Example:
double *p;
– p is declared a "pointer to double" variable

– Can hold pointers to variables of type double
• Not other types!
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Declaring Pointer Variables

• Pointers declared like other types
– Add "*" before variable name

– Produces "pointer to" that type

• "*" must be before each variable

• int *p1, *p2, v1, v2;
– p1, p2 hold pointers to int variables

– v1, v2 are ordinary int variables
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Addresses and Numbers

• Pointer is an address

• Address is an integer

• Pointer is NOT an integer!
– Not crazy  abstraction!

• C++ forces pointers be used as
addresses
– Cannot be used as numbers
– Even though it "is a" number

10-160Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Pointing to …

• int *p1, *p2, v1, v2;
p1 = &v1;
– Sets pointer variable p1 to "point to" int 

variable v1

• Operator, &
– Determines "address of" variable

• Read like:
– "p1 equals address of v1"
– Or "p1 points to v1"
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Pointing to …

• Recall:
int *p1, *p2, v1, v2;
p1 = &v1;

• Two ways to refer to v1 now:
– Variable v1 itself:

cout << v1;
– Via pointer p1:

cout *p1;

• Dereference operator, *
– Pointer variable "derereferenced"
– Means: "Get data that p1 points to"
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"Pointing to" Example

• Consider:
v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

• Produces output:
42
42

• p1 and v1 refer to same variable
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& Operator

• The "address of" operator

• Also used to specify call-by-reference
parameter
– No coincidence!

– Recall: call-by-reference parameters pass
"address of" the actual argument

• Operator’s two uses are closely related
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Pointer Assignments

• Pointer variables can be "assigned":
int *p1, *p2;
p2 = p1;
– Assigns one pointer to another
– "Make p2 point to where p1 points"

• Do not confuse with:
*p1 = *p2;
– Assigns "value pointed to" by p1, to "value

pointed to" by p2
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Pointer Assignments Graphic: 
Display 10.1 Uses of the Assignment Operator with 

Pointer Variables
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The new Operator

• Since pointers can refer to variables…
– No "real" need to have a standard identifier

• Can dynamically allocate variables
– Operator new creates variables

• No identifiers to refer to them
• Just a pointer!

• p1 = new int;
– Creates new "nameless" variable, and

assigns p1 to "point to" it
– Can access with *p1

• Use just like ordinary variable
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Basic Pointer Manipulations Example: 
Display 10.2 Basic Pointer 

Manipulations (1 of 2)
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Pointers and Functions

• Pointers are full-fledged types
– Can be used just like other types

• Can be function parameters

• Can be returned from functions

• Example:
int* findOtherPointer(int* p);
– This function declaration:

• Has "pointer to an int" parameter
• Returns "pointer to an int" variable

10-169Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Memory Management

• Heap
– Also called "freestore"

– Reserved for dynamically-allocated variables

– All new dynamic variables consume memory
in freestore

• If too many  could use all freestore memory

• Future "new" operations will fail if freestore
is "full"
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Checking new Success

• Older compilers:

– Test if null returned by call to new:
int *p;
p = new int;
if (p == NULL)
{

cout << "Error: Insufficient memory.\n";
exit(1);

}

– If new succeeded, program continues
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new Success – New Compiler

• Newer compilers:
– If new operation fails:

• Program terminates automatically

• Produces error message

• Still good practice to use NULL check
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delete Operator

• De-allocate dynamic memory

– When no longer needed

– Returns memory to freestore

– Example:
int *p;
p = new int(5);
… //Some processing…
delete p;

– De-allocates dynamic memory "pointed to by
pointer p"

• Literally "destroys" memory
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Dangling Pointers

• delete p;
– Destroys dynamic memory
– But p still points there!

• Called "dangling pointer"

– If p is then dereferenced ( *p )
• Unpredicatable results!
• Often disastrous!

• Avoid dangling pointers
– Assign pointer to NULL after delete:

delete p;
p = NULL;
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Dynamic and Automatic Variables

• Dynamic variables
– Created with new operator
– Created and destroyed while program runs

• Local variables
– Declared within function definition
– Not dynamic

• Created when function is called
• Destroyed when function call completes

– Often called "automatic" variables
• Properties controlled for you
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Dynamic Arrays

• Array variables
– Really pointer variables!

• Standard array
– Fixed size

• Dynamic array
– Size not specified at programming time

– Determined while program running
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Array Variables

• Recall: arrays stored in memory
addresses, sequentially
– Array variable "refers to" first indexed variable

– So array variable is a kind of pointer variable!

