
CISC 181 midterm overview
• This Thursday – 75 minutes

• Worth 20% of your grade

• Covers topics from class in chapters listed on course page up to
March 18 inclusive
– Will not test on ncurses, specific time functions, cerr, Makefile/header file

stuff (aka Chap. 11.1), formatting numbers for output, overloading as
member, sorting, “static” functions/variables…

• Question types
– Language feature/concept definitions and explanations

– Write a function that does X

– If we call function f() with args a, b, what does it return/print?

– Probably some “self-test exercises” from textbook

1-1Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Topic list

• C++ basics Chap. 1

• Control structures Chap. 2

• Functions Chap. 3

• Parameters Chap. 4-4.2

• Arrays & C strings Chap. 5 (skip 5.3), 9-9.1

• Structs, pointers, Chap. 6.1, 10-10.2
& dynamic allocation

• File I/O Chap. 9.2, 12-12.2

• Classes, C++ strings Chap. 6.2, 7-7.2, 8, 9.3

1-2Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-3

Chap. 1: C++ basics

• Introduction to C++
– Origins, Object-Oriented Programming, Terms

• Variables, Expressions, and
Assignment Statements

• Console Input/Output

• Program Style

• Libraries and Namespaces

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 2: Flow of Control

• Boolean Expressions
– Building, Evaluating & Precedence Rules

• Branching Mechanisms
– if-else
– switch
– Nesting if-else

• Loops
– While, do-while, for
– Nesting loops

2-4Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 3: Functions

• Predefined Functions
– Those that return a value and those that don’t

• Programmer-defined Functions
– Defining, Declaring, Calling
– Recursive Functions

• Scope Rules
– Local variables
– Global constants and global variables
– Blocks, nested scopes

3-5Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 4-4.2: Parameters

• Parameters
– Call-by-value
– Call-by-reference
– Mixed parameter-lists

• Overloading and Default Arguments
– Examples, Rules

4-6Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 5 (skip 5.3), 9-9.1:
Arrays & C strings

• Introduction to Arrays
– Declaring and referencing arrays
– For-loops and arrays
– Arrays in memory

• Arrays in Functions
– Arrays as function arguments, return values

• Multidimensional Arrays
• An Array Type for Strings

– C-Strings

5-7Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 6.1, 10-10.2: Structs,
pointers, & dynamic allocation

• Structures
– Structure types
– Structures as function arguments
– Initializing structures

• Pointers
– Pointer variables
– Memory management

• Dynamic Arrays
– Creating and using
– Pointer arithmetic

6-8Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 9.2, 12-12.2

• Character Manipulation Tools
– Character I/O
– get, put member functions

• I/O Streams
– File I/O
– Character I/O

• Tools for Stream I/O
– File names as input

9-9Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 6.2, 7-7.2: Class basics

• Classes
– Defining, member functions
– Public and private members
– Accessor and mutator functions
– Structures vs. classes

• Constructors
– Definitions
– Calling

• More Tools
– const parameter modifier
– Inline functions

6-10Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chap. 8, 9.3:
More on classes, C++ strings

• Basic Operator Overloading
– Unary operators
– As member functions

• Friends and Automatic Type Conversion
– Friend functions, friend classes
– Constructors for automatic type conversion

• References and More Overloading
– << and >>
– Not = , [], ++, --

• Standard Class string
– String processing

6-11Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 1

C++ Basics

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

1-13

Learning Objectives

• Introduction to C++
– Origins, Object-Oriented Programming, Terms

• Variables, Expressions, and
Assignment Statements

• Console Input/Output

• Program Style

• Libraries and Namespaces

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-14

Display 1.1
A Sample C++ Program (1 of 2); notice library

include & namespace directive

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Data Types:
Display 1.2 Simple Types (1 of 2)

1-15Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Data Types:
Display 1.2 Simple Types (2 of 2)

1-16Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-17

Assigning Data

• Initializing data in declaration statement
– Results "undefined" if you don’t!

• int myValue = 0;

• Assigning data during execution
– Lvalues (left-side) & Rvalues (right-side)

• Lvalues must be variables
• Rvalues can be any expression
• Example:

distance = rate * time;
Lvalue: "distance"
Rvalue: "rate * time"

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-18

Assigning Data: Shorthand Notations

• Display, page 14

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-19

Data Assignment Rules

• Compatibility of Data Assignments

– Type mismatches
• General Rule: Cannot place value of one type into variable of

another type

– intVar = 2.99; // 2 is assigned to intVar!
• Only integer part "fits", so that’s all that goes
• Called "implicit" or "automatic type conversion"

– Literals
• 2, 5.75, "Z", "Hello World"
• Considered "constants": can’t change in program

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-20

Literal Data (& comments)

• Literals
– Examples:

• 2 // Literal constant int

• 5.75 /* Literal constant double */

• "Z" // Literal constant char

• "Hello World" // Literal constant string

• Cannot change values during execution

• Called "literals" because you "literally typed"
them in your program!

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-21

Escape Sequences

• "Extend" character set

• Backslash, \ preceding a character
– Instructs compiler: a special "escape

character" is coming

– Following character treated as
"escape sequence char"

– Commonly-used: \n, \\ (not a comment!), \’, \”

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-22

Constants

• Naming your constants
– Literal constants are "OK", but provide

little meaning
• e.g., seeing “24” in a program tells nothing about

what it represents

• Use named constants instead
– Meaningful name to represent data

const int NUMBER_OF_STUDENTS = 24;
• Called a "declared constant" or "named constant"
• Now use its name wherever needed in program
• Added benefit: changes to value result in one fix

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-23

Arithmetic Precision

• Precision of Calculations
– VERY important consideration!

• Expressions in C++ might not evaluate as
you’d "expect"!

– "Highest-order operand" determines type
of arithmetic "precision" performed

– Common pitfall!

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-24

Arithmetic Precision Examples

• Examples:
– 17 / 5 evaluates to 3 in C++!

• Both operands are integers
• Integer division is performed!

– 17.0 / 5 equals 3.4 in C++!
• Highest-order operand is "double type"
• Double "precision" division is performed!

– int intVar1 =1, intVar2=2;
intVar1 / intVar2;

• Performs integer division!
• Result: 0!

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-25

Type Casting

• Casting for Variables
– Can add ".0" to literals to force precision

arithmetic, but what about variables?
• We can’t use "myInt.0"!

– static_cast<double>intVar
– Explicitly "casts" or "converts" intVar to

double type
• Result of conversion is then used
• Example expression:

doubleVar = static_cast<double>intVar1 / intVar2;
– Casting forces double-precision division to take place

among two integer variables!

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-26

Type Casting

• Two types

– Implicit—also called "Automatic"
• Done FOR you, automatically

17 / 5.5
This expression causes an "implicit type cast" to
take place, casting the 17  17.0

– Explicit type conversion
• Programmer specifies conversion with cast operator

(double)17 / 5.5
Same expression as above, using explicit cast

(double)myInt / myDouble
More typical use; cast operator on variable

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-27

Shorthand Operators

• Increment & Decrement Operators
– Just short-hand notation

– Increment operator, ++
intVar++; is equivalent to
intVar = intVar + 1;

– Decrement operator, --
intVar--; is equivalent to
intVar = intVar – 1;

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-28

Shorthand Operators: Two Options

• Post-Increment
intVar++
– Uses current value of variable, THEN increments it

• Pre-Increment
++intVar
– Increments variable first, THEN uses new value

• "Use" is defined as whatever "context"
variable is currently in

• No difference if "alone" in statement:
intVar++; and ++intVar;  identical result

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-29

Console Input/Output

• I/O objects cin, cout

• Defined in the C++ library called
<iostream>

• Must have these lines (called pre-
processor directives) near start of file:
– #include <iostream>

using namespace std;

– Tells C++ to use appropriate library so we can
use the I/O objects cin, cout

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-30

Console Output

• What can be outputted?
– Any data can be outputted to display screen

• Variables
• Constants
• Literals
• Expressions (which can include all of above)

– cout << numberOfGames << " games played.";
2 values are outputted:

"value" of variable numberOfGames,
literal string " games played."

• Cascading: multiple values in one cout

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-31

Separating Lines of Output

• New lines in output
– Recall: "\n" is escape sequence for the

char "newline"

• A second method: object endl

• Examples:
cout << "Hello World\n";

• Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << endl;
• Same result as above

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

1-32

Input Using cin

• cin for input, cout for output

• Differences:
– ">>" (extraction operator) points opposite

• Think of it as "pointing toward where the data goes"

– Object name "cin" used instead of "cout"
– No literals allowed for cin

• Must input "to a variable"

• cin >> num;
– Waits on-screen for keyboard entry
– Value entered at keyboard is "assigned" to num

Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 2

Flow of Control

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Boolean Expressions
– Building, Evaluating & Precedence Rules

• Branching Mechanisms
– if-else
– switch
– Nesting if-else

• Loops
– While, do-while, for
– Nesting loops

2-34Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Boolean Expressions:
Display 2.1 Comparison Operators

• Data type bool (true or false)

• Logical Operators
– Logical AND (&&)

– Logical OR (||)

2-35Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 2.3
Precedence of Operators (1 of 4)

2-36Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 2.3
Precedence of Operators (2 of 4)

2-37Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 2.3
Precedence of Operators (3 of 4)

2-38Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 2.3
Precedence of Operators (4 of 4)

2-39Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Precedence Examples

• Arithmetic before logical
– x + 1 > 2 || x + 1 < -3 means:

• (x + 1) > 2 || (x + 1) < -3

• Short-circuit evaluation
– (x >= 0) && (y > 1)
– Be careful with increment operators!

