
Chapter

4 Mobile Robot Vehicles

into important issues of under-actuation and nonholonomy.

4.1
l
Wheeled Mobile Robots

Wheeled locomotion is one of humanity’s great innovations. The wheel was invented
around 3000 bce and the two-wheeled cart around 2000 bce. Today four-wheeled
 vehicles are ubiquitous and the total automobile population of the planet is over one
billion. The effectiveness of cars, and our familiarity with them, makes them a natural
choice for robot platforms that move across the ground.

We know from our everyday experience with cars that there are limitations on how
they move. It is not possible to drive sideways, but with some practice we can learn to
follow a path that results in the vehicle being to one side of its initial position – this
is parallel parking. Neither can a car rotate on the spot, but we can follow a path that
results in the vehicle being at the same position but rotated by 180° – a three-point
turn. The necessity to perform such maneuvers is the hall mark of a system that is
nonholonomic – an important concept which is discussed further in Sect. 4.3. Despite
these minor limitations the car is the simplest and most effective means of moving in
a planar world that we have yet found. The car’s motion model and the challenges it
raises for control will be discussed in Sect. 4.1.1.

In Sect. 4.1.2 we will introduce differentially-steered vehicles which are mechani-
cally simpler than cars and do not have steered wheels. This is a common confi gura-
tion for small mobile robots and also for larger machines like bulldozers. Section 4.1.3
introduces novel types of wheels that are capable of omnidirectional motion and then
models a vehicle based on these wheels.

4.1.1
l
Car-Like Mobile Robots

Cars with steerable wheels are a very effective class of vehicle and the archetype for
most ground robots such as those shown in Fig. II.4a–c. In this section we will create
a model for a car-like vehicle and develop controllers that can drive the car to a point,
along a line, follow an arbitrary trajectory, and fi nally, drive to a specifi c pose.

This chapter discusses how a robot platform moves, that is, how its pose changes
with time as a function of its control inputs. There are many different types

of robot platform as shown on pages 95–97 but in this chapter we will con-
sider only four important exemplars. Section 4.1 covers three different
types of wheeled vehicle that operate in a 2-dimensional world. They can
be propelled forwards or backwards and their heading direction controlled
by some steering mechanism. Section 4.2 describes a quadrotor, a fl ying
vehicle, which is an example of a robot that moves in 3-dimensional space.
Quadrotors are becoming increasing popular as a robot platform since they

are low cost and can be easily modeled and controlled.
Section 4.3 revisits the concept of confi guration space and dives more deeply

100 Chapter 4 · Mobile Robot Vehicles

A commonly used model for the low-speed behavior of a four-wheeled car-like ve-
hicle is the kinematic bicycle model� shown in Fig. 4.1. The bicycle has a rear wheel
fi xed to the body and the plane of the front wheel rotates about the vertical axis to steer
the vehicle. We assume that the velocity of each wheel is in the plane of the wheel, and
that the wheel rolls without slipping sideways

The pose of the vehicle is represented by its body coordinate frame {B} shown in
Fig. 4.1, with its x-axis in the vehicle’s forward direction and its origin at the center of
the rear axle. The confi guration of the vehicle is represented by the generalized coor-
dinates q = (x, y, θ) ∈ C where C⊂R2 × S1.

The dashed lines show the direction along which the wheels cannot move, the
 lines of no motion, and these intersect at a point known as the Instantaneous Center
of Rotation (ICR). The reference point of the vehicle thus follows a circular path and
its angular velocity is

 (4.1)

and by simple geometry the turning radius is RB = L / tanγ where L is the length of
the vehicle or wheel base. As we would expect the turning circle increases with vehicle
length. The steering angle γ is typically limited mechanically and its maximum value
dictates the minimum value of RB.

Fig. 4.1.
 Bicycle model of a car. The car
is shown in light grey, and the
bicycle approximation is dark
grey. The vehicle’s body frame
is shown in red, and the world
coordinate frame in blue. The
steering wheel angle is γ and
the velocity of the back wheel,
in the x-direction, is v. The two
wheel axes are extended as
dashed lines and intersect at
the Instantaneous Center of
Rotation (ICR) and the distance
from the ICR to the back and
front wheels is RB and RF respec-
tively

Vehicle coordinate system. The coordinate system that we will use, and a common one for vehicles
of all sorts is that the x-axis is forward (longitudinal motion), the y-axis is to the left side (lateral
motion) which implies that the z-axis is upward. For aerospace and underwater applications the
z-axis is often downward and the x-axis is forward.

Often incorrectly called the Ackermann
model.

101

For a fi xed steering wheel angle the car moves along a circular arc. For this reason
curves on roads are circular arcs or clothoids� which makes life easier for the driver
since constant or smoothly varying steering wheel angle allow the car to follow the road.
Note that RF > RB which means the front wheel must follow a longer path and therefore
rotate more quickly than the back wheel. When a four-wheeled vehicle goes around a
corner the two steered wheels follow circular paths of different radii and therefore the
angles of the steered wheels γL and γR should be very slightly different. This is achieved
by the commonly used Ackermann steering mechanism which results in lower wear and
tear on the tyres. The driven wheels must rotate at different speeds on corners which is
why a differential gearbox is required between the motor and the driven wheels.

The velocity of the robot in the world frame is (vcosθ , vsinθ) and combined with
Eq. 4.1 we write the equations of motion as

 (4.2)

This model is referred to as a kinematic model since it describes the velocities of the vehicle
but not the forces or torques that cause the velocity. The rate of change of heading Ë is referred
to as turn rate, heading rate or yaw rate and can be measured by a gyroscope. It can also be
deduced from the angular velocity of the nondriven wheels on the left- and right-hand sides
of the vehicle which follow arcs of different radius, and therefore rotate at different speeds.

Equation 4.2 captures some other important characteristics of a car-like vehicle. When
v= 0 then Ë = 0; that is, it is not possible to change the vehicle’s orientation when it is
not moving. As we know from driving, we must be moving in order to turn. When the
steering angle γ = ü the front wheel is orthogonal to the back wheel, the vehicle cannot
move forward and the model enters an undefi ned region.

In the world coordinate frame we can write an expression for velocity in the vehi-
cle’s y-direction

 (4.3)

which is the called a nonholonomic constraint and will be discussed further in Sect. 4.3.1.
This equation cannot be integrated to form a relationship between x, y and θ .

The Simulink® system

>> sl_lanechange

shown in Fig. 4.2 uses the Toolbox Bicycle block which implements Eq. 4.2�. The
velocity input is a constant, and the steering wheel angle is a fi nite positive pulse fol-
lowed by a negative pulse. Running the model simulates the motion of the vehicle and
adds a new variable out to the workspace

 Rudolph Ackermann (1764–1834) was a German inventor born at Schneeberg, in Saxony. For fi nan-
cial reasons he was unable to attend university and became a saddler like his father. For a time he
worked as a saddler and coach-builder and in 1795 established a print-shop and drawing-school
in London. He published a popular magazine “The Repository of Arts, Literature, Commerce,
Manufactures, Fashion and Politics” that included an eclectic mix of articles on water pumps, gas-
lighting, and lithographic presses, along with fashion plates and furniture designs. He manufactured
paper for landscape and miniature painters, patented a method for waterproofi ng cloth and pa-
per and built a factory in Chelsea to produce it. He is buried in Kensal Green Cemetery, London.