• Example:
int a[10];
int * p;
– a and p are both pointer variables!
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Array Variables  Pointers

• Recall previous example:
int a[10];
typedef int* IntPtr;
IntPtr p;

• a and p are pointer variables
– Can perform assignments:

p = a; // Legal.
• p now points where a points

– To first indexed variable of array a

– a = p; // ILLEGAL!
• Array pointer is CONSTANT pointer!
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Array Variables  Pointers

• Array variable
int a[10];

• MORE than a pointer variable
– "const int *" type
– Array was allocated in memory already
– Variable a MUST point there…always!

• Cannot be changed!

• In contrast to ordinary pointers
– Which can (& typically do) change
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Dynamic Arrays

• Array limitations
– Must specify size first
– May not know until program runs!

• Must "estimate" maximum size needed
– Sometimes OK, sometimes not
– "Wastes" memory

• Dynamic arrays
– Can grow and shrink as needed
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Creating Dynamic Arrays

• Very simple!

• Use new operator
– Dynamically allocate with pointer variable
– Treat like standard arrays

• Example:
typedef double * DoublePtr;
DoublePtr d;
d = new double[10];    //Size in brackets
– Creates dynamically allocated array variable d,

with ten elements, base type double

10-181Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Deleting Dynamic Arrays

• Allocated dynamically at run-time
– So should be destroyed at run-time

• Simple again.  Recall Example:
d = new double[10];
… //Processing
delete [] d;
– De-allocates all memory for dynamic array
– Brackets indicate "array" is there
– Recall: d still points there!

• Should set d = NULL;
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Function that Returns an Array

• Array type NOT allowed as return-type 
of function

• Example:
int [] someFunction();   // ILLEGAL!

• Instead return pointer to array base type:
int* someFunction();  // LEGAL!
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Pointer Arithmetic

• Can perform arithmetic on pointers
– "Address" arithmetic

• Example:
typedef double* DoublePtr;
DoublePtr d;
d = new double[10];
– d contains address of d[0]
– d + 1 evaluates to address of d[1]
– d + 2 evaluates to address of d[2]

• Equates to "address" at these locations
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Alternative Array Manipulation

• Use pointer arithmetic!

• "Step thru" array  without indexing:
for (int i = 0; i < arraySize; i++)

cout << *(d + I) << " " ;

• Equivalent to:
for (int i = 0; i < arraySize; i++)

cout << d[I] << " " ;

• Only addition/subtraction on pointers
– No multiplication, division

• Can use ++ and -- on pointers
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Multidimensional Dynamic Arrays

• Yes we can!

• Recall: "arrays of arrays"

• Type definitions help "see it":
typedef int* IntArrayPtr;
IntArrayPtr *m = new IntArrayPtr[3];
– Creates array of three pointers
– Make each allocate array of 4 ints

• for (int i = 0; i < 3; i++)
m[i] = new int[4];

– Results in three-by-four dynamic array!
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Learning Objectives

• Character Manipulation Tools
– Character I/O
– get, put member functions

• I/O Streams
– File I/O
– Character I/O

• Tools for Stream I/O
– File names as input
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C-String Line Input

• Can receive entire line into c-string

• Use getline(), a predefined member function:
char a[80];
cout << "Enter input: ";
cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

– Dialogue:
Enter input: Do be do to you!
Do be do to you!END OF INPUT
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More getline()

• Can explicitly tell length to receive:
char shortString[5];
cout << "Enter input: ";
cin.getline(shortString, 5);
cout << shortString << "END OF OUTPUT\n";

– Results:
Enter input: dobedowap
dobeEND OF OUTPUT

– Forces FOUR characters only be read
• Recall need for null character!
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Character I/O

• Input and output data
– ALL treated as character data

– e.g., number 10 outputted as "1" and "0"

– Conversion done automatically
• Uses low-level utilities

• Can use same low-level utilities ourselves as 
well
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Member Function get()

• Reads one char at a time

• Member function of cin object:
char nextSymbol;
cin.get(nextSymbol);
– Reads next char & puts in variable

nextSymbol

– Argument must be char type
• Not "string"!
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Member Function put()

• Outputs one character at a time

• Member function of cout object:

• Examples:
cout.put("a");
– Outputs letter "a" to screen

char myString[10] = "Hello";
cout.put(myString[1]);
– Outputs letter "e" to screen
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Character-Manipulating Functions: 
Display 9.3 Some Functions 

in <cctype> (1 of 3)
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Character-Manipulating Functions: 
Display 9.3 Some Functions 

in <cctype> (2 of 3)
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Character-Manipulating Functions: 
Display 9.3 Some Functions 

in <cctype> (3 of 3)
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Streams