• (x > 1) && (y++)

• Integers as boolean values
– All non-zero values  true
– Zero value  false

2-40Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Branching Mechanisms

• if-else statements

– Choice of two alternate statements based
on condition expression

– Example:
if (hrs > 40)

grossPay = rate*40 + 1.5*rate*(hrs-40);
else

grossPay = rate*hrs;

2-41Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Compound/Block Statement

• Only "get" one statement per branch

• Must use compound statement { }
for multiples
– Also called a "block" stmt

• Each block should have block statement
– Even if just one statement

– Enhances readability

2-42Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Compound Statement in Action
(one style of indenting)

• if (myScore > yourScore)
{

cout << "I win!\n";
wager = wager + 100;

}
else
{

cout << "I wish these were golf scores.\n";
wager = 0;

}

2-43Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Common Pitfalls

• Operator "=" vs. operator "=="
• One means "assignment" (=)
• One means "equality" (==)

– VERY different in C++!
– Example:

if (x = 12) Note operator used!
Do_Something

else
Do_Something_Else

2-44Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The Optional else

• else clause is optional

– If, in the false branch (else), you want "nothing" to happen,
leave it out

– Example:
if (sales >= minimum)

salary = salary + bonus;
cout << "Salary = %" << salary;

– Note: nothing to do for false condition, so there is no else
clause!

– Execution continues with cout statement

2-45Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Nested Statements

• if-else statements contain smaller statements

– Compound or simple statements (we’ve seen)

– Can also contain any statement at all, including another if-
else stmt!

– Really should use { } to make block for clarity

– Example:
if (speed > 55)

if (speed > 80)
cout << "You’re really speeding!";

else
cout << "You’re speeding.";

• Note proper indenting!
2-46Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Multiway if-else

• Not new, just different indenting

• Avoids "excessive" indenting
– Syntax:

2-47Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

switch Statement Syntax

2-48Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The switch Statement in Action

2-49Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The switch: multiple case labels
• Execution "falls through" until break

– switch provides a "point of entry"

– Example:
case "A":
case "a":

cout << "Excellent: you got an "A"!\n";
break;

case "B":
case "b":

cout << "Good: you got a "B"!\n";
break;

– Note multiple labels provide same "entry"

2-50Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Conditional Operator

• Also called "ternary operator"
– Allows embedded conditional in expression

– Essentially "shorthand if-else" operator

– Example:
if (n1 > n2)

max = n1;
else

max = n2;

– Can be written:
max = (n1 > n2) ? n1 : n2;

• "?" and ":" form this "ternary" operator

2-51Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Loops

• 3 Types of loops in C++

– while
• Most flexible

• No "restrictions"

– do-while
• Least flexible

• Always executes loop body at least once

– for
• Natural "counting" loop

2-52Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

while Loops Syntax

2-53Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

while Loop Example

• Consider:
count = 0; // Initialization
while (count < 3) // Loop Condition
{

cout << "Hi "; // Loop Body
count++; // Update expression

}

– Loop body executes how many times?

2-54Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

do-while Loop Syntax

2-55Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

do-while Loop Example

• count = 0; // Initialization
do
{

cout << "Hi "; // Loop Body
count++; // Update expression

} while (count < 3); // Loop Condition

– Loop body executes how many times?

– do-while loops always execute body at least once!

2-56Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

for Loop Syntax

for (Init_Action; Bool_Exp; Update_Action)

Body_Statement

• Like if-else, Body_Statement can be
a block statement
– Much more typical

2-57Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

for Loop Example

• for (count=0;count<3;count++)
{

cout << "Hi "; // Loop Body
}

• How many times does loop body execute?

• Initialization, loop condition and update all
"built into" the for-loop structure!

• A natural "counting" loop

2-58Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Loop Pitfalls: Misplaced ;

• Watch the misplaced ; (semicolon)
– Example:

while (response != 0) ;
{

cout << "Enter val: ";
cin >> response;

}
– Notice the ";" after the while condition!

• Result here: INFINITE LOOP!

2-59Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Loop Pitfalls: Infinite Loops

• Loop condition must evaluate to false at
some iteration through loop
– If not  infinite loop.
– Example:

while (1)
{

cout << "Hello ";
}

– A perfectly legal C++ loop  always infinite!

• Infinite loops can be desirable
– e.g., "Embedded Systems"

2-60Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The break and continue Statements

• Flow of Control
– Recall how loops provide "graceful" and clear flow of

control in and out
– In RARE instances, can alter natural flow

• break;
– Forces loop to exit immediately.

• continue;
– Skips rest of loop body

• These statements violate natural flow
– Only used when absolutely necessary!

2-61Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Nested Loops

• Recall: ANY valid C++ statements can be
inside body of loop

• This includes additional loop statements!
– Called "nested loops"

• Requires careful indenting:
for (outer=0; outer<5; outer++)

for (inner=7; inner>2; inner--)
cout << outer << inner;

– Notice no { } since each body is one statement
– Good style dictates we use { } anyway

2-62Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 3

Function Basics

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Predefined Functions
– Those that return a value and those that don’t

• Programmer-defined Functions
– Defining, Declaring, Calling
– Recursive Functions

• Scope Rules
– Local variables
– Global constants and global variables
– Blocks, nested scopes

3-64Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Predefined Functions

• Libraries full of functions for our use!

• Two types:
– Those that return a value
– Those that do not (void)

• Must "#include" appropriate library
– e.g.,

• <cmath>, <cstdlib> (Original "C" libraries)
• <iostream> (for cout, cin)

3-65Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Using Predefined Functions

• Math functions very plentiful
– Found in library <cmath.h>
– Most return a value (the "answer")

• Example: theRoot = sqrt(9.0);
– Components:

sqrt = name of library function
theRoot = variable used to assign "answer" to
9.0 = argument or "starting input" for function

– In I-P-O:
• I = 9.0
• P = "compute the square root"
• O = 3, which is returned & assigned to theRoot

3-66Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The Function Call

• Back to this assignment:
theRoot = sqrt(9.0);

– The expression "sqrt(9.0)" is known as a
function call, or function invocation

– The argument in a function call (9.0) can be a
literal, a variable, or an expression

– The call itself can be part of an expression:
• bonus = sqrt(sales)/10;

• A function call is allowed wherever it’s legal to use
an expression of the function’s return type

3-67Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Even More Math Functions:
Display 3.2 Some Predefined

Functions (1 of 2)

3-68Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Even More Math Functions:
Display 3.2 Some Predefined

Functions (2 of 2)

3-69Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Remember use of time functions to get different seed for each program run

Predefined Void Functions

• No returned value

• Performs an action, but sends no "answer"

• When called, it’s a statement itself
– exit(1); // No return value, so not assigned

• This call terminates program

• void functions can still have arguments

• All aspects same as functions that "return
a value"
– They just don’t return a value!

3-70Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Random Number Generator
• Return "randomly chosen" number
• Used for simulations, games

– rand()
• Takes no arguments
• Returns value between 0 & RAND_MAX

– Scaling
• Squeezes random number into smaller range

rand() % 6
• Returns random value between 0 & 5

– Shifting
rand() % 6 + 1

• Shifts range between 1 & 6 (e.g., die roll)

– Random double between 0.0 & 1.0:
(RAND_MAX – rand())/static_cast<double>(RAND_MAX)

• Type cast used to force double-precision division

3-71Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Random Number Seed

• Pseudorandom numbers
– Calls to rand() produce given "sequence"

of random numbers

• Use "seed" to alter sequence
srand(seed_value);
– void function

– Receives one argument, the "seed"

– Can use any seed value, including system time:
srand(time(0));

– time() returns system time as numeric value

– Library <time> contains time() functions

3-72Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Programmer-Defined Functions

• Write your own functions!
• Building blocks of programs

– Divide & Conquer
– Readability
– Re-use

• Your "definition" can go in either:
– Same file as main()
– Separate file so others can use it, too

3-73Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Components of Function Use

• 3 Pieces to using functions:
– Function Declaration/prototype

• Information for compiler
• To properly interpret calls

– Function Definition
• Actual implementation/code for what

function does

– Function Call
• Transfer control to function

3-74Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Declaration
• Also called function prototoype
• An "informational" declaration for compiler
• Tells compiler how to interpret calls

– Syntax:
<return_type> FnName(<formal-parameter-list>);

– Example:
double totalCost(int numberParameter,

double priceParameter);
• Placed before any calls

– In declaration space of main()
– Or above main() in global space

3-75Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Definition

• Implementation of function
• Just like implementing function main()
• Example:

double totalCost(int numberParameter,
double priceParameter)

{
const double TAXRATE = 0.05;
double subTotal;
subtotal = priceParameter * numberParameter;
return (subtotal + subtotal * TAXRATE);

}
• Notice proper indenting

3-76Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Definition Placement

• Placed after function main()
– NOT "inside" function main()!