In 1818 Ackermann took out British patent 4212 on behalf of the German inventor George
Lankensperger for a steering mechanism which ensures that the steered wheels move on circles
with a common center. The same scheme was proposed and tested by Erasmus Darwin (grand-
father of Charles) in the 1760s. Subsequent refi nement by the Frenchman Charles Jeantaud led
to the mechanism used in cars to this day which is known as Ackermann steering.

Arcs with smoothly varying radius.
Dubbins and Reeds-Shepp paths com-
prises constant radius circular arcs and
straight line segments.

4.1 · Wheeled Mobile Robots

From Sharp 1896

The model also includes a maximum ve-
locity limit, a velocity rate limiter to mod-
el finite acceleration, and a limiter on the
steering angle to model the finite range
of the steered wheel. These can be ac-
cessed by double clicking the Bicycle block
in Simulink.

102 Chapter 4 · Mobile Robot Vehicles

>> out
Simulink.SimulationOutput:
 t: [504x1 double]
 y: [504x4 double]

from which we can retrieve the simulation time and other variables

>> t = out.get('t'); q = out.get('y');

Confi guration is plotted against time

>> mplot(t, q)

in Fig. 4.3a and the result in the xy-plane

>> plot(q(:,1), q(:,2))

shown in Fig. 4.3b demonstrates a simple lane-changing trajectory.

4.1.1.1
l
Moving to a Point

Consider the problem of moving toward a goal point (x∗, y∗) in the plane. We will con-
trol the robot’s velocity to be proportional to its distance from the goal

and to steer toward the goal which is at the vehicle-relative angle� in the world frame of

Fig. 4.2.
Simulink model sl_lanechange
that results in a lane changing
maneuver. The pulse genera-
tor drives the steering angle left
then right. The vehicle has a de-
fault wheelbase L = 1

Fig. 4.3. Simple lane changing ma-
neuver. a Vehicle response as a
function of time, b motion in the
xy-plane, the vehicle moves in the
positive x-direction

This angle can be anywhere in the inter-
val [–π, π) and is computed using the
atan2 function.

103

using a proportional controller

which turns the steering wheel toward the target. Note the use of the operator � since θ ∗
and θ are angles ∈ S1 not real numbers�. A Simulink model

>> sl_drivepoint

is shown in Fig. 4.4. We specify a goal coordinate

>> xg = [5 5];

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_drivepoint');

The variable r is an object that contains the simulation results from which we extract
the confi guration as a function of time

>> q = r.fi nd('y');

The vehicle’s path in the plane is

>> plot(q(:,1), q(:,2));

To run the Simulink model called model we fi rst load it

>> model

and a new window is popped up that displays the model in block-diagram form. The simulation
can be started by pressing the play button on the toolbar of the model’s window. The model can
also be run directly from the MATLAB command line

>> sim('model')

Many Toolbox models create additional fi gures to display robot animations or graphs as they run.
All models in this chapter have the simulation data export option set to create a MATLAB

SimulationOutput object. All the unconnected output signals are concatenated, in port
number order, to form a row vector and these are stacked to form a matrix y with one row per
timestep. The corresponding time values form a vector t. These variables are packaged in a
SimulationOutput object which is written to the workspace variable out or returned if the
simulation is invoked from MATLAB

>> r = sim('model')

Displaying r or out lists the variables that it contains and their value is obtained using the fi nd
method, for example

>> t = r.fi nd('t');

Fig. 4.4. sl_drivepoint, the
Simulink model that drives the ve-
hicle to a point. Red blocks have
parameters that you can adjust to
investigate the effect on perfor-
mance

The Toolbox function angdiff com-
putes the difference between two angles
and returns a difference in the interval
[−π, π). This is also the shortest dis-
tance around the circle, as discussed in
Sect. 3.3.4.1. Also available in the Toolbox
Simulink blockset roblocks .

4.1 · Wheeled Mobile Robots

104 Chapter 4 · Mobile Robot Vehicles

which is shown in Fig. 4.5 for a number of starting poses. In each case the vehicle has
moved forward and turned onto a path toward the goal point. The fi nal part of each path
is a straight line and the fi nal orientation therefore depends on the starting point.

4.1.1.2
l
Following a Line

Another useful task for a mobile robot is to follow a line on the plane� defi ned by
ax + by + c = 0. This requires two controllers to adjust steering. One controller

turns the robot toward the line to minimize the robot’s normal distance from the
line

The second controller adjusts the heading angle, or orientation, of the vehicle to be
parallel to the line

using the proportional controller

The combined control law

turns the steering wheel so as to drive the robot toward the line and move along it.
The Simulink model

>> sl_driveline

is shown in Fig. 4.6. We specify the target line as a 3-vector (a, b, c)

>> L = [1 -2 4];

Fig. 4.5.
Simulation results for
 sl_drivepoint for different
initial poses. The goal is (5, 5)

2-dimensional lines in homogeneous
form are discussed in Sect. C.2.1.

105

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_driveline');

The vehicle’s path for a number of different starting poses is shown in Fig. 4.7.

4.1.1.3
l
Following a Trajectory

Instead of a straight line we might wish to follow a trajectory that is a timed sequence
of points on the xy-plane. This might come from a motion planner, such as discussed
in Sect. 3.3 or 5.2, or in real-time based on the robot’s sensors.

A simple and effective algorithm for trajectory following is pure pursuit in which
the goal point (x∗hti, y∗hti) moves along the trajectory, in its simplest form at constant
speed. The vehicle always heads toward the goal – think carrot and donkey.

This problem is very similar to the control problem we tackled in Sect. 4.1.1.1, mov-
ing to a point, except this time the point is moving. The robot maintains a distance d∗
behind the pursuit point and we formulate an error

Fig. 4.6. The Simulink model
 sl_driveline drives the ve-
hicle along a line. The line param-
eters (a, b, c) are set in the work-
space variable L. Red blocks have
parameters that you can adjust to
investigate the effect on perfor-
mance

Fig. 4.7.
Simulation results from different
initial poses for the line (1, −2, 4)

�

4.1 · Wheeled Mobile Robots

106 Chapter 4 · Mobile Robot Vehicles

that we regulate to zero by controlling the robot’s velocity using a proportional-inte-
gral (PI) controller

The integral term is required to provide a nonzero velocity demand v∗ when the
following error is zero. The second controller steers the robot toward the target which
is at the relative angle

and a simple proportional controller

turns the steering wheel so as to drive the robot toward the target.
The Simulink model

>> sl_pursuit

shown in Fig. 4.8 includes a target that moves at constant velocity along a piecewise
linear path defi ned by a number of waypoints. It can be simulated

>> r = sim('sl_pursuit')

and the results are shown in Fig. 4.9a. The robot starts at the origin but catches up to,
and follows, the moving goal. Figure 4.9b shows how the speed converges on a steady
state value when following at the desired distance. Note the slow down at the end of
each segment as the robot short cuts across the corner.

4.1.1.4
l
Moving to a Pose

The fi nal control problem we discuss is driving to a specifi c pose (x∗, y∗, θ ∗). The con-
troller of Fig. 4.4 could drive the robot to a goal position but the fi nal orientation de-
pended on the starting position.