• A flow of characters

• Input stream
– Flow into program

• Can come from keyboard

• Can come from file

• Output stream
– Flow out of program

• Can go to screen

• Can go to file

12-197Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



Streams Usage

• We’ve used streams already
– cin

• Input stream object connected to keyboard

– cout
• Output stream object connected to screen

• Can define other streams
– To or from files

– Used similarly as cin, cout
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Streams Usage Like cin, cout

• Consider:

– Given program defines stream inStream
that comes from some file:
int theNumber;
inStream >> theNumber;

• Reads value from stream, assigned to theNumber

– Program defines stream outStream that goes
to some file
outStream << "theNumber is " << theNumber;

• Writes value to stream, which goes to file
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Files

• We’ll use text files

• Reading from file
– When program takes input

• Writing to file
– When program sends output

• Start at beginning of file to end
– Other methods available

– We’ll discuss this simple text file access here
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File Connection

• Must first connect file to stream object

• For input:
– File  ifstream object

• For output:
– File  ofstream object

• Classes ifstream and ofstream
– Defined in library <fstream>

– Named in std namespace
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File I/O Libraries

• To allow both file input and output in your
program:

#include <fstream>
using namespace std;

OR
#include <fstream>
using std::ifstream;
using std::ofstream;
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Declaring Streams

• Stream must be declared like any other
class variable:

ifstream inStream;
ofstream outStream;

• Must then "connect" to file:
inStream.open("infile.txt");

– Called "opening the file"
– Uses member function open
– Can specify complete pathname
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Streams Usage

• Once declared  use normally!
int oneNumber, anotherNumber;
inStream >> oneNumber >> anotherNumber;

• Output stream similar:
ofstream outStream;
outStream.open("outfile.txt");
outStream << "oneNumber = " << oneNumber

<< " anotherNumber = "
<< anotherNumber;

– Sends items to output file

12-204Copyright © 2010 Pearson Addison-Wesley. All rights reserved.



File Names

• Programs and files

• Files have two names to our programs
– External file name

• Also called "physical file name"

• Like "infile.txt"

• Sometimes considered "real file name"

• Used only once in program (to open)

– Stream name
• Also called "logical file name"

• Program uses this name for all file activity
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Closing Files

• Files should be closed
– When program completed getting input or

sending output

– Disconnects stream from file

– In action:
inStream.close();
outStream.close();
• Note no arguments

• Files automatically close when program ends
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File Flush

• Output often "buffered"
– Temporarily stored before written to file

– Written in "groups"

• Occasionally might need to force writing:
outStream.flush();
– Member function flush, for all output streams

– All buffered output is physically written

• Closing file automatically calls flush()
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Learning Objectives

• Classes
– Defining, member functions
– Public and private members
– Accessor and mutator functions
– Structures vs. classes

• Constructors
– Definitions
– Calling

• More Tools
– const parameter modifier
– Inline functions
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Classes

• Similar to structures
– Adds member FUNCTIONS

– Not just member data

• Integral to object-oriented programming
– Focus on objects

• Object: Contains data and operations

• In C++, variables of class type are objects
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Class Definitions

• Defined similar to structures

• Example:
class DayOfYear     name of new class type
{
public:

void output(); member function!
int month;
int day;

};

• Notice only member function’s prototype
– Function’s implementation is elsewhere
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Declaring Objects

• Declared same as all variables
– Predefined types, structure types

• Example:
DayOfYear today, birthday;
• Declares two objects of class type DayOfYear

• Objects include:
– Data

• Members month, day

– Operations (member functions)
• output()
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Class Member Access

• Members accessed same as structures

• Example:
today.month
today.day

– And to access member function:
today.output();   Invokes member function
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Class Member Functions

• Must define or "implement" class member
functions

• Like other function definitions
– Can be after main() definition

– Must specify class:
void DayOfYear::output()
{…}

• :: is scope resolution operator

• Instructs compiler "what class" member is from

• Item before :: called type qualifier
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Class Member Functions Definition

• Notice output() member function’s
definition (in next example)

• Refers to member data of class
– No qualifiers

• Function used for all objects of the class
– Will refer to "that object’s" data when invoked

– Example:
today.output();

• Displays "today" object’s data
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Dot and Scope Resolution Operator

• Used to specify "of what thing" they are
members

• Dot operator:
– Specifies member of particular object

• Scope resolution operator:
– Specifies what class the function

definition comes from
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A Class’s Place

• Class is full-fledged type!
– Just like data types int, double, etc.