• Functions are "equals"; no function is ever
"part" of another

• Formal parameters in definition
– "Placeholders" for data sent in

• "Variable name" used to refer to data in definition

• return statement
– Sends data back to caller

3-77Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function Call

• Just like calling predefined function
bill = totalCost(number, price);

• Recall: totalCost returns double value
– Assigned to variable named "bill"

• Arguments here: number, price
– Recall arguments can be literals, variables,

expressions, or combination
– In function call, arguments often called

"actual arguments"
• Because they contain the "actual data" being sent

3-78Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Alternative Function Declaration

• Recall: Function declaration is "information"
for compiler

• Compiler only needs to know:
• Return type
• Function name
• Parameter list

• Formal parameter names not needed:
double totalCost(int, double);
– Still "should" put in formal parameter names

• Improves readability

3-79Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Functions Calling Functions

• We’re already doing this!
– main() IS a function!

• Only requirement:
– Function’s declaration must appear first

• Function’s definition typically elsewhere
– After main()"s definition
– Or in separate file

• Common for functions to call many other
functions

• Function can even call itself  "Recursion"

3-80Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Boolean Return-Type Functions

• Return-type can be any valid type

– Given function declaration/prototype:
bool appropriate(int rate);

– And function’s definition:
bool appropriate (int rate)
{

return (((rate>=10)&&(rate<20))||(rate==0);
}

– Returns "true" or "false"

– Function call, from some other function:
if (appropriate(entered_rate))

cout << "Rate is valid\n";

3-81Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declaring Void Functions

• Similar to functions returning a value

• Return type specified as "void"

• Example:
– Function declaration/prototype:

void showResults(double fDegrees,
double cDegrees);

• Return-type is "void"

• Nothing is returned

3-82Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declaring Void Functions

• Function definition:
void showResults(double fDegrees, double cDegrees)
{

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(1);
cout << fDegrees

<< " degrees fahrenheit equals \n"
<< cDegrees << " degrees celsius.\n";

}
• Notice: no return statement

– Optional for void functions

3-83Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Calling Void Functions

• Same as calling predefined void functions
• From some other function, like main():

– showResults(degreesF, degreesC);
– showResults(32.5, 0.3);

• Notice no assignment, since no
value returned

• Actual arguments (degreesF, degreesC)
– Passed to function
– Function is called to "do its job" with the

data passed in

3-84Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

More on Return Statements

• Transfers control back to "calling" function
– For return type other than void, MUST have

return statement

– Typically the LAST statement in
function definition

• return statement optional for void functions
– Closing } would implicitly return control from

void function

3-85Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Scope Rules

• Local variables
– Declared inside body of given function
– Available only within that function

• Can have variables with same names declared in different
functions
– Scope is local: "that function is its scope"

• Local variables preferred
– Maintain individual control over data
– Need to know basis
– Functions should declare whatever local data needed to "do their job"

3-86Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Global Constants
and Global Variables

• Declared "outside" function body
– Global to all functions in that file

• Declared "inside" function body
– Local to that function

• Global declarations typical for constants:
– const double TAXRATE = 0.05;

– Declare globally so all functions have scope

• Global variables?
– Possible, but SELDOM-USED

– Dangerous: no control over usage!

3-87Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Blocks

• Declare data inside compound statement
– Called a "block"

– Has "block-scope"

• Note: all function definitions are blocks!
– This provides local "function-scope"

• Loop blocks:
for (int ctr=0;ctr<10;ctr++)
{

sum+=ctr;
}
– Variable ctr has scope in loop body block only

3-88Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 4-4.2

Parameters
and Overloading

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Parameters
– Call-by-value
– Call-by-reference
– Mixed parameter-lists

• Overloading and Default Arguments
– Examples, Rules

4-90Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Parameters

• Two methods of passing arguments
as parameters

• Call-by-value
– "copy" of value is passed

• Call-by-reference
– "address of" actual argument is passed

4-91Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Call-by-Value Parameters

• Copy of actual argument passed

• Considered "local variable" inside function

• If modified, only "local copy" changes
– Function has no access to "actual argument"

from caller

• This is the default method
– Used in all examples thus far

4-92Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Parameters

• Used to provide access to caller’s
actual argument

• Caller’s data can be modified by called function!

• Typically used for input function
– To retrieve data for caller

– Data is then "given" to caller

• Specified by ampersand, &, after type
in formal parameter list

4-93Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Example:
Display 4.1 Call-by-Reference Parameters (1 of 3)

4-94Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Example:
Display 4.1 Call-by-Reference Parameters (2 of 3)

4-95Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Call-By-Reference Details

• What’s really passed in?

• A "reference" back to caller’s
actual argument!
– Refers to memory location of

actual argument

– Called "address", which is a unique number
referring to distinct place in memory

4-96Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constant Reference Parameters

• Reference arguments inherently
"dangerous"
– Caller’s data can be changed
– Often this is desired, sometimes not

• To "protect" data and still pass by reference:
– Use const keyword

• void sendConstRef(const int &par1,
const int &par2);

• Makes arguments "read-only" by function
• No changes allowed inside function body

4-97Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Mixed Parameter Lists

• Can combine passing mechanisms
• Parameter lists can include pass-by-value

and pass-by-reference parameters
• Order of arguments in list is critical:

void mixedCall(int & par1, int par2, double & par3);
– Function call:

mixedCall(arg1, arg2, arg3);
• arg1 must be integer type, is passed by reference
• arg2 must be integer type, is passed by value
• arg3 must be double type, is passed by reference

4-98Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading

• Same function name

• Different parameter lists

• Two separate function definitions

• Function "signature"
– Function name & parameter list

– Must be "unique" for each function definition

• Allows same task performed on different data

4-99Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Example: Average

• Function computes average of 2 numbers:
double average(double n1, double n2)
{

return ((n1 + n2) / 2.0);
}

• Now compute average of 3 numbers:
double average(double n1, double n2, double n3)
{

return ((n1 + n2) / 2.0);
}

• Same name, two functions

4-100Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded Average() Cont’d

• Which function gets called?

• Depends on function call itself:
– avg = average(5.2, 6.7);

• Calls "two-parameter average()"

– avg = average(6.5, 8.5, 4.2);
• Calls "three-parameter average()"

• Compiler resolves invocation based on
signature of function call
– "Matches" call with appropriate function
– Each considered separate function

4-101Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Resolution

• 1st: Exact Match
– Looks for exact signature

• Where no argument conversion required

• 2nd: Compatible Match
– Looks for "compatible" signature where

automatic type conversion is possible:
• 1st with promotion (e.g., intdouble)

– No loss of data

• 2nd with demotion (e.g., doubleint)
– Possible loss of data

4-102Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Resolution Example

• Given following functions:
– 1. void f(int n, double m);

2. void f(double n, int m);
3. void f(int n, int m);

– These calls:
f(98, 99);  Calls #3
f(5.3, 4);  Calls #2
f(4.3, 5.2);  Calls ???

• Avoid such confusing overloading

4-103Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Automatic Type Conversion
and Overloading

• Numeric formal parameters typically
made "double" type

• Allows for "any" numeric type
– Any "subordinate" data automatically promoted

• int  double

• float  double

• char  double *More on this later!

• Avoids overloading for different numeric types

4-104Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Automatic Type Conversion
and Overloading Example

• double mpg(double miles, double gallons)
{

return (miles/gallons);
}

• Example function calls:
– mpgComputed = mpg(5, 20);

• Converts 5 & 20 to doubles, then passes

– mpgComputed = mpg(5.8, 20.2);
• No conversion necessary

– mpgComputed = mpg(5, 2.4);
• Converts 5 to 5.0, then passes values to function

4-105Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Default Arguments

• Allows omitting some arguments

• Specified in function declaration/prototype
– void showVolume(int length,

int width = 1,
int height = 1);

• Last 2 arguments are defaulted

– Possible calls:
• showVolume(2, 4, 6); //All arguments supplied

• showVolume(3, 5); //height defaulted to 1

• showVolume(7); //width & height defaulted to 1

4-106Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 5 (skip
5.3), 9-9.1

Arrays & C strings

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Introduction to Arrays
– Declaring and referencing arrays
– For-loops and arrays
– Arrays in memory

• Arrays in Functions
– Arrays as function arguments, return values

• Multidimensional Arrays
• An Array Type for Strings

– C-Strings

5-108Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Introduction to Arrays

• Array definition:
– A collection of data of same type

• First "aggregate" data type
– Means "grouping"
– int, float, double, char are simple data types

• Used for lists of like items
– Test scores, temperatures, names, etc.
– Avoids declaring multiple simple variables
– Can manipulate "list" as one entity

5-109Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declaring Arrays

• Declare the array  allocates memory
int score[5];
– Declares array of 5 integers named "score"
– Similar to declaring five variables:

int score[0], score[1], score[2], score[3], score[4]

• Individual parts called many things:
– Indexed or subscripted variables
– "Elements" of the array
– Value in brackets called index or subscript

• Numbered from 0 to size - 1

5-110Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Accessing Arrays

• Access using index/subscript
– cout << score[3];

• Note two uses of brackets:
– In declaration, specifies SIZE of array
– Anywhere else, specifies a subscript

• Size, subscript need not be literal
– int score[MAX_SCORES];
– score[n+1] = 99;

• If n is 2, identical to: score[3]

5-111Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array Program Example:
Display 5.1 Program Using an Array (1 of 2)

5-112Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array Program Example:
Display 5.1 Program Using an Array (2 of 2)

5-113Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

for-loops with Arrays

• Natural counting loop
– Naturally works well "counting thru" elements

of an array

• Example:
for (idx = 0; idx<5; idx++)
{

cout << score[idx] << "off by "
<< max – score[idx] << endl;

}
– Loop control variable (idx) counts from 0 – 5

5-114Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Major Array Pitfall

• Array indexes always start with zero!