Fig. 4.8. The Simulink model
 sl_pursuit drives the vehicle
along a piecewise linear trajecto-
ry. Red blocks have parameters
that you can adjust to investigate
the effect on performance

107

In order to control the fi nal orientation we fi rst rewrite Eq. 4.2 in matrix form

where the inputs to the vehicle model are the speed v and the turning rate ω which can
be achieved by applying the steering angle�

We then transform the equations into polar coordinate form using the notation shown
in Fig. 4.10 and apply a change of variables

Fig. 4.9. Simulation results from
pure pursuit. a Path of the robot
in the xy-plane. The red dashed
line is the path to be followed and
the blue line in the path followed
by the robot, which starts at the
origin. b The speed of the robot
versus time

Fig. 4.10.
Polar coordinate notation for

the bicycle model vehicle mov-
ing toward a goal pose: ρ is the

distance to the goal, β is the an-
gle of the goal vector with re-
spect to the world frame, and

α is the angle of the goal vector
with respect to the vehicle frame

We have effectively converted the Bicy-
cle kinematic model to a Unicycle model
which we discuss in Sect. 4.1.2.

4.1 · Wheeled Mobile Robots

�

108 Chapter 4 · Mobile Robot Vehicles

which results in

and assumes the goal frame {G} is in front of the vehicle. The linear control law

drives the robot to a unique equilibrium� at (ρ, α, β) = (0, 0, 0). The intuition behind
this controller is that the terms kρρ and kαα drive the robot along a line toward {G}
while the term kββ rotates the line so that β → 0. The closed-loop system

is stable so long as

The distance and bearing to the goal (ρ, α) could be measured by a camera or laser
range fi nder, and the angle β could be derived from α and vehicle orientation θ as
measured by a compass.

For the case where the goal is behind the robot, that is α ∉ (−ü, ü], we reverse the
vehicle by negating v and γ in the control law. The velocity v always has a constant
sign which depends on the initial value of α .

So far we have described a regulator that drives the vehicle to the pose (0, 0, 0). To
move the robot to an arbitrary pose (x∗, y∗, θ ∗) we perform a change of coordinates

This pose controller is implemented by the Simulink model

>> sl_drivepose

shown in Fig. 4.11 and the transformation from Bicycle to Unicycle kinematics is clearly
shown, mapping angular velocity ω to steering wheel angle γ . We specify a goal pose

The control law introduces a disconti-
nuity at ρ = 0 which satisfies Brockett’s
theorem.

Fig. 4.11. The Simulink model
 sl_drivepose drives the ve-
hicle to a pose. The initial and fi -
nal poses are set by the workspace
variable x0 and xf respectively.
Red blocks have parameters that
you can adjust to investigate the
effect on performance

109

>> xg = [5 5 pi/2];

and an initial pose

>> x0 = [9 5 0];

and then simulate the motion

>> r = sim('sl_drivepose');

As before, the simulation results are stored in r and can be plotted

>> q = r.fi nd('y');
>> plot(q(:,1), q(:,2));

to show the vehicle’s path in the plane. The vehicle’s path for a number of starting pos-
es is shown in Fig. 4.12. The vehicle moves forwards or backward and takes a smooth
path to the goal pose.�

4.1.2
l
Differentially-Steered Vehicle

Having steerable wheels as in a car-like vehicle is mechanically complex. Differential
steering does away with this and steers by independently controlling the speed of the
wheels on each side of the vehicle – if the speeds are not equal the vehicle will turn. Very
simple differential steer robots have two driven wheels and a front and back castor to
provide stability. Larger differential steer vehicles such as the one shown in Fig. 4.13
employ a pair of wheels on each side, with each pair sharing a drive motor via some
mechanical transmission. Very large differential steer vehicles such as bulldozers and
tanks sometimes employ caterpillar tracks instead of wheels. The vehicle’s velocity is
by defi nition v in the vehicle’s x-direction, and zero in the y-direction since the wheels
cannot slip sideways. In the vehicle frame {B} this is

The pose of the vehicle is represented by the body coordinate frame {B} shown in
Fig. 4.14, with its x-axis in the vehicle’s forward direction and its origin at the centroid
of the four wheels. The confi guration of the vehicle is represented by the generalized
coordinates q = (x, y, θ) ∈ C where C⊂R2 × S1.

The vehicle follows a curved path centered on the Instantaneous Center of Rotation
(ICR). The left-hand wheels move at a speed of vL along an arc with a radius of RL

Fig. 4.12.
Simulation results from differ-

ent initial poses to the fi nal pose
(5, 5, ü). Note that in some cas-
es the robot has backed into the

fi nal pose

The controller is based on the bicycle mod-
el but the Simulink model Bicycle
has additional hard nonlinearities in-
cluding steering angle limits and veloc-
ity rate limiting. If those limits are violated
the pose controller may fail.

4.1 · Wheeled Mobile Robots

110 Chapter 4 · Mobile Robot Vehicles

Fig. 4.13.
Clearpath Husky robot with dif-
ferential drive steering (photo by
Tim Barfoot)

Fig. 4.14.
Differential drive robot is shown
in light grey, and the unicycle
approximation is dark grey. The
vehicle’s body coordinate frame
is shown in red, and the world
coordinate frame in blue. The
vehicle follows a path around
the Instantaneous Center of
Rotation (ICR) and the distance
from the ICR to the left and
right wheels is RL and RR respec-
tively. We can use the alterna-
tive body frame {B′} for trajec-
tory tracking control

111

while the right-hand wheels move at a speed of vR along an arc with a radius of RR.
The angular velocity of {B} is

and since RR = RL + W we can write the turn rate

 (4.4)

in terms of the differential velocity and wheel separation W. The equations of motion
are therefore

 (4.5)

where v= ½(vR + vL) and v∆ = vR − vL are the average and differential velocities re-
spectively. For a desired speed v and turn rate Ë we can solve for vR and vL. This kine-
matic model is often called the unicycle model .

There are similarities and differences to the bicycle model of Eq. 4.2. The turn rate
for this vehicle is directly proportional to v∆ and is independent of speed – the vehicle
can turn even when not moving forward. For the 4-wheel case shown in Fig. 4.14 the
axes of the wheels do not intersect the ICR, so when the vehicle is turning the wheel
velocity vectors vL and vR are not tangential to the path – there is a component in
the lateral direction which violates the no-slip constraint. This causes skidding or
scuffi ng� which is extreme when the vehicle is turning on the spot – hence differen-
tial steering is also called skid steering . Similar to the car-like vehicle we can write
an expression for velocity in the vehicle’s y-direction expressed in the world coor-
dinate frame

 (4.6)

which is the nonholonomic constraint . It is important to note that the ability to turn
on the spot does not make the vehicle holonomic and is fundamentally different to the
ability to move in an arbitrary direction which we will discuss next.

If we move the vehicle’s reference frame to {B′} and ignore orientation we can re-
write Eq. 4.5 in matrix form as

and if a ≠ 0 this can be be inverted

 (4.7)

to give the required forward speed and turn rate to achieve an arbitrary velocity (¾, Á)
for the origin of frame {B′}.