• Can have variables of a class type
– We simply call them "objects"

• Can have parameters of a class type
– Pass-by-value

– Pass-by-reference

• Can use class type like any other type!
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Principles of OOP

• Information Hiding
– Details of how operations work not known to "user" of 

class

• Data Abstraction
– Details of how data is manipulated within class not known 

to user

• Encapsulation
– Bring together data and operations, but keep "details" 

hidden
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Public and Private Members

• Data in class almost always designated
private in definition!
– Upholds principles of OOP

– Hide data from user

– Allow manipulation only via operations
• Which are member functions

• Public items (usually member functions)
are "user-accessible"
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Public and Private Example

• Modify previous example:
class DayOfYear    
{
public:

void input();
void output();

private:
int month;
int day;

};

• Data now private

• Objects have no direct access
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Public and Private Style

• Can mix & match public & private

• More typically place public first
– Allows easy viewing of portions that can be

USED by programmers using the class

– Private data is "hidden", so irrelevant to users

• Outside of class definition, cannot change 
(or even access) private data
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Accessor and Mutator Functions

• Object needs to "do something" with its data

• Call accessor member functions
– Allow object to read data

– Also called "get member functions"

– Simple retrieval of member data

• Mutator member functions
– Allow object to change data

– Manipulated based on application
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Separate Interface 
and Implementation

• User of class need not see details of how
class is implemented
– Principle of OOP  encapsulation

• User only needs "rules"
– Called "interface" for the class

• In C++  public member functions and
associated comments

• Implementation of class hidden
– Member function definitions elsewhere
– User need not see them
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Constructors

• Initialization of objects
– Initialize some or all member variables

– Other actions possible as well

• A special kind of member function
– Automatically called when object declared

• Very useful tool
– Key principle of OOP
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Constructor Definitions

• Constructors defined like any 
member function

– Except:

1. Must have same name as class

2. Cannot return a value; not even void!
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Constructor Definition Example

• Class definition with constructor:
– class DayOfYear

{
public:

DayOfYear(int monthValue, int dayValue);
//Constructor initializes month & day

void input();
void output();
…

private:
int month;
int day;

}
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Constructor Notes

• Notice name of constructor: DayOfYear
– Same name as class itself!

• Constructor declaration has no return-type
– Not even void!

• Constructor in public section
– It’s called when objects are declared

– If private, could never declare objects! 
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Calling Constructors

• Declare objects:
DayOfYear date1(7, 4),

date2(5, 5);

• Objects are created here
– Constructor is called
– Values in parens passed as arguments 

to constructor
– Member variables month, day initialized:

date1.month  7 date2.month  5
date1.dat  4 date2.day  5
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Constructor Code

• Constructor definition is like all other 
member functions:
DayOfYear::DayOfYear(int monthValue, int dayValue)
{

month = monthValue;
day = dayValue;

}

• Note same name around ::
– Clearly identifies a constructor

• Note no return type
– Just as in class definition
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Alternative Definition

• Previous definition equivalent to:

DayOfYear::DayOfYear( int monthValue,
int dayValue)

: month(monthValue), day(dayValue)  
{…}

• Third line called "Initialization Section"

• Body left empty

• Preferable definition version
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Constructor Additional Purpose

• Not just initialize data

• Body doesn’t have to be empty
– In initializer version

• Validate the data!
– Ensure only appropriate data is assigned to

class private member variables

– Powerful OOP principle
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Overloaded Constructors

• Can overload constructors just like 
other functions

• Recall: a signature consists of:
– Name of function
– Parameter list

• Provide constructors for all possible
argument-lists
– Particularly "how many"
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Constructor with No Arguments

• Can be confusing

• Standard functions with no arguments:
– Called with syntax: callMyFunction();

• Including empty parentheses

• Object declarations with no "initializers":
– DayOfYear date1; // This way!
– DayOfYear date(); // NO!