• Zero is "first" number to computer
scientists

• C++ will "let" you go beyond range
– Unpredictable results

– Compiler will not detect these errors!

• Up to programmer to "stay in range"

5-115Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Major Array Pitfall Example

• Indexes range from 0 to (array_size – 1)
– Example:

double temperature[24]; // 24 is array size
// Declares array of 24 double values called
temperature

• They are indexed as:
temperature[0], temperature[1] … temperature[23]

– Common mistake:
temperature[24] = 5;

• Index 24 is "out of range"!

• No warning, possibly disastrous results

5-116Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Defined Constant as Array Size

• Always use defined/named constant for
array size

• Example:
const int NUMBER_OF_STUDENTS = 5;
int score[NUMBER_OF_STUDENTS];

• Improves readability

• Improves versatility

• Improves maintainability

5-117Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Arrays in Memory

• Recall simple variables:
– Allocated memory in an "address"

• Array declarations allocate memory for
entire array

• Sequentially-allocated
– Means addresses allocated "back-to-back"
– Allows indexing calculations

• Simple "addition" from array beginning (index 0)

5-118Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

An Array in Memory

5-119Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Initializing Arrays

• As simple variables can be initialized at
declaration:
int price = 0; // 0 is initial value

• Arrays can as well:
int children[3] = {2, 12, 1};
– Equivalent to following:

int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

5-120Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Auto-Initializing Arrays

• If fewer values than size supplied:
– Fills from beginning
– Fills "rest" with zero of array base type

• If array-size is left out
– Declares array with size required based on

number of initialization values
– Example:

int b[] = {5, 12, 11};
• Allocates array b to size 3

5-121Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Arrays in Functions

• As arguments to functions
– Indexed variables

• An individual "element" of an array can be
function parameter

– Entire arrays
• All array elements can be passed as

"one entity"

• As return value from function
– Can be done  chapter 10

5-122Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Indexed Variables as Arguments

• Indexed variable handled same as simple
variable of array base type

• Given this function declaration:
void myFunction(double par1);

• And these declarations:
int i; double n, a[10];

• Can make these function calls:
myFunction(i); // i is converted to double
myFunction(a[3]); // a[3] is double
myFunction(n); // n is double

5-123Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Entire Arrays as Arguments

• Formal parameter can be entire array
– Argument then passed in function call

is array name

– Called "array parameter"

• Send size of array as well
– Typically done as second parameter

– Simple int type formal parameter

5-124Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Entire Array as Argument Example:
Display 5.3 Function with an Array Parameter

5-125Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Entire Array as Argument Example

• Given previous example:

• In some main() function definition,
consider this calls:

int score[5], numberOfScores = 5;
fillup(score, numberOfScores);

– 1st argument is entire array

– 2nd argument is integer value

– Note no brackets in array argument!

5-126Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array as Argument: How?

• What’s really passed?

• Think of array as 3 "pieces"
– Address of first indexed variable (arrName[0])

– Array base type

– Size of array

• Only 1st piece is passed!
– Just the beginning address of array

– Very similar to "pass-by-reference"

5-127Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array Parameters

• May seem strange
– No brackets in array argument
– Must send size separately

• One nice property:
– Can use SAME function to fill any size array!
– Exemplifies "re-use" properties of functions
– Example:

int score[5], time[10];
fillUp(score, 5);
fillUp(time, 10);

5-128Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The const Parameter Modifier

• Recall: array parameter actually passes
address of 1st element
– Similar to pass-by-reference

• Function can then modify array!
– Often desirable, sometimes not!

• Protect array contents from modification
– Use "const" modifier before array parameter

• Called "constant array parameter"
• Tells compiler to "not allow" modifications

5-129Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Functions that Return an Array

• Functions cannot return arrays same way
simple types are returned

• Requires use of a "pointer"

• Will be discussed in chapter 10…

5-130Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Multidimensional Arrays

• Arrays with more than one index
– char page[30][100];

• Two indexes: An "array of arrays"
• Visualize as [row][col]:

page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]
…
page[29][0], page[29][1], …, page[29][99]

• C++ allows any number of indexes
– Typically no more than two

5-131Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Multidimensional Array Parameters

• Similar to one-dimensional array
– 1st dimension size not given

• Provided as second parameter

– 2nd dimension size IS given

• Example:
void DisplayPage(const char p[][100], int sizeDimension1)
{

for (int index1=0; index1<sizeDimension1; index1++)
{

for (int index2=0; index2 < 100; index2++)
cout << p[index1][index2];

cout << endl;
}

}

5-132Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-Strings

• Array with base type char
– One character per indexed variable

– One extra character: "\0"
• Called "null character"

• End marker

• We’ve used c-strings
– Literal "Hello" stored as c-string

9-133Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Variable

• Array of characters:
char s[10];
– Declares a c-string variable to hold up to

9 characters
– + one null character

• Typically "partially-filled" array
– Declare large enough to hold max-size string
– Indicate end with null

• Only difference from standard array:
– Must contain null character

9-134Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Storage

• A standard array:
char s[10];

– If s contains string "Hi Mom", stored as:

9-135Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Initialization

• Can initialize c-string:
char myMessage[20] = "Hi there.";

– Needn’t fill entire array

– Initialization places "\0" at end

• Can omit array-size:
char shortString[] = "abc";

– Automatically makes size one more than
length of quoted string

– NOT same as:
char shortString[] = {"a", "b", "c"};

9-136Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Index Manipulation

• Can manipulate indexed variables
char happyString[7] = "DoBeDo";
happyString[6] = "Z";

– Be careful!

– Here, "\0" (null) was overwritten by a "Z"!

• If null overwritten, c-string no longer "acts"
like c-string!
– Unpredictable results!

9-137Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

= and == with C-strings

• C-strings not like other variables
– Cannot assign or compare:

char aString[10];
aString = "Hello"; // ILLEGAL!

• Can ONLY use "=" at declaration of c-string!

• Must use library function for assignment:
strcpy(aString, "Hello");
– Built-in function (in <cstring>)
– Sets value of aString equal to "Hello"
– NO checks for size!

• Up to programmer, just like other arrays!

9-138Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Comparing C-strings

• Also cannot use operator ==
char aString[10] = "Hello";
char anotherString[10] = "Goodbye";

– aString == anotherString; // NOT allowed!

• Must use library function again:
if (strcmp(aString, anotherString))

cout << "Strings NOT same.";
else

cout << "Strings are same.";

9-139Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The <cstring> Library:
Display 9.1 Some Predefined C-String Functions

in <cstring> (1 of 2)

• Full of string manipulation functions

9-140Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The <cstring> Library:
Display 9.1 Some Predefined C-String Functions

in <cstring> (2 of 2)

9-141Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-string Arguments and Parameters

• Recall: c-string is array

• So c-string parameter is array parameter
– C-strings passed to functions can be changed

by receiving function!

• Like all arrays, typical to send size as well
– Function "could" also use "\0" to find end

– So size not necessary if function won’t change
c-string parameter

– Use "const" modifier to protect c-string arguments

9-142Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Output

• Can output with insertion operator, <<

• As we’ve been doing already:
cout << news << " Wow.\n";
– Where news is a c-string variable

• Possible because << operator is
overloaded for c-strings!

9-143Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Input

• Can input with extraction operator, >>
– Issues exist, however

• Whitespace is "delimiter"
– Tab, space, line breaks are "skipped"
– Input reading "stops" at delimiter

• Watch size of c-string
• Must be large enough to hold entered string!
• C++ gives no warnings of such issues!

9-144Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Input Example

• char a[80], b[80];
cout << "Enter input: ";
cin >> a >> b;
cout << a << b << "END OF OUTPUT\n";

• Dialogue offered:
Enter input: Do be do to you!
DobeEND OF OUTPUT

– Note: Underlined portion typed at keyboard

• C-string a receives: "do"

• C-string b receives: "be"

9-145Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Example: Command Line
Arguments

• Programs invoked from the command line
(e.g. a UNIX shell, DOS command prompt) can
be sent arguments
– Example: COPY C:\FOO.TXT D:\FOO2.TXT

• This runs the program named “COPY” and sends in two
C-String parameters, “C:\FOO.TXT” and “D:\FOO2.TXT”

• It is up to the COPY program to process the inputs
presented to it; i.e. actually copy the files

• Arguments are passed as an array of C-Strings
to the main function

9-146Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Example: Command Line
Arguments

• Header for main
– int main(int argc, char *argv[])

– argc specifies how many arguments are supplied.
The name of the program counts, so argc will be
at least 1.

– argv is an array of C-Strings.
• argv[0] holds the name of the program that is invoked

• argv[1] holds the name of the first parameter

• argv[2] holds the name of the second parameter

• Etc.
9-147Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 6-
6.1, 10-10.2

Structures,
pointers, &

dynamic allocation

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Structures
– Structure types
– Structures as function arguments
– Initializing structures

• Pointers
– Pointer variables
– Memory management

• Dynamic Arrays
– Creating and using
– Pointer arithmetic

6-149Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Structures

• 2nd aggregate data type: struct

• Recall: aggregate meaning "grouping"
– Recall array: collection of values of same type

– Structure: collection of values of different types

• Treated as a single item, like arrays

• Major difference: Must first "define" struct
– Prior to declaring any variables

6-150Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Structure Types

• Define struct globally (typically)

• No memory is allocated
– Just a "placeholder" for what our struct

will "look like"

• Definition:
struct CDAccountV1 Name of new struct "type"
{

double balance; member names
double interestRate;
int term;

}; //  REQUIRED semicolon!