The Toolbox Simulink block library roblocks contains a block called Unicycle
to implement this model and the coordinate frame shift a is one of its parameters. It
has the same outputs as the Bicycle model used in the last section. Equation 4.7 is
implemented in the block called Tracking Controller .

4.1 · Wheeled Mobile Robots

From Sharp 1896

For indoor applications this can destroy
carpet.

112 Chapter 4 · Mobile Robot Vehicles

4.1.3
l
Omnidirectional Vehicle

The vehicles we have discussed so far have a constraint on lateral motion, the non-
holonomic constraint, which necessitates complex maneuvers in order to achieve
some goal poses. Alternative wheel designs such as shown in Fig. 4.15 remove this
constraint and allow omnidirectional motion. Even more radical is the spherical wheel
shown in Fig. 4.16.

In this section we will discuss the mecanum or “Swedish” wheel� shown in Fig. 4.15b
and schematically in Fig. 4.17. It comprises a number of rollers set around the circum-
ference of the wheel with their axes at an angle of α relative to the axle of the wheel.
The dark roller is the one on the bottom of the wheel and currently in contact with the
ground. The rollers have a barrel shape so only one point on the roller is in contact
with the ground at any time.

As shown in Fig. 4.17 we establish a wheel coordinate frame {W} with its x-axis
pointing in the direction of wheel motion. Rotation of the wheel will cause forward
velocity of Rϖ'w where R is the wheel radius and ϖ is the wheel rotational rate.
However because the roller is free to roll in the direction indicated by the green line,
normal to the roller’s axis, there is potentially arbitrary velocity in that direction. A
desired velocity v can be resolved into two components, one parallel to the direction
of wheel motion 'w and one parallel to the rolling direction

 (4.8)

where vw is the speed due to wheel rotation and vr is the rolling speed. Expressing
v = vx'w + vy(w in component form allows us to solve for the rolling speed vr = vy/ sin α
and substituting this into the fi rst term we can solve for the required wheel velocity

 (4.9)

The required wheel rotation rate is then ϖ = vw / R. If α = 0 then vw is undefi ned
since the roller axes are parallel to the wheel axis and the wheel can provide no trac-
tion. If α = ü as in Fig. 4.15a, the wheel allows sideways rolling but not sideways driv-
ing since there is zero coupling from vw to vy.

Fig. 4.15.
Two types of omnidirectional
wheel, note the different roller
orientation. a Allows the wheel
to roll sideways (courtesy Vex
Robotics); b allows the wheel
to drive sideways (courtesy of
Nexus Robotics)

Fig. 4.16. The Rezero ballbot de-
veloped at ETH Zurich (photo by
Péter Fankhauser)

Mecanum was a Swedish company where
the wheel was invented by Bengt Ilon in
1973. It is described in US patent 3876255.

113

A single mecanum wheel does not allow any control in the rolling direction but
for three or more mecanum wheels, suitably arranged, the motion in the rolling di-
rection of any one wheel will be driven by the other wheels. A vehicle with four me-
canum wheels is shown in Fig. 4.18. Its pose is represented by the body frame {B}
with its x-axis in the vehicle’s forward direction and its origin at the centroid of the
four wheels. The confi guration of the vehicle is represented by the generalized co-
ordinates q = (x, y, θ) ∈ C where C⊂R2 × S1. The rolling axes of the wheels are or-
thogonal which means that when the wheels are not rotating the vehicle cannot roll
in any direction or rotate.

The four wheel contact points indicated by grey dots have coordinate vectors Bpi.
For a desired body velocity BvB and angular rate Bω the velocity at each wheel contact
point is

and we then apply Eq. 4.8 and 4.9 to determine wheel rotational rates ϖi, while noting
that α has the opposite sign for wheels 2 and 4 in Eq. 4.8.

Fig. 4.17.
Schematic of a mecanum wheel

in plan view. The light roll-
ers are on top of the wheel, the

dark roller is in contact with the
ground. The green arrow indi-

cates the rolling direction

Fig. 4.18. a Kuka youBot, which has
has four mecanum wheels (image
courtesy youBot Store); b schemat-
ic of a vehicle with four mecanum
wheels in the youBot confi guration

4.1 · Wheeled Mobile Robots

114 Chapter 4 · Mobile Robot Vehicles

4.2
l
Flying Robots

In order to fl y, all one must do is simply miss the ground.
Douglas Adams

Flying robots or unmanned aerial vehicles (UAV) are becoming increasingly common and
span a huge range of size and shape as shown in shown in Fig. 4.19. Applications include
military operations, surveillance, meteorological observation, robotics research, commer-
cial photography and increasingly hobbyist and personal use. A growing class of fl ying
machines are known as micro air vehicles or MAVs which are smaller than 15 cm in all di-
mensions. Fixed wing UAVs are similar in principle to passenger aircraft with wings to pro-
vide lift, a propeller or jet to provide forward thrust and control surface for maneuvering.
Rotorcraft UAVs have a variety of confi gurations that include conventional helicopter de-
sign with a main and tail rotor, a coax with counter-rotating coaxial rotors and quadrotors.
Rotorcraft UAVs have the advantage of being able to take off vertically and to hover.

Flying robots differ from ground robots in some important ways. Firstly they
have 6 degrees of freedom and their confi guration q ∈ C where C ⊂R3 × S1× S1× S1.
Secondly they are actuated by forces; that is their motion model is expressed in terms
of forces, torques and accelerations rather than velocities as was the case for the ground
vehicle models – we use a dynamic rather than a kinematic model. Underwater robots
have many similarities to fl ying robots and can be considered as vehicles that fl y through
water and there are underwater equivalents to fi xed wing aircraft and rotorcraft. The
principal differences underwater are an upward buoyancy force, drag forces that are
much more signifi cant than in air, and added mass.

In this section we will create a model for a quadrotor fl ying vehicle such as shown
in Fig. 4.19d. Quadrotors are now widely available, both as commercial products and
as open-source projects. Compared to fi xed wing aircraft they are highly maneuverable
and can be fl own safely indoors which makes them well suited for laboratory or hob-
byist use. Compared to conventional helicopters, with a large main rotor and tail rotor,
the quadrotor is easier to fl y, does not have the complex swash plate mechanism and is
easier to model and control.

Fig. 4.19.
Flying robots. a Global Hawk
unmanned aerial vehicle (UAV)
(photo courtesy of NASA), b a
micro air vehicle (MAV) (photo
courtesy of AeroVironment, Inc.),
c a 1 gram co-axial helicopter
with 70 mm rotor diameter
(photo courtesy of Petter Muren
and Proxfl yer AS), d a quadro-
tor which has four rotors and
a block of sensing and control
electronics in the middle (photo
courtesy of 3DRobotics)

115

The notation for the quadrotor model is shown in Fig. 4.20. The body coordinate
frame {B} has its z-axis downward following the aerospace convention. The quadrotor
has four rotors, labeled 1 to 4, mounted at the end of each cross arm. Hex- and octo-
rotors are also popular, with the extra rotors providing greater payload lift capability.
The approach described here can be generalized to N rotors, where N is even.