• What is this really?
• Compiler sees a function declaration/prototype!
• Yes!  Look closely! 
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Explicit Constructor Calls

• Can also call constructor AGAIN
– After object declared

• Recall: constructor was automatically called then

– Can call via object’s name; standard member
function call

• Convenient method of setting 
member variables

• Method quite different from standard 
member function call
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Explicit Constructor Call Example

• Such a call returns "anonymous object"

– Which can then be assigned

– In Action:
DayOfYear holiday(7, 4);  

• Constructor called at object’s declaration
• Now to "re-initialize":

holiday = DayOfYear(5, 5);
– Explicit constructor call
– Returns new "anonymous object"
– Assigned back to current object
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Default Constructor

• Defined as: constructor w/ no arguments

• One should always be defined

• Auto-Generated?
– Yes & No
– If no constructors AT ALL are defined  Yes
– If any constructors are defined  No

• If no default constructor:
– Cannot declare: MyClass myObject;

• With no initializers
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Class Type Member Variables

• Class member variables can be any type

– Including objects of other classes!

– Type of class relationship

• Powerful OOP principle

• Need special notation for constructors

– So they can call "back" to member 
object’s constructor
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Parameter Passing Methods

• Efficiency of parameter passing
– Call-by-value

• Requires copy be made  Overhead

– Call-by-reference
• Placeholder for actual argument
• Most efficient method

– Negligible difference for simple types
– For class types  clear advantage

• Call-by-reference desirable
– Especially for "large" data, like class types
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The const Parameter Modifier

• Large data types (typically classes)
– Desirable to use pass-by-reference

– Even if function will not make modifications

• Protect argument
– Use constant parameter

• Also called constant call-by-reference parameter

– Place keyword const before type

– Makes parameter "read-only"

– Attempts to modify result in compiler error
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Use of const

• All-or-nothing

• If no need for function modifications
– Protect parameter with const

– Protect ALL such parameters

• This includes class member function
parameters
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Inline Member Functions

• Member function definitions
– Typically defined separately, in different file

– Can be defined IN class definition
• Makes function "in-line"

• Again: use for very short functions only

• More efficient
– If too long  actually less efficient!
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Learning Objectives

• Basic Operator Overloading
– Unary operators
– As member functions

• Friends and Automatic Type Conversion
– Friend functions, friend classes
– Constructors for automatic type conversion

• References and More Overloading
– << and >>
– Not = , [], ++, --

• Standard Class string
– String processing
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Operator Overloading Introduction

• Operators +, -, %, ==, etc.
– Really just functions!

• Simply "called" with different syntax:
x + 7 
– "+" is binary operator with x & 7 as operands
– We "like" this notation as humans

• Think of it as:
+(x, 7)
– "+" is the function name
– x, 7 are the arguments 
– Function "+" returns "sum" of its arguments
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Operator Overloading Perspective

• Built-in operators
– e.g., +, -, = , %, ==,  /, *
– Already work for C++ built-in types
– In standard "binary" notation

• We can overload them!
– To work with OUR types!
– To add "Chair types", or "Money types"

• As appropriate for our needs
• In "notation" we’re comfortable with

• Always overload with similar "actions"!
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Overloading Basics

• Overloading operators
– VERY similar to overloading functions

– Operator itself is "name" of function

• Example Declaration:
const Money operator +( const Money& amount1,

const Money& amount2);

– Overloads + for operands of type Money

– Uses constant reference parameters for efficiency

– Returned value is type Money
• Allows addition of "Money" objects
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Overloaded "+"

• Given previous example:
– Note: overloaded "+" NOT member function

– Definition is "more involved" than simple "add"
• Requires issues of money type addition

• Must handle negative/positive values

• Operator overload definitions generally
very simple
– Just perform "addition" particular to "your" type
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Overloaded "=="

• Equality operator, ==
– Enables comparison of Money objects

– Declaration:
bool operator ==(const Money& amount1,

const Money& amount2);
• Returns bool type for true/false equality

– Again, it’s a non-member function
(like "+" overload)
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Overloaded "==" for Money:
Display 8.1 Operator Overloading

• Definition of "==" operator for Money class:
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Constructors Returning Objects

• Constructor a "void" function?
– We "think" that way, but no
– A "special" function

• With special properties
• CAN return a value!

• Recall return statement in "+" overload
for Money type:
– return Money(finalDollars, finalCents);

• Returns an "invocation" of Money class!
• So constructor actually "returns" an object!
• Called an "anonymous object"
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Returning by const Value

• Consider "+" operator overload again:
const Money operator +(const Money& amount1,

const Money& amount2);

– Returns a "constant object"?

– Why?

• Consider impact of returning "non-const"
object to see…
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Returning by non-const Value

• Consider "no const" in declaration:
Money operator +( const Money& amount1,

const Money& amount2);

• Consider expression that calls:
m1 + m2
– Where m1 & m2 are Money objects

– Object returned is Money object

– We can "do things" with objects!
• Like call member functions…
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What to do with Non-const Object

• Can call member functions:
– We could invoke member functions on

object returned by expression m1+m2:
• (m1+m2).output();  //Legal, right?