6-151Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declare Structure Variable

• With structure type defined, now declare
variables of this new type:
CDAccountV1 account;
– Just like declaring simple types

– Variable account now of type CDAccountV1

– It contains "member values"
• Each of the struct "parts"

6-152Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Accessing Structure Members

• Dot Operator to access members
– account.balance

– account.interestRate

– account.term

• Called "member variables"
– The "parts" of the structure variable

– Different structs can have same name
member variables

• No conflicts

6-153Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Structure Assignments

• Given structure named CropYield

• Declare two structure variables:
CropYield apples, oranges;

– Both are variables of "struct type CropYield"

– Simple assignments are legal:
apples = oranges;

• Simply copies each member variable from apples
into member variables from oranges

6-154Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Structures as Function Arguments

• Passed like any simple data type
– Pass-by-value
– Pass-by-reference
– Or combination

• Can also be returned by function
– Return-type is structure type
– Return statement in function definition

sends structure variable back to caller

6-155Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Initializing Structures

• Can initialize at declaration
– Example:

struct Date
{

int month;
int day;
int year;

};
Date dueDate = {12, 31, 2003};

– Declaration provides initial data to all three member
variables

6-156Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointer Introduction

• Pointer definition:
– Memory address of a variable

• Recall: memory divided
– Numbered memory locations
– Addresses used as name for variable

• You’ve used pointers already!
– Call-by-reference parameters

• Address of actual argument was passed

10-157Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointer Variables

• Pointers are "typed"
– Can store pointer in variable

– Not int, double, etc.
• Instead: A POINTER to int, double, etc.!

• Example:
double *p;
– p is declared a "pointer to double" variable

– Can hold pointers to variables of type double
• Not other types!

10-158Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declaring Pointer Variables

• Pointers declared like other types
– Add "*" before variable name

– Produces "pointer to" that type

• "*" must be before each variable

• int *p1, *p2, v1, v2;
– p1, p2 hold pointers to int variables

– v1, v2 are ordinary int variables

10-159Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Addresses and Numbers

• Pointer is an address

• Address is an integer

• Pointer is NOT an integer!
– Not crazy  abstraction!

• C++ forces pointers be used as
addresses
– Cannot be used as numbers
– Even though it "is a" number

10-160Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointing to …

• int *p1, *p2, v1, v2;
p1 = &v1;
– Sets pointer variable p1 to "point to" int

variable v1

• Operator, &
– Determines "address of" variable

• Read like:
– "p1 equals address of v1"
– Or "p1 points to v1"

10-161Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointing to …

• Recall:
int *p1, *p2, v1, v2;
p1 = &v1;

• Two ways to refer to v1 now:
– Variable v1 itself:

cout << v1;
– Via pointer p1:

cout *p1;

• Dereference operator, *
– Pointer variable "derereferenced"
– Means: "Get data that p1 points to"

10-162Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

"Pointing to" Example

• Consider:
v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

• Produces output:
42
42

• p1 and v1 refer to same variable

10-163Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

& Operator

• The "address of" operator

• Also used to specify call-by-reference
parameter
– No coincidence!

– Recall: call-by-reference parameters pass
"address of" the actual argument

• Operator’s two uses are closely related

10-164Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointer Assignments

• Pointer variables can be "assigned":
int *p1, *p2;
p2 = p1;
– Assigns one pointer to another
– "Make p2 point to where p1 points"

• Do not confuse with:
*p1 = *p2;
– Assigns "value pointed to" by p1, to "value

pointed to" by p2

10-165Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointer Assignments Graphic:
Display 10.1 Uses of the Assignment Operator with

Pointer Variables

10-166Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The new Operator

• Since pointers can refer to variables…
– No "real" need to have a standard identifier

• Can dynamically allocate variables
– Operator new creates variables

• No identifiers to refer to them
• Just a pointer!

• p1 = new int;
– Creates new "nameless" variable, and

assigns p1 to "point to" it
– Can access with *p1

• Use just like ordinary variable

10-167Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Basic Pointer Manipulations Example:
Display 10.2 Basic Pointer

Manipulations (1 of 2)

10-168Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointers and Functions

• Pointers are full-fledged types
– Can be used just like other types

• Can be function parameters

• Can be returned from functions

• Example:
int* findOtherPointer(int* p);
– This function declaration:

• Has "pointer to an int" parameter
• Returns "pointer to an int" variable

10-169Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Memory Management

• Heap
– Also called "freestore"

– Reserved for dynamically-allocated variables

– All new dynamic variables consume memory
in freestore

• If too many  could use all freestore memory

• Future "new" operations will fail if freestore
is "full"

10-170Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Checking new Success

• Older compilers:

– Test if null returned by call to new:
int *p;
p = new int;
if (p == NULL)
{

cout << "Error: Insufficient memory.\n";
exit(1);

}

– If new succeeded, program continues

10-171Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

new Success – New Compiler

• Newer compilers:
– If new operation fails:

• Program terminates automatically

• Produces error message

• Still good practice to use NULL check

10-172Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

delete Operator

• De-allocate dynamic memory

– When no longer needed

– Returns memory to freestore

– Example:
int *p;
p = new int(5);
… //Some processing…
delete p;

– De-allocates dynamic memory "pointed to by
pointer p"

• Literally "destroys" memory

10-173Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Dangling Pointers

• delete p;
– Destroys dynamic memory
– But p still points there!

• Called "dangling pointer"

– If p is then dereferenced (*p)
• Unpredicatable results!
• Often disastrous!

• Avoid dangling pointers
– Assign pointer to NULL after delete:

delete p;
p = NULL;

10-174Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Dynamic and Automatic Variables

• Dynamic variables
– Created with new operator
– Created and destroyed while program runs

• Local variables
– Declared within function definition
– Not dynamic

• Created when function is called
• Destroyed when function call completes

– Often called "automatic" variables
• Properties controlled for you

10-175Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Dynamic Arrays

• Array variables
– Really pointer variables!

• Standard array
– Fixed size

• Dynamic array
– Size not specified at programming time

– Determined while program running

10-176Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array Variables

• Recall: arrays stored in memory
addresses, sequentially
– Array variable "refers to" first indexed variable

– So array variable is a kind of pointer variable!

• Example:
int a[10];
int * p;
– a and p are both pointer variables!

10-177Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array Variables  Pointers

• Recall previous example:
int a[10];
typedef int* IntPtr;
IntPtr p;

• a and p are pointer variables
– Can perform assignments:

p = a; // Legal.
• p now points where a points

– To first indexed variable of array a

– a = p; // ILLEGAL!
• Array pointer is CONSTANT pointer!

10-178Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Array Variables  Pointers

• Array variable
int a[10];

• MORE than a pointer variable
– "const int *" type
– Array was allocated in memory already
– Variable a MUST point there…always!

• Cannot be changed!

• In contrast to ordinary pointers
– Which can (& typically do) change

10-179Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Dynamic Arrays

• Array limitations
– Must specify size first
– May not know until program runs!

• Must "estimate" maximum size needed
– Sometimes OK, sometimes not
– "Wastes" memory

• Dynamic arrays
– Can grow and shrink as needed

10-180Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Creating Dynamic Arrays

• Very simple!

• Use new operator
– Dynamically allocate with pointer variable
– Treat like standard arrays

• Example:
typedef double * DoublePtr;
DoublePtr d;
d = new double[10]; //Size in brackets
– Creates dynamically allocated array variable d,

with ten elements, base type double

10-181Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Deleting Dynamic Arrays

• Allocated dynamically at run-time
– So should be destroyed at run-time

• Simple again. Recall Example:
d = new double[10];
… //Processing
delete [] d;
– De-allocates all memory for dynamic array
– Brackets indicate "array" is there
– Recall: d still points there!

• Should set d = NULL;

10-182Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Function that Returns an Array

• Array type NOT allowed as return-type
of function

• Example:
int [] someFunction(); // ILLEGAL!

• Instead return pointer to array base type:
int* someFunction(); // LEGAL!

10-183Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Pointer Arithmetic

• Can perform arithmetic on pointers
– "Address" arithmetic

• Example:
typedef double* DoublePtr;
DoublePtr d;
d = new double[10];
– d contains address of d[0]
– d + 1 evaluates to address of d[1]
– d + 2 evaluates to address of d[2]

• Equates to "address" at these locations

10-184Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Alternative Array Manipulation

• Use pointer arithmetic!

• "Step thru" array without indexing:
for (int i = 0; i < arraySize; i++)

cout << *(d + I) << " " ;

• Equivalent to:
for (int i = 0; i < arraySize; i++)

cout << d[I] << " " ;

• Only addition/subtraction on pointers
– No multiplication, division

• Can use ++ and -- on pointers

10-185Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Multidimensional Dynamic Arrays

• Yes we can!

• Recall: "arrays of arrays"

• Type definitions help "see it":
typedef int* IntArrayPtr;
IntArrayPtr *m = new IntArrayPtr[3];
– Creates array of three pointers
– Make each allocate array of 4 ints

• for (int i = 0; i < 3; i++)
m[i] = new int[4];

– Results in three-by-four dynamic array!