The rotors are driven by electric motors powered by electronic speed controllers.
Some low-cost quadrotors use small motors and reduction gearing to achieve suffi -
cient torque. The rotor speed is ϖ i and the thrust is an upward vector

 (4.10)

in the vehicle’s negative z-direction, where b > 0 is the lift constant that depends on
the air density, the cube of the rotor blade radius, the number of blades, and the chord
length of the blade.�

The translational dynamics of the vehicle in world coordinates is given by Newton’s
second law

 (4.11)

where v is the velocity of the vehicle’s center of mass in the world frame, g is gravita-
tional acceleration, m is the total mass of the vehicle, B is aerodynamic friction and
T = ΣTi is the total upward thrust. The fi rst term is the force of gravity which acts
downward in the world frame, the second term is the total thrust in the vehicle frame
rotated into the world coordinate frame and the third term is aerodynamic drag.

Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about
the vehicle’s x-axis, the rolling torque, is generated by the moments

The propeller blades on a rotor craft have fascinating dynamics. When fl ying into the wind the
blade tip coming forward experiences greater lift while the receding blade has less lift. This is
equivalent to a torque about an axis pointing into the wind and the rotor blades behave like a
gyroscope (see Sect. 3.4.1.1) so the net effect is that the rotor blade plane pitches up by an amount
proportional to the apparent or nett wind speed, countered by the blade’s bending stiffness and
the change in lift as a function of blade bending. The pitched blade plane causes a component of
the thrust vector to retard the vehicle’s forward motion and this velocity dependent force acts
like a friction force. This is known as blade fl apping and is an important characteristic of blades
on all types of rotorcraft.

Fig. 4.20.
Quadrotor notation showing the

four rotors, their thrust vectors
and directions of rotation. The

 body frame {B} is attached to the
vehicle and has its origin at the
vehicle’s center of mass. Rotors

1 and 3 (blue) rotate counter-
clockwise (viewed from above)

while rotors 2 and 4 (red) rotate
clockwise

4.2 · Flying Robots

Close to the ground, height <2d, the ve-
hicle experiences increased lift due to a
cushion of air beneath it – this is ground
effect.

116 Chapter 4 · Mobile Robot Vehicles

where d is the distance from the rotor axis to the center of mass. We can write this in
terms of rotor speeds by substituting Eq. 4.10

 (4.12)

and similarly for the y-axis, the pitching torque is

 (4.13)

The torque applied to each propeller by the motor is opposed by aerodynamic drag

where k depends on the same factors as b. This torque exerts a reaction torque on the
airframe which acts to rotate the airframe about the propeller shaft in the opposite
direction to its rotation. The total reaction torque about the z-axis is

 (4.14)

where the different signs are due to the different rotation directions of the rotors. A
yaw torque can be created simply by appropriate coordinated control of all four ro-
tor speeds.

The total torque applied to the airframe according to Eq. 4.12 to 4.14 is τ = (τx, τy, τz)
T

and the rotational acceleration is given by Euler’s equation of motion from Eq. 3.10

 (4.15)

where J is the 3 × 3 inertia matrix of the vehicle and ω is the angular velocity vector.
The motion of the quadrotor is obtained by integrating the forward dynamics equa-

tions Eq. 4.11 and Eq. 4.15 where the forces and moments on the airframe

 (4.16)

are functions of the rotor speeds. The matrix A is constant, and full rank if b, k, d > 0
and can be inverted

 (4.17)

to solve for the rotor speeds� required to apply a specifi ed thrust T and moment τ to
the airframe.

To control the vehicle we will employ a nested control structure which we describe
for pitch and x-translational motion. The innermost loop uses a proportional and de-
rivative controller� to compute the required pitching torque on the airframe

 (4.18)

based on the error between desired and actual pitch angle.� The gains Kτ,p and Kτ,d
are determined by classical control design approaches based on an approximate dy-

The rotational dynamics has a second-
order transfer function of Θy(s) / τy(s) =
1 / (Js2 + Bs) where J is rotational in-
ertia and B is aerodynamic damping
which is generally quite small. To regu-
late a second-order system requires a
proportional-derivative controller.

The term Ëp
* is commonly ignored.

The direction of rotation is as shown in
Fig. 4.20. Control of motor velocity is dis-
cussed in Sect. 9.1.6.

117

namic model and then tuned to achieve good performance. The actual vehicle pitch
angle θp

would be estimated by an inertial navigation system as discussed in Sect. 3.4
and Ëp

would be derived from gyroscopic sensors. The required rotor speeds are then
determined using Eq. 4.17.

Consider a coordinate frame {B′} attached to the vehicle and with the same origin
as {B} but with its x- and y-axes in the horizontal plane and parallel to the ground. The
thrust vector is parallel to the z-axis of frame {B} and pitching the nose down, rotat-
ing about the y-axis by θp, generates a force

which has a component

that accelerates the vehicle in the B′x-direction, and we have assumed that θp is small.
We can control the velocity in this direction with a proportional control law

where Kf > 0 is a gain. Combining these two equations we obtain the desired pitch angle

 (4.19)

required to achieve the desired forward velocity. Using Eq. 4.18 we compute the re-
quired pitching torque, and then using Eq. 4.17 the required rotor speeds. For a vehicle
in vertical equilibrium the total thrust equals the weight force so m / T ≈ 1 / g.

The actual vehicle velocity Bvx would be estimated by an inertial navigation system as
discussed in Sect. 3.4 or a GPS receiver. If the position of the vehicle in the xy-plane of the
world frame is p ∈R2 then the desired velocity is given by the proportional control law

 (4.20)

based on the error between the desired and actual position. The desired velocity in
the xy-plane of frame{B′} is

which is a function of the yaw angle θ y

Figure 4.21 shows a Simulink model of the complete control system for a quadro-
tor� which can be loaded and displayed by

>> sl_quadrotor

Working our way left to right and starting at the top we have the desired position
of the quadrotor in world coordinates. The position error is rotated from the world
frame to the body frame and becomes the desired velocity. The velocity controller
implements Eq. 4.19 and its equivalent for the roll axis and outputs the desired pitch
and roll angles of the quadrotor. The attitude controller is a proportional-derivative
controller that determines the appropriate pitch and roll torques to achieve these

This model is hierarchical and organized
in terms of subsystems. Click the down
arrow on a subsystem (can be seen on-
screen but not in the figure) to reveal
the detail. Double-click on the subsys-
tem box to modify its parameters.

4.2 · Flying Robots

118 Chapter 4 · Mobile Robot Vehicles

angles based on feedback of current attitude and attitude rate.� The yaw control block
determines the error in heading angle and implements a proportional-derivative con-
troller to compute the required yaw torque which is achieved by speeding up one pair
of rotors and slowing the other pair.

Altitude is controlled by a proportional-derivative controller

which determines the average rotor speed. T0 = mg is the weight of the vehicle and this
is an example of feedforward control – used here to counter the effect of gravity which
otherwise is a constant disturbance to the altitude control loop. The alternatives to
feedforward control would be to have very high gain for the altitude loop which often
leads to actuator saturation and instability, or a proportional-integral (PI) control-
ler which might require a long time for the integral term to increase to a useful value
and then lead to overshoot. We will revisit gravity compensation in Chap. 9 applied
to arm-type robots.