– Not a problem: doesn’t change anything

• (m1+m2).input(); //Legal!
– PROBLEM! //Legal, but MODIFIES!

• Allows modification of "anonymous" object!

• Can’t allow that here!

• So we define the return object as const
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Overloading Unary Operators

• C++ has unary operators:
– Defined as taking one operand

– e.g., - (negation)
• x = -y; // Sets x equal to negative of y

– Other unary operators:
• ++, --

• Unary operators can also be overloaded
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Overload "-" for Money

• Overloaded "-" function declaration
– Placed outside class definition:

const Money operator –(const Money& amount);

– Notice: only one argument
• Since only 1 operand (unary)

• "-" operator is overloaded twice!
– For two operands/arguments (binary)

– For one operand/argument (unary)

– Definitions must exist for both
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Overloaded "-" Definition

• Overloaded "-" function definition:
const Money operator –(const Money& amount)
{

return Money(-amount.getDollars(), 
-amount.getCents());

}

• Applies "-" unary operator to built-in type
– Operation is "known" for built-in types

• Returns anonymous object again
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Other Overloads

• &&, ||, and comma operator
– Predefined versions work for bool types
– Recall: use "short-circuit evaluation"
– When overloaded no longer uses 

short-circuit
• Uses "complete evaluation" instead
• Contrary to expectations

• Generally should not overload 
these operators
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Friend Functions

• Nonmember functions
– Recall: operator overloads as nonmembers

• They access data through accessor and mutator
functions

• Very inefficient (overhead of calls)

• Friends can directly access private class data
– No overhead, more efficient

• So: best to make nonmember operator
overloads friends!
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Friend Functions

• Friend function of a class
– Not a member function
– Has direct access to private members

• Just as member functions do

• Use keyword friend in front of 
function declaration
– Specified IN class definition
– But they’re NOT member functions!
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Friend Function Uses

• Operator Overloads  
– Most common use of friends

– Improves efficiency

– Avoids need to call accessor/mutator
member functions

– Operator must have access anyway
• Might as well give full access as friend

• Friends can be any function
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Friend Classes

• Entire classes can be friends
– Similar to function being friend to class

– Example:
class F is friend of class C

• All class F member functions are friends of C

• NOT reciprocated

• Friendship granted, not taken

• Syntax:  friend class F
– Goes inside class definition of "authorizing" class
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Overloading >> and <<

• Enables input and output of our objects
– Similar to other operator overloads
– New subtleties

• Improves readability
– Like all operator overloads do
– Enables:

cout << myObject;
cin >> myObject;

– Instead of need for:
myObject.output(); …
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Standard Class string

• Defined in library:
#include <string>
using namespace std;

• String variables and expressions
– Treated much like simple types

• Can assign, compare, add:
string s1, s2, s3;
s3 = s1 + s2; //Concatenation
s3 = "Hello Mom!" //Assignment
– Note c-string "Hello Mom!" automatically

converted to string type!
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Display 9.4  
Program Using the Class string
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I/O with Class string

• Just like other types!

• string s1, s2;
cin >> s1;
cin >> s2;

• Results:
User types in:
May the hair on your toes grow long and curly!

• Extraction still ignores whitespace:
s1 receives value "May"
s2 receives value "the"
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getline() with Class string

• For complete lines:
string line;
cout << "Enter a line of input: ";
getline(cin, line);
cout << line << "END OF OUTPUT";

• Dialogue produced:
Enter a line of input: Do be do to you!
Do be do to you!END OF INPUT

– Similar to c-string’s usage of getline()
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Class string Processing

• Same operations available as c-strings

• And more!
– Over 100 members of standard string class

• Some member functions:
– .length()

• Returns length of string variable

– .at(i)
• Returns reference to char at position i
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Display 9.7  Member Functions 
of the Standard Class string (1 of 2)
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Display 9.7  Member Functions 
of the Standard Class string (2 of 2)
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C-string and string 
Object Conversions

• Automatic type conversions

– From c-string to string object:
char aCString[] = "My C-string";
string stringVar;
stringVar = aCstring;

• Perfectly legal and appropriate!

– aCString = stringVar;
• ILLEGAL!
• Cannot auto-convert to c-string

– Must use explicit conversion:
strcpy(aCString, stringVar.c_str());
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