10-186Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 9.2,
12-12.2

File I/O

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Character Manipulation Tools
– Character I/O
– get, put member functions

• I/O Streams
– File I/O
– Character I/O

• Tools for Stream I/O
– File names as input

9-188Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-String Line Input

• Can receive entire line into c-string

• Use getline(), a predefined member function:
char a[80];
cout << "Enter input: ";
cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

– Dialogue:
Enter input: Do be do to you!
Do be do to you!END OF INPUT

9-189Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

More getline()

• Can explicitly tell length to receive:
char shortString[5];
cout << "Enter input: ";
cin.getline(shortString, 5);
cout << shortString << "END OF OUTPUT\n";

– Results:
Enter input: dobedowap
dobeEND OF OUTPUT

– Forces FOUR characters only be read
• Recall need for null character!

9-190Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Character I/O

• Input and output data
– ALL treated as character data

– e.g., number 10 outputted as "1" and "0"

– Conversion done automatically
• Uses low-level utilities

• Can use same low-level utilities ourselves as
well

9-191Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Member Function get()

• Reads one char at a time

• Member function of cin object:
char nextSymbol;
cin.get(nextSymbol);
– Reads next char & puts in variable

nextSymbol

– Argument must be char type
• Not "string"!

9-192Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Member Function put()

• Outputs one character at a time

• Member function of cout object:

• Examples:
cout.put("a");
– Outputs letter "a" to screen

char myString[10] = "Hello";
cout.put(myString[1]);
– Outputs letter "e" to screen

9-193Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Character-Manipulating Functions:
Display 9.3 Some Functions

in <cctype> (1 of 3)

9-194Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Character-Manipulating Functions:
Display 9.3 Some Functions

in <cctype> (2 of 3)

9-195Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Character-Manipulating Functions:
Display 9.3 Some Functions

in <cctype> (3 of 3)

9-196Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Streams

• A flow of characters

• Input stream
– Flow into program

• Can come from keyboard

• Can come from file

• Output stream
– Flow out of program

• Can go to screen

• Can go to file

12-197Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Streams Usage

• We’ve used streams already
– cin

• Input stream object connected to keyboard

– cout
• Output stream object connected to screen

• Can define other streams
– To or from files

– Used similarly as cin, cout

12-198Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Streams Usage Like cin, cout

• Consider:

– Given program defines stream inStream
that comes from some file:
int theNumber;
inStream >> theNumber;

• Reads value from stream, assigned to theNumber

– Program defines stream outStream that goes
to some file
outStream << "theNumber is " << theNumber;

• Writes value to stream, which goes to file

12-199Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Files

• We’ll use text files

• Reading from file
– When program takes input

• Writing to file
– When program sends output

• Start at beginning of file to end
– Other methods available

– We’ll discuss this simple text file access here

12-200Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

File Connection

• Must first connect file to stream object

• For input:
– File  ifstream object

• For output:
– File  ofstream object

• Classes ifstream and ofstream
– Defined in library <fstream>

– Named in std namespace

12-201Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

File I/O Libraries

• To allow both file input and output in your
program:

#include <fstream>
using namespace std;

OR
#include <fstream>
using std::ifstream;
using std::ofstream;

12-202Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declaring Streams

• Stream must be declared like any other
class variable:

ifstream inStream;
ofstream outStream;

• Must then "connect" to file:
inStream.open("infile.txt");

– Called "opening the file"
– Uses member function open
– Can specify complete pathname

12-203Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Streams Usage

• Once declared  use normally!
int oneNumber, anotherNumber;
inStream >> oneNumber >> anotherNumber;

• Output stream similar:
ofstream outStream;
outStream.open("outfile.txt");
outStream << "oneNumber = " << oneNumber

<< " anotherNumber = "
<< anotherNumber;

– Sends items to output file

12-204Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

File Names

• Programs and files

• Files have two names to our programs
– External file name

• Also called "physical file name"

• Like "infile.txt"

• Sometimes considered "real file name"

• Used only once in program (to open)

– Stream name
• Also called "logical file name"

• Program uses this name for all file activity

12-205Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Closing Files

• Files should be closed
– When program completed getting input or

sending output

– Disconnects stream from file

– In action:
inStream.close();
outStream.close();
• Note no arguments

• Files automatically close when program ends

12-206Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

File Flush

• Output often "buffered"
– Temporarily stored before written to file

– Written in "groups"

• Occasionally might need to force writing:
outStream.flush();
– Member function flush, for all output streams

– All buffered output is physically written

• Closing file automatically calls flush()

12-207Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 6.2,
7-7.2

Classes (definition,
members,

constructors)

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Classes
– Defining, member functions
– Public and private members
– Accessor and mutator functions
– Structures vs. classes

• Constructors
– Definitions
– Calling

• More Tools
– const parameter modifier
– Inline functions

6-209Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Classes

• Similar to structures
– Adds member FUNCTIONS

– Not just member data

• Integral to object-oriented programming
– Focus on objects

• Object: Contains data and operations

• In C++, variables of class type are objects

6-210Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Definitions

• Defined similar to structures

• Example:
class DayOfYear  name of new class type
{
public:

void output(); member function!
int month;
int day;

};

• Notice only member function’s prototype
– Function’s implementation is elsewhere

6-211Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Declaring Objects

• Declared same as all variables
– Predefined types, structure types

• Example:
DayOfYear today, birthday;
• Declares two objects of class type DayOfYear

• Objects include:
– Data

• Members month, day

– Operations (member functions)
• output()

6-212Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Member Access

• Members accessed same as structures

• Example:
today.month
today.day

– And to access member function:
today.output();  Invokes member function

6-213Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Member Functions

• Must define or "implement" class member
functions

• Like other function definitions
– Can be after main() definition

– Must specify class:
void DayOfYear::output()
{…}

• :: is scope resolution operator

• Instructs compiler "what class" member is from

• Item before :: called type qualifier

6-214Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Member Functions Definition

• Notice output() member function’s
definition (in next example)

• Refers to member data of class
– No qualifiers

• Function used for all objects of the class
– Will refer to "that object’s" data when invoked

– Example:
today.output();

• Displays "today" object’s data

6-215Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Dot and Scope Resolution Operator

• Used to specify "of what thing" they are
members

• Dot operator:
– Specifies member of particular object

• Scope resolution operator:
– Specifies what class the function

definition comes from

6-216Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

A Class’s Place

• Class is full-fledged type!
– Just like data types int, double, etc.

• Can have variables of a class type
– We simply call them "objects"

• Can have parameters of a class type
– Pass-by-value

– Pass-by-reference

• Can use class type like any other type!

6-217Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Principles of OOP

• Information Hiding
– Details of how operations work not known to "user" of

class

• Data Abstraction
– Details of how data is manipulated within class not known

to user

• Encapsulation
– Bring together data and operations, but keep "details"

hidden

6-218Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Public and Private Members

• Data in class almost always designated
private in definition!
– Upholds principles of OOP

– Hide data from user

– Allow manipulation only via operations
• Which are member functions

• Public items (usually member functions)
are "user-accessible"

6-219Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Public and Private Example

• Modify previous example:
class DayOfYear
{
public:

void input();
void output();

private:
int month;
int day;

};

• Data now private

• Objects have no direct access

6-220Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Public and Private Style

• Can mix & match public & private

• More typically place public first
– Allows easy viewing of portions that can be

USED by programmers using the class

– Private data is "hidden", so irrelevant to users

• Outside of class definition, cannot change
(or even access) private data

6-221Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Accessor and Mutator Functions

• Object needs to "do something" with its data

• Call accessor member functions
– Allow object to read data

– Also called "get member functions"

– Simple retrieval of member data

• Mutator member functions
– Allow object to change data

– Manipulated based on application

6-222Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Separate Interface
and Implementation

• User of class need not see details of how
class is implemented
– Principle of OOP  encapsulation

• User only needs "rules"
– Called "interface" for the class

• In C++  public member functions and
associated comments

• Implementation of class hidden
– Member function definitions elsewhere
– User need not see them

6-223Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructors

• Initialization of objects
– Initialize some or all member variables

– Other actions possible as well

• A special kind of member function
– Automatically called when object declared

• Very useful tool
– Key principle of OOP

7-224Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor Definitions

• Constructors defined like any
member function

– Except:

1. Must have same name as class

2. Cannot return a value; not even void!

7-225Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor Definition Example

• Class definition with constructor:
– class DayOfYear

{
public:

DayOfYear(int monthValue, int dayValue);
//Constructor initializes month & day

void input();
void output();
…

private:
int month;
int day;

}

7-226Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor Notes

• Notice name of constructor: DayOfYear
– Same name as class itself!

• Constructor declaration has no return-type
– Not even void!

• Constructor in public section
– It’s called when objects are declared

– If private, could never declare objects!

7-227Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Calling Constructors

• Declare objects:
DayOfYear date1(7, 4),

date2(5, 5);

• Objects are created here
– Constructor is called
– Values in parens passed as arguments

to constructor
– Member variables month, day initialized:

date1.month  7 date2.month  5
date1.dat  4 date2.day  5

7-228Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor Code

• Constructor definition is like all other
member functions:
DayOfYear::DayOfYear(int monthValue, int dayValue)
{

month = monthValue;
day = dayValue;

}

• Note same name around ::
– Clearly identifies a constructor

• Note no return type
– Just as in class definition

7-229Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Alternative Definition

• Previous definition equivalent to:

DayOfYear::DayOfYear(int monthValue,
int dayValue)

: month(monthValue), day(dayValue) 
{…}

• Third line called "Initialization Section"

• Body left empty

• Preferable definition version

7-230Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor Additional Purpose

• Not just initialize data

• Body doesn’t have to be empty
– In initializer version

• Validate the data!
– Ensure only appropriate data is assigned to

class private member variables

– Powerful OOP principle

7-231Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded Constructors

• Can overload constructors just like
other functions

• Recall: a signature consists of:
– Name of function
– Parameter list

• Provide constructors for all possible
argument-lists
– Particularly "how many"

7-232Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructor with No Arguments

• Can be confusing

• Standard functions with no arguments:
– Called with syntax: callMyFunction();

• Including empty parentheses

• Object declarations with no "initializers":
– DayOfYear date1; // This way!
– DayOfYear date(); // NO!