The control mixer block combines the three torque demands and the vertical thrust
demand and implements Eq. 4.17 to determine the appropriate rotor speeds. Rotor
speed limits are applied here. These are input to the quadrotor block� which implements
the forward dynamics integrating Eq. 4.16 to give the position, velocity, orientation and
 orientation rate. The output of this block is the state vector x = (0p, 0Γ, B¹, B¶) ∈R12.
As is common in aerospace applications we represent orientation Γ and orientation
rate ¶ in terms of roll-pitch-yaw angles. Note that position and attitude are in the
world frame while the rates are expressed in the body frame.

The parameters of a specifi c quadrotor can be loaded

>> mdl_quadrotor

which creates a structure called quadrotor in the workspace, and its elements are
the various dynamic properties of the quadrotor. The simulation can be run using the
Simulink menu or from the MATLAB command line

>> sim('sl_quadrotor');

and it displays an animation in a separate window.� The vehicle lifts off and fl ies around
a circle while spinning slowly about its own z-axis. A snapshot is shown in Fig. 4.22.
The simulation writes the results from each timestep into a matrix in the workspace

>> about result
result [double] : 2412x16 (308.7 kB)

Fig. 4.21. The Simulink® model
 sl_quadrotor which is a closed-
loop simulation of the quadrotor.
The vehicle takes off and fl ies in a cir-
cle at constant altitude. A Simulink
bus is used for the 12-element state
vector X output by the Quadrotor
block. To reduce the number of
lines in the diagram we have used
Goto and From blocks to trans-
mit and receive the state vector

Note that according to the coordinate
conventions shown in Fig. 4.20 x-direc-
tion motion requires a negative rotation
about the y-axis (pitch angle) and y-di-
rection motion requires a positive rota-
tion about the x-axis (roll angle) so the
gains have different signs for the roll and
pitch loops.

The Simullink library roblocks also
includes a block for an N-rotor vehicle.

Loading and displaying the model using
>> sl_quadrotor automatically
loads the default quadrotor model. This
is done by the PreLoadFcn callback set
from model’s properties File+Model
Properties+Model Properties+Call-
backs+PreLoadFcn.

119

which has one row per timestep, and each row contains the time followed by the state
vector (elements 2–13) and the commanded rotor speeds ω i (elements 14–17). To
plot x and y versus time is

>> plot(result(:,1), result(:,2:3));

To recap on control of the quadrotor. A position error results in a required trans-
lational velocity. To achieve this requires appropriate pitch and roll angles so that a
component of the vehicle’s thrust acts in the horizontal plane and generates a force to
accelerate the vehicle.� As it approaches its goal the airframe must be rotated in the
opposite direction so that a component of thrust decelerates the motion. To achieve
the pitch and roll angles requires differential propeller thrust to create a moment that
rotationally accelerates the airframe.

This indirection from translational motion to rotational motion is a consequence
of the vehicle being under-actuated – we have just four rotor speeds to adjust but the
vehicle’s confi guration space is 6-dimensional. In the confi guration space we cannot
move in the x- or y-direction, but we can move in the pitch- or roll-direction which
results in motion in the x- or y-direction. The cost of under actuation is once again a
maneuver. The pitch and roll angles are a means to achieve translation control and
cannot be independently set.

4.3
l
Advanced Topics

4.3.1
l
Nonholonomic and Under-Actuated Systems

We introduced the notion of confi guration space in Sect. 2.3.5 and it is useful to re-
visit it now that we have discussed several different types of mobile robot platform.
Common vehicles – as diverse as cars , hovercrafts , ships and aircraft – are all able to
move forward effectively but are unable to instantaneously move sideways. This is a
very sensible tradeoff that simplifi es design and caters to the motion we most com-
monly require of the vehicle. Sideways motion for occasional tasks such as parking a
car, docking a ship or landing an aircraft are possible, albeit with some complex ma-
neuvering but humans can learn this skill.

Consider a hovercraft which moves over a planar surface. To fully describe all its con-
stituent particles we need to specify three generalized coordinates: its position in the
xy-plane and its rotation angle. It has three degrees of freedom and its confi guration
space is C⊂R2 × S1. This hovercraft has two propellers whose axes are parallel but not

Fig. 4.22.
One frame from the quadrotor
simulation. The marker on the
ground plane is a projection of

the vehicle’s centroid

The total thrust must be increased so
that the vertical thrust component still
balances gravity.

4.3 · Advanced Topics

120 Chapter 4 · Mobile Robot Vehicles

collinear. The sum of their thrusts provide a forward force and the difference in thrusts
generates a yawing torque for steering. The number of actuators, two, is less than its
degrees of freedom dimC= 3 and we call this an under-actuated system . This imposes
signifi cant limitations on the way in which it can move. At any point in time we can
control the forward (parallel to the thrust vectors) acceleration and the rotational ac-
celeration of the hovercraft but there is zero sideways (or lateral) acceleration since it
cannot generate any lateral thrust. Nevertheless with some clever maneuvering, like
with a car, the hovercraft can follow a path that will take it to a place to one side of where
it started. In the hovercraft’s 3-dimensional confi guration space this means that at any
point there are certain directions in which acceleration is not possible. We can reach
points in those direction but not directly, only by following some circuitous path.

All fl ying and underwater vehicles have a confi guration that is completely de-
scribed by six generalized coordinates – their position and orientation in 3D space.
C⊂R3 × S1 × S1 × S1 where the orientation is expressed in some three-angle repre-
sentation – since dimC= 6 the vehicles have six degrees of freedom. A quadrotor has
four actuators, four thrust-generating propellers, and this is fewer than its degrees
of freedom making it under-actuated. Controlling the four propellers causes motion
in the up/down, roll, pitch and yaw directions of the confi guration space but not in
the forward/backward or left/right directions. To access those degrees of freedom it
is necessary to perform a maneuver : pitch down so that the thrust vector provides a
horizontal force component, accelerate forward, pitch up so that the thrust vector
provides a horizontal force component to decelerate, and then level out.

For a helicopter only four of the six degrees of freedom are practically useful: up/down,
forward/backward, left/right and yaw. Therefore a helicopter requires a minimum of
four actuators: the main rotor generates a thrust vector whose magnitude is controlled
by the collective pitch and whose direction is controlled by the lateral and longitudi-
nal cyclic pitch. The tail rotor provides a yawing moment. This leaves two degrees of
freedom unactuated, roll and pitch angles, but clever design ensures that gravity actu-
ates them and keeps them close to zero – without gravity a helicopter cannot work. A
fi xed-wing aircraft moves forward very effi ciently and also has four actuators: engine
thrust provides acceleration in the forward direction and the ailerons, elevator and
rudder exert respectively roll, pitch and yaw moments on the aircraft.� To access the
missing degrees of freedom such as up/down and left/right translation, the aircraft
must pitch or yaw while moving forward.

The advantage of under-actuation is having fewer actuators. In practice this means
real savings in terms of cost, complexity and weight. The consequence is that at any
point in its confi guration space there are certain directions in which the vehicle can-
not move. Full actuation is possible but not common, for example the DEPTHX un-
derwater robot shown on page 96 has six degrees of freedom and six actuators . These
can exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any
direction or about any axis.