• What is this really?
• Compiler sees a function declaration/prototype!
• Yes! Look closely!

7-233Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Explicit Constructor Calls

• Can also call constructor AGAIN
– After object declared

• Recall: constructor was automatically called then

– Can call via object’s name; standard member
function call

• Convenient method of setting
member variables

• Method quite different from standard
member function call

7-234Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Explicit Constructor Call Example

• Such a call returns "anonymous object"

– Which can then be assigned

– In Action:
DayOfYear holiday(7, 4);

• Constructor called at object’s declaration
• Now to "re-initialize":

holiday = DayOfYear(5, 5);
– Explicit constructor call
– Returns new "anonymous object"
– Assigned back to current object

7-235Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Default Constructor

• Defined as: constructor w/ no arguments

• One should always be defined

• Auto-Generated?
– Yes & No
– If no constructors AT ALL are defined  Yes
– If any constructors are defined  No

• If no default constructor:
– Cannot declare: MyClass myObject;

• With no initializers

7-236Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class Type Member Variables

• Class member variables can be any type

– Including objects of other classes!

– Type of class relationship

• Powerful OOP principle

• Need special notation for constructors

– So they can call "back" to member
object’s constructor

7-237Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Parameter Passing Methods

• Efficiency of parameter passing
– Call-by-value

• Requires copy be made  Overhead

– Call-by-reference
• Placeholder for actual argument
• Most efficient method

– Negligible difference for simple types
– For class types  clear advantage

• Call-by-reference desirable
– Especially for "large" data, like class types

7-238Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

The const Parameter Modifier

• Large data types (typically classes)
– Desirable to use pass-by-reference

– Even if function will not make modifications

• Protect argument
– Use constant parameter

• Also called constant call-by-reference parameter

– Place keyword const before type

– Makes parameter "read-only"

– Attempts to modify result in compiler error

7-239Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Use of const

• All-or-nothing

• If no need for function modifications
– Protect parameter with const

– Protect ALL such parameters

• This includes class member function
parameters

7-240Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Inline Member Functions

• Member function definitions
– Typically defined separately, in different file

– Can be defined IN class definition
• Makes function "in-line"

• Again: use for very short functions only

• More efficient
– If too long  actually less efficient!

7-241Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Chapter 8,
9.3

Classes (operator
overloading, C++

strings)

Copyright © 2010 Pearson Addison-Wesley.
All rights reserved

Learning Objectives

• Basic Operator Overloading
– Unary operators
– As member functions

• Friends and Automatic Type Conversion
– Friend functions, friend classes
– Constructors for automatic type conversion

• References and More Overloading
– << and >>
– Not = , [], ++, --

• Standard Class string
– String processing

6-243Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Operator Overloading Introduction

• Operators +, -, %, ==, etc.
– Really just functions!

• Simply "called" with different syntax:
x + 7
– "+" is binary operator with x & 7 as operands
– We "like" this notation as humans

• Think of it as:
+(x, 7)
– "+" is the function name
– x, 7 are the arguments
– Function "+" returns "sum" of its arguments

8-244Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Operator Overloading Perspective

• Built-in operators
– e.g., +, -, = , %, ==, /, *
– Already work for C++ built-in types
– In standard "binary" notation

• We can overload them!
– To work with OUR types!
– To add "Chair types", or "Money types"

• As appropriate for our needs
• In "notation" we’re comfortable with

• Always overload with similar "actions"!

8-245Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Basics

• Overloading operators
– VERY similar to overloading functions

– Operator itself is "name" of function

• Example Declaration:
const Money operator +(const Money& amount1,

const Money& amount2);

– Overloads + for operands of type Money

– Uses constant reference parameters for efficiency

– Returned value is type Money
• Allows addition of "Money" objects

8-246Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded "+"

• Given previous example:
– Note: overloaded "+" NOT member function

– Definition is "more involved" than simple "add"
• Requires issues of money type addition

• Must handle negative/positive values

• Operator overload definitions generally
very simple
– Just perform "addition" particular to "your" type

8-247Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded "=="

• Equality operator, ==
– Enables comparison of Money objects

– Declaration:
bool operator ==(const Money& amount1,

const Money& amount2);
• Returns bool type for true/false equality

– Again, it’s a non-member function
(like "+" overload)

8-248Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded "==" for Money:
Display 8.1 Operator Overloading

• Definition of "==" operator for Money class:

8-249Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Constructors Returning Objects

• Constructor a "void" function?
– We "think" that way, but no
– A "special" function

• With special properties
• CAN return a value!

• Recall return statement in "+" overload
for Money type:
– return Money(finalDollars, finalCents);

• Returns an "invocation" of Money class!
• So constructor actually "returns" an object!
• Called an "anonymous object"

8-250Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Returning by const Value

• Consider "+" operator overload again:
const Money operator +(const Money& amount1,

const Money& amount2);

– Returns a "constant object"?

– Why?

• Consider impact of returning "non-const"
object to see…

8-251Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Returning by non-const Value

• Consider "no const" in declaration:
Money operator +(const Money& amount1,

const Money& amount2);

• Consider expression that calls:
m1 + m2
– Where m1 & m2 are Money objects

– Object returned is Money object

– We can "do things" with objects!
• Like call member functions…

8-252Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

What to do with Non-const Object

• Can call member functions:
– We could invoke member functions on

object returned by expression m1+m2:
• (m1+m2).output(); //Legal, right?

– Not a problem: doesn’t change anything

• (m1+m2).input(); //Legal!
– PROBLEM! //Legal, but MODIFIES!

• Allows modification of "anonymous" object!

• Can’t allow that here!

• So we define the return object as const

8-253Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading Unary Operators

• C++ has unary operators:
– Defined as taking one operand

– e.g., - (negation)
• x = -y; // Sets x equal to negative of y

– Other unary operators:
• ++, --

• Unary operators can also be overloaded

8-254Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overload "-" for Money

• Overloaded "-" function declaration
– Placed outside class definition:

const Money operator –(const Money& amount);

– Notice: only one argument
• Since only 1 operand (unary)

• "-" operator is overloaded twice!
– For two operands/arguments (binary)

– For one operand/argument (unary)

– Definitions must exist for both

8-255Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded "-" Definition

• Overloaded "-" function definition:
const Money operator –(const Money& amount)
{

return Money(-amount.getDollars(),
-amount.getCents());

}

• Applies "-" unary operator to built-in type
– Operation is "known" for built-in types

• Returns anonymous object again

8-256Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Other Overloads

• &&, ||, and comma operator
– Predefined versions work for bool types
– Recall: use "short-circuit evaluation"
– When overloaded no longer uses

short-circuit
• Uses "complete evaluation" instead
• Contrary to expectations

• Generally should not overload
these operators

8-257Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Friend Functions

• Nonmember functions
– Recall: operator overloads as nonmembers

• They access data through accessor and mutator
functions

• Very inefficient (overhead of calls)

• Friends can directly access private class data
– No overhead, more efficient

• So: best to make nonmember operator
overloads friends!

8-258Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Friend Functions

• Friend function of a class
– Not a member function
– Has direct access to private members

• Just as member functions do

• Use keyword friend in front of
function declaration
– Specified IN class definition
– But they’re NOT member functions!

8-259Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Friend Function Uses

• Operator Overloads
– Most common use of friends

– Improves efficiency

– Avoids need to call accessor/mutator
member functions

– Operator must have access anyway
• Might as well give full access as friend

• Friends can be any function

8-260Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Friend Classes

• Entire classes can be friends
– Similar to function being friend to class

– Example:
class F is friend of class C

• All class F member functions are friends of C

• NOT reciprocated

• Friendship granted, not taken

• Syntax: friend class F
– Goes inside class definition of "authorizing" class

8-261Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Overloading >> and <<

• Enables input and output of our objects
– Similar to other operator overloads
– New subtleties

• Improves readability
– Like all operator overloads do
– Enables:

cout << myObject;
cin >> myObject;

– Instead of need for:
myObject.output(); …

8-262Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Standard Class string

• Defined in library:
#include <string>
using namespace std;

• String variables and expressions
– Treated much like simple types

• Can assign, compare, add:
string s1, s2, s3;
s3 = s1 + s2; //Concatenation
s3 = "Hello Mom!" //Assignment
– Note c-string "Hello Mom!" automatically

converted to string type!

9-263Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 9.4
Program Using the Class string

9-264Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

I/O with Class string

• Just like other types!

• string s1, s2;
cin >> s1;
cin >> s2;

• Results:
User types in:
May the hair on your toes grow long and curly!