A 4-wheeled car has many similarities to the hovercraft discussed above. It moves
over a planar surface and its confi guration can be fully described by its generalized
coordinates: its position in the xy-plane and a rotation angle. It has three degrees of
freedom and its confi guration space is C⊂R2 × S1. A car has two actuators, one to
move forwards or backwards and one to change the heading direction. A car, like a
hovercraft , is under-actuated.

We know from our experience with cars that we cannot move directly in certain
directions and sometimes needs to perform a maneuver to reach our goal. A differ-
ential- or skid-steered vehicle, such as a tank, is also under-actuated – it has only two
actuators, one for each track. While this type of vehicle can turn on the spot it cannot
move sideways. To do that it has to turn, proceed, stop then turn – this need to ma-
neuver is the clear signature of an under-actuated system.

We might often wish for an ability to drive our car sideways but the standard wheel
provides real benefi t when cornering – lateral friction between the wheels and the

Some low-cost hobby aircraft have no
rudder and rely only on ailerons to bank
and turn the aircraft. Even cheaper hob-
by aircraft have no elevator and rely on
engine speed to control height.

121

road provides, for free, the centripetal force which would otherwise require an extra
actuator to provide. The hovercraft has many similarities to a car but we can push a
hovercraft sideways – we cannot do that with a car. This lateral friction is a distin-
guishing feature of the car.

The inability to slip sideways is a constraint, the rolling constraint, on the velocity�
of the vehicle just as under-actuation is. A vehicle with one or more velocity constraints,
due to under-actuation or a rolling constraint, is referred to as a nonholonomic system .
A key characteristic of these systems is that they cannot move directly from one con-
fi guration to another – they must perform a maneuver or sequence of motions. A car
has a velocity constraint due to its wheels and is also under-actuated.

A holonomic constraint restricts the possible confi gurations that the system can
achieve – it can be expressed as an equation written in terms of the confi guration
variables.� A nonholonomic constraint such as Eq. 4.3 and 4.6 is one that restricts the
velocity (or acceleration) of a system in confi guration space – it can only be expressed
in terms of the derivatives of the confi guration variables.� The nonholonomic con-
straint does not restrict the possible confi gurations the system can achieve but it does
preclude instantaneous velocity or acceleration in certain directions.

In control theoretic terms Brockett’s theorem (Brockett 1983) states that nonholo-
nomic systems are controllable but they cannot be stabilized to a desired state using
a differentiable, or even continuous, pure state-feedback controller. A time-varying
or nonlinear control strategy is required which means that the robot follows some
generally nonlinear path. One exception is an under-actuated system moving in 3-di-
mensional space within a force fi eld, for example a gravity fi eld – gravity acts like an
additional actuator and makes the system linearly controllable (but not holonomic),
as we showed for the quadrotor example in Sect. 4.2.

 Mobility parameters for the various robots that we have discussed here, and earlier
in Sect. 2.3.5, are tabulated in Table 4.1. We will discuss under- and over-actuation in
the context of arm robots in Chap. 8.

4.4
l
Wrapping Up

In this chapter we have created and discussed models and controllers for a number of
common, but quite different, robot platforms. We fi rst discussed wheeled robots. For
car-like vehicles we developed a kinematic model which we used to develop a number of
different controllers in order that the platform could perform useful tasks such as driv-
ing to a point, driving along a line, following a trajectory or driving to a pose. We then
discussed differentially steered vehicles on which many robots are based, and omnidi-
rectional robots based on novel wheel types. Then we we discussed a simple but common

Table 4.1.
Summary of confi guration space
characteristics for various robots.

A nonholonomic system is
under-actuated and/or has a

rolling constraint

The hovercraft , aerial and underwater
vehicles are controlled by forces so in
this case the constraints are on vehicle
acceleration in configuration space not
velocity.

The constraint cannot be integrated to a
constraint in terms of configuration vari-
ables, so such systems are also known as
nonintegrable systems .

4.4 · Wrapping Up

For example fixing the end of the 10-joint
robot arm introduces six holonomic con-
straints (position and orientation) so the
arm would have only 4 degrees of freedom.

122 Chapter 4 · Mobile Robot Vehicles

fl ying vehicle, the quadrotor, and developed a dynamic model and a hierarchical control
system that allowed the quadrotor to fl y a circuit. This hierarchical or nested control ap-
proach is described in more detail in Sect. 9.1.7 in the context of robot arms.

We also extended our earlier discussion about confi guration space to include the
velocity constraints due to under actuation and rolling constraints from wheels.

The next chapters in this Part will discuss how to plan paths for robots through
complex environments that contain obstacles and then how to determine the loca-
tion of a robot.

Further Reading

Comprehensive modeling of mobile ground robots is provided in the book by Siegwart
et al. (2011). In addition to the models covered here, it presents in-depth discussion of
a variety of wheel confi gurations with different combinations of driven wheels, steered
wheels and passive castors. The book by Kelly (2013) also covers vehicle modeling and
control. Both books also provide a good introduction to perception, localization and
 navigation which we will discuss in the coming chapters.

The paper by Martins et al. (2008) discusses kinematics, dynamics and control of
differential steer robots. The Handbook of Robotics (Siciliano and Khatib 2016, part E)
covers modeling and control of various vehicle types including aerial and underwater.
The theory of helicopters with an emphasis on robotics is provided by Mettler (2003)
but the defi nitive reference for helicopter dynamics is the very large book by Prouty
(2002). The book by Antonelli (2014) provides comprehensive coverage of modeling
and control of underwater robots.

Some of the earliest papers on quadrotor modeling and control are by Pounds,
Mahony and colleagues (Hamel et al. 2002; Pounds et al. 2004, 2006). The thesis by
Pounds (2007) presents comprehensive aerodynamic modeling of a quadrotor with
a particular focus on blade fl apping, a phenomenon well known in conventional he-
licopters but largely ignored for quadrotors. A tutorial introduction to the control of
multi-rotor fl ying robots is given by Mahony, Kumar, and Corke (2012). Quadrotors
are now commercially available from many vendors at quite low cost. There are also
a number of hardware kits and open-source software projects such as ArduCopter
and Mikrokopter.

Mobile ground robots are now a mature technology for transporting parts around
manufacturing plants. The research frontier is now for vehicles that operate autono-
mously in outdoor environments (Siciliano and Khatib 2016, part F). Research into
the automation of passenger cars has been ongoing since the 1980s and a number of
automative manufacturers are talking about commercial autonomous cars by 2020.

Historical and interesting. The Navlab project at Carnegie-Mellon University started
in 1984 and a series of autonomous vehicles, Navlabs, were built and a large body of
research has resulted. All vehicles made strong use of computer vision for navigation.
In 1995 the supervised autonomous Navlab 5 made a 3 000-mile journey, dubbed “No
Hands Across America” (Pomerleau and Jochem 1995, 1996). The vehicle steered itself
98% of the time largely by visual sensing of the white lines at the edge of the road.