• Extraction still ignores whitespace:
s1 receives value "May"
s2 receives value "the"

9-265Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

getline() with Class string

• For complete lines:
string line;
cout << "Enter a line of input: ";
getline(cin, line);
cout << line << "END OF OUTPUT";

• Dialogue produced:
Enter a line of input: Do be do to you!
Do be do to you!END OF INPUT

– Similar to c-string’s usage of getline()

9-266Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Class string Processing

• Same operations available as c-strings

• And more!
– Over 100 members of standard string class

• Some member functions:
– .length()

• Returns length of string variable

– .at(i)
• Returns reference to char at position i

9-267Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 9.7 Member Functions
of the Standard Class string (1 of 2)

9-268Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

Display 9.7 Member Functions
of the Standard Class string (2 of 2)

9-269Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

C-string and string
Object Conversions

• Automatic type conversions

– From c-string to string object:
char aCString[] = "My C-string";
string stringVar;
stringVar = aCstring;

• Perfectly legal and appropriate!

– aCString = stringVar;
• ILLEGAL!
• Cannot auto-convert to c-string

– Must use explicit conversion:
strcpy(aCString, stringVar.c_str());

9-270Copyright © 2010 Pearson Addison-Wesley. All rights reserved.

	CISC 181 midterm overview
	Topic list
	Chap. 1: C++ basics
	Chap. 2: Flow of Control
	Chap. 3: Functions
	Chap. 4-4.2: Parameters
	Chap. 5 (skip 5.3), 9-9.1: �Arrays & C strings
	Chap. 6.1, 10-10.2: Structs, pointers, & dynamic allocation
	Chap. 9.2, 12-12.2
	Chap. 6.2, 7-7.2: Class basics
	Chap. 8, 9.3: �More on classes, C++ strings
	Chapter 1
	Learning Objectives
	Display 1.1 �A Sample C++ Program (1 of 2); notice library include & namespace directive
	Data Types: �Display 1.2 Simple Types (1 of 2)
	Data Types: �Display 1.2 Simple Types (2 of 2)
	Assigning Data
	Assigning Data: Shorthand Notations
	Data Assignment Rules
	Literal Data (& comments)
	Escape Sequences
	Constants
	Arithmetic Precision
	Arithmetic Precision Examples
	Type Casting
	Type Casting
	Shorthand Operators
	Shorthand Operators: Two Options
	Console Input/Output
	Console Output
	Separating Lines of Output
	Input Using cin
	Chapter 2
	Learning Objectives
	Boolean Expressions:�Display 2.1 Comparison Operators
	Display 2.3 �Precedence of Operators (1 of 4)
	Display 2.3 �Precedence of Operators (2 of 4)
	Display 2.3 �Precedence of Operators (3 of 4)
	Display 2.3 �Precedence of Operators (4 of 4)
	Precedence Examples
	Branching Mechanisms
	 Compound/Block Statement
	Compound Statement in Action�(one style of indenting)
	Common Pitfalls
	The Optional else
	Nested Statements
	Multiway if-else
	switch Statement Syntax
	The switch Statement in Action
	The switch: multiple case labels
	Conditional Operator
	Loops
	while Loops Syntax
	while Loop Example
	do-while Loop Syntax
	do-while Loop Example
	for Loop Syntax
	for Loop Example
	Loop Pitfalls: Misplaced ;
	Loop Pitfalls: Infinite Loops
	The break and continue Statements
	Nested Loops
	Chapter 3
	Learning Objectives
	Predefined Functions
	Using Predefined Functions
	The Function Call
	Even More Math Functions: �Display 3.2 Some Predefined �Functions (1 of 2)
	Even More Math Functions: �Display 3.2 Some Predefined �Functions (2 of 2)
	Predefined Void Functions
	Random Number Generator
	Random Number Seed
	Programmer-Defined Functions
	Components of Function Use
	Function Declaration
	Function Definition
	Function Definition Placement
	Function Call
	Alternative Function Declaration
	Functions Calling Functions
	Boolean Return-Type Functions
	Declaring Void Functions
	Declaring Void Functions
	Calling Void Functions
	More on Return Statements
	Scope Rules
	Global Constants �and Global Variables
	Blocks
	Chapter 4-4.2
	Learning Objectives
	Parameters
	Call-by-Value Parameters
	Call-By-Reference Parameters
	Call-By-Reference Example: �Display 4.1 Call-by-Reference Parameters (1 of 3)
	Call-By-Reference Example: �Display 4.1 Call-by-Reference Parameters (2 of 3)
	Call-By-Reference Details
	Constant Reference Parameters
	Mixed Parameter Lists
	Overloading
	Overloading Example: Average
	Overloaded Average() Cont’d
	Overloading Resolution
	Overloading Resolution Example
	Automatic Type Conversion �and Overloading
	Automatic Type Conversion �and Overloading Example
	Default Arguments	
	Chapter 5 (skip 5.3), 9-9.1
	Learning Objectives
	Introduction to Arrays
	Declaring Arrays
	Accessing Arrays
	Array Program Example: �Display 5.1 Program Using an Array (1 of 2)
	Array Program Example: �Display 5.1 Program Using an Array (2 of 2)
	for-loops with Arrays
	Major Array Pitfall
	Major Array Pitfall Example
	Defined Constant as Array Size
	Arrays in Memory
	An Array in Memory
	Initializing Arrays
	Auto-Initializing Arrays
	Arrays in Functions
	Indexed Variables as Arguments
	Entire Arrays as Arguments
	Entire Array as Argument Example: �Display 5.3 Function with an Array Parameter
	Entire Array as Argument Example
	Array as Argument: How?
	Array Parameters
	The const Parameter Modifier
	Functions that Return an Array
	Multidimensional Arrays
	Multidimensional Array Parameters
	C-Strings
	C-String Variable
	C-String Storage
	C-String Initialization
	C-String Index Manipulation
	= and == with C-strings
	Comparing C-strings
	The <cstring> Library: �Display 9.1 Some Predefined C-String Functions in <cstring> (1 of 2)
	The <cstring> Library: �Display 9.1 Some Predefined C-String Functions in <cstring> (2 of 2)
	C-string Arguments and Parameters
	C-String Output
	C-String Input
	C-String Input Example
	Example: Command Line Arguments
	Example: Command Line Arguments
	Chapter 6-6.1, 10-10.2
	Learning Objectives
	Structures
	Structure Types
	Declare Structure Variable
	Accessing Structure Members
	Structure Assignments
	Structures as Function Arguments
	Initializing Structures
	Pointer Introduction
	Pointer Variables
	Declaring Pointer Variables
	Addresses and Numbers
	Pointing to …
	Pointing to …
	"Pointing to" Example
	& Operator
	Pointer Assignments
	Pointer Assignments Graphic: �Display 10.1 Uses of the Assignment Operator with Pointer Variables
	The new Operator
	Basic Pointer Manipulations Example: �Display 10.2 Basic Pointer �Manipulations (1 of 2)
	Pointers and Functions
	Memory Management
	Checking new Success
	new Success – New Compiler
	delete Operator
	Dangling Pointers
	Dynamic and Automatic Variables
	Dynamic Arrays
	Array Variables
	Array Variables  Pointers
	Array Variables  Pointers
	Dynamic Arrays
	Creating Dynamic Arrays
	Deleting Dynamic Arrays
	Function that Returns an Array
	Pointer Arithmetic
	Alternative Array Manipulation
	Multidimensional Dynamic Arrays
	Chapter 9.2, 12-12.2
	Learning Objectives
	C-String Line Input
	More getline()
	Character I/O
	Member Function get()
	Member Function put()
	Character-Manipulating Functions: �Display 9.3 Some Functions �in <cctype> (1 of 3)
	Character-Manipulating Functions: �Display 9.3 Some Functions �in <cctype> (2 of 3)
	Character-Manipulating Functions: �Display 9.3 Some Functions �in <cctype> (3 of 3)
	Streams
	Streams Usage
	Streams Usage Like cin, cout
	Files
	File Connection
	File I/O Libraries
	Declaring Streams
	Streams Usage
	File Names
	Closing Files
	File Flush
	Chapter 6.2, 7-7.2
	Learning Objectives
	Classes
	Class Definitions
	Declaring Objects
	Class Member Access
	Class Member Functions
	Class Member Functions Definition
	Dot and Scope Resolution Operator
	A Class’s Place
	Principles of OOP
	Public and Private Members
	Public and Private Example
	Public and Private Style
	Accessor and Mutator Functions
	Separate Interface �and Implementation
	Constructors
	Constructor Definitions
	Constructor Definition Example
	Constructor Notes
	Calling Constructors
	Constructor Code
	Alternative Definition
	Constructor Additional Purpose
	Overloaded Constructors
	Constructor with No Arguments
	Explicit Constructor Calls
	Explicit Constructor Call Example
	Default Constructor
	Class Type Member Variables
	Parameter Passing Methods
	The const Parameter Modifier
	Use of const
	Inline Member Functions
	Chapter 8, 9.3
	Learning Objectives
	Operator Overloading Introduction
	Operator Overloading Perspective
	Overloading Basics
	Overloaded "+"
	Overloaded "=="
	Overloaded "==" for Money:�Display 8.1 Operator Overloading
	Constructors Returning Objects
	Returning by const Value
	Returning by non-const Value
	What to do with Non-const Object
	Overloading Unary Operators
	Overload "-" for Money
	Overloaded "-" Definition
	Other Overloads
	Friend Functions
	Friend Functions
	Friend Function Uses
	Friend Classes
	Overloading >> and <<
	Standard Class string
	Display 9.4 �Program Using the Class string
	I/O with Class string
	getline() with Class string
	Class string Processing
	Display 9.7 Member Functions �of the Standard Class string (1 of 2)
	Display 9.7 Member Functions �of the Standard Class string (2 of 2)
	C-string and string �Object Conversions