In Europe, Ernst Dickmanns and his team at Universität der Bundeswehr München
demonstrated autonomous control of vehicles. In 1988 the VaMoRs system, a 5 tonne
Mercedes-Benz van, could drive itself at speeds over 90 km h−1 (Dickmanns and Graefe
1988b; Dickmanns and Zapp 1987; Dickmanns 2007). The European Prometheus Project
ran from 1987–1995 and in 1994 the robot vehicles VaMP and VITA-2 drove more
than 1 000 km on a Paris multi-lane highway in standard heavy traffi c at speeds up
to 130 km h−1. They demonstrated autonomous driving in free lanes, convoy driv-
ing, automatic tracking of other vehicles, and lane changes with autonomous passing

123

of other cars. In 1995 an autonomous S-Class Mercedes-Benz made a 1 600 km trip
from Munich to Copenhagen and back. On the German Autobahn speeds exceeded
175 km h−1 and the vehicle executed traffi c maneuvers such as overtaking. The mean
time between human interventions was 9 km and it drove up to 158 km without any
human intervention. The UK part of the project demonstrated autonomous driving
of an XJ6 Jaguar with vision (Matthews et al. 1995) and radar-based sensing for lane
keeping and collision avoidance. More recently, in the USA a series of Grand Challenges
were run for autonomous cars. The 2005 desert and 2007 urban challenges are com-
prehensively described in compilations of papers from the various teams in Buehler
et al. (2007, 2010). More recent demonstrations of self-driving vehicles are a journey
along the fabled silk road described by Bertozzi et al. (2011) and a classic road trip
through Germany by Ziegler et al. (2014).

Ackermann’s magazine can be found online at http://smithandgosling.wordpress.
com/2009/12/02/ackermanns-repository-of-arts and the carriage steering mecha-
nism is published in the March and April issues of 1818. King-Hele (2002) provides a
comprehensive discussion about the prior work on steering geometry and Darwin’s
earlier invention.

Toolbox and MATLAB Notes

In addition to the Simulink Bicycle model used in this chapter the Toolbox also
provides a MATLAB class which implements these kinematic equations and which
we will use in Chap. 6. For example we can create a vehicle model with steer angle
and speed limits

>> veh = Bicycle('speedmax', 1, 'steermax', 30*pi/180);

and evaluate Eq. 4.2 for a particular state and set of control inputs (v, γ)
>> veh.deriv([], [0 0 0], [0.3, 0.2])
ans =
 0.3000 0 0.0608

The Unicycle class is used for a differentially-steered robot and has equivalent
methods.

The Robotics System Toolbox™ from The MathWorks has support for differentially-steered
mobile robots which can be created using the function ExampleHelperRobotSimulator.
It also includes a class robotics.PurePursuit that implements pure pursuit for a
differential steer robot. An example is given in the Toolbox RST folder.

Exercises

1. For a 4-wheel vehicle with L = 2 m and width between wheel centers of 1.5 m
a) What steering wheel angle is needed for a turn rate of 10 deg s−1 at a forward

speed of 20 km h−1?
b) compute the difference in wheel steer angle for Ackermann steering around

curves of radius 10, 50 and 100 m.
c) If the vehicle is moving at 80 km h−1 compute the difference in back wheel rota-

tion rates for curves of radius 10, 50 and 100 m.
2. Write an expression for turn rate in terms of the angular rotation rate of the two

back wheels. Investigate the effect of errors in wheel radius and vehicle width.
3. Consider a car and bus with L = 4 and 12 m respectively. To follow a curve with

radius of 10, 20 and 50 m determine the respective steered wheel angles.
4. For a number of steered wheel angles in the range −45 to 45° and a velocity of

2 m s−1 overlay plots of the vehicle’s trajectory in the xy-plane.

4.4 · Wrapping Up

124 Chapter 4 · Mobile Robot Vehicles

5. Implement the � operator used in Sect. 4.1.1.1 and check against the code for
angdiff.

6. Moving to a point (page 103) plot x, y and θ against time.
7. Pure pursuit example (page 106)

a) Investigate what happens if you vary the look-ahead distance, heading gain or
proportional gain in the speed controller.

b) Investigate what happens when the integral gain in the speed controller is zero.
c) With integral set to zero, add a constant to the output of the controller. What

should the value of the constant be?
d) Add a velocity feedforward term.
e) Modify the pure pursuit example so the robot follows a slalom course.
f) Modify the pure pursuit example to follow a target moving back and forth along

a line.
8. Moving to a pose (page 107)

a) Repeat the example with a different initial orientation.
b) Implement a parallel parking maneuver. Is the resulting path practical?
c) Experiment with different control parameters.

9. Use the MATLAB GUI interface to make a simple steering wheel and velocity con-
trol, and use this to create a very simple driving simulator. Alternatively interface
a gaming steering wheel and pedal to MATLAB.

10. Adapt the various controllers in Sect. 4.1.1 to the differentially steered robot.
11. Derive Eq. 4.4 from the preceding equation.
12. For constant forward velocity, plot vL and vR as a function of ICR position along

the y-axis. Under what conditions do vL and vR have a different sign?
13. Using Simulink implement a controller using Eq. 4.7 that moves the robot in its

y-direction. How does the robot’s orientation change as it moves?
14. Sketch the design for a robot with three mecanum wheels. Ensure that it cannot

roll freely and that it can drive in any direction. Write code to convert from desired
vehicle translational and rotational velocity to wheel rotation rates.

15. For the 4-wheel omnidirectional robot of Sect. 4.1.3 write an algorithm that will al-
low it to move in a circle of radius 0.5 m around a point with its nose always pointed
toward the center of the circle.

16. Quadrotor (page 115)
a) At equilibrium, compute the speed of all the propellers.
b) Experiment with different control gains. What happens if you reduce the damp-

ing gains to zero?
c) Remove the gravity feedforward and experiment with large altitude gain or a

PI controller.
d) When the vehicle has nonzero roll and pitch angles, the magnitude of the verti-

cal thrust is reduced and the vehicle will slowly descend. Add compensation to
the vertical thrust to correct this.

e) Simulate the quadrotor fl ying inverted, that is, its z-axis is pointing upwards.
f) Program a ballistic motion. Have the quadrotor take off at 45 deg to horizontal

then remove all thrust.
g) Program a smooth landing.
h) Program a barrel roll maneuver. Have the quadrotor fl y horizontally in its

x-direction and then increase the roll angle from 0 to 2π .
i) Program a fl ip maneuver. Have the quadrotor fl y horizontally in its x-direction

and then increase the pitch angle from 0 to 2π .
j) Add another four rotors.
k) Use the function mstraj to create a trajectory through ten via points (Xi, Yi, Zi, θy)

and modify the controller of Fig. 4.21 for smooth pursuit of this trajectory.
l) Use the MATLAB GUI interface to make a simple joystick control, and use this

to create a very simple fl ying simulator. Alternatively interface a gaming joystick
to MATLAB.

	4Mobile Robot Vehicles
	4.1Wheeled Mobile Robots
	4.1.1 Car-Like Mobile Robots
	4.1.1.1 Moving to a Point
	4.1.1.2 Following a Line
	4.1.1.3 Following a Trajectory
	4.1.1.4 Moving to a Pose

	4.1.2 Differentially-Steered Vehicle
	4.1.3 Omnidirectional Vehicle

	4.2Flying Robots
	4.3Advanced Topics
	4.3.1 Nonholonomic and Under-Actuated Systems

	4.4Wrapping Up
	Further Reading
	Toolbox and MATLAB Notes
	Exercises

