
Chapter

4 Mobile Robot  Vehicles

into important issues of  under-actuation and  nonholonomy.

4.1 
l
Wheeled Mobile  Robots

Wheeled locomotion is one of humanity’s great innovations. The wheel was invented 
around 3000 bce and the two-wheeled cart around 2000 bce. Today four-wheeled 
 vehicles are ubiquitous and the total automobile population of the planet is over one 
billion. The effectiveness of cars, and our familiarity with them, makes them a natural 
choice for robot platforms that move across the ground.

We know from our everyday experience with cars that there are limitations on how 
they move. It is not possible to drive sideways, but with some practice we can learn to 
follow a path that results in the vehicle being to one side of its initial position – this 
is parallel parking. Neither can a car rotate on the spot, but we can follow a path that 
results in the vehicle being at the same position but rotated by 180° – a three-point 
turn. The necessity to perform such maneuvers is the hall mark of a system that is 
nonholonomic  – an important concept which is discussed further in Sect. 4.3. Despite 
these minor limitations the car is the simplest and most effective means of moving in 
a planar world that we have yet found. The car’s  motion model and the challenges it 
raises for control will be discussed in Sect. 4.1.1.

In Sect. 4.1.2 we will introduce differentially-steered  vehicles which are mechani-
cally simpler than cars and do not have steered wheels. This is a common confi gura-
tion for small mobile robots and also for larger machines like bulldozers. Section 4.1.3 
introduces novel types of wheels that are capable of  omnidirectional   motion and then 
models a vehicle based on these wheels.

4.1.1 
l
Car-Like Mobile Robots

Cars with steerable wheels are a very effective class of vehicle and the archetype for 
most ground robots such as those shown in Fig. II.4a–c. In this section we will create 
a model for a car-like  vehicle and develop controllers that can drive the car to a point, 
along a line, follow an arbitrary  trajectory, and fi nally, drive to a specifi c pose.

This chapter discusses how a robot platform moves, that is, how its pose changes 
with time as a function of its control inputs. There are many different types 

of robot platform as shown on pages 95–97 but in this chapter we will con-
sider only four important exemplars. Section 4.1 covers three different 
types of wheeled  vehicle that operate in a 2-dimensional world. They can 
be propelled forwards or backwards and their heading direction controlled 
by some  steering mechanism. Section 4.2 describes a  quadrotor, a fl ying 
vehicle, which is an example of a robot that moves in 3-dimensional space. 
Quadrotors are becoming increasing popular as a robot platform since they 

are low cost and can be easily modeled and controlled.
Section 4.3 revisits the concept of confi guration space and dives more deeply 
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A commonly used model for the low-speed behavior of a four-wheeled  car-like ve-
hicle is the kinematic  bicycle  model� shown in Fig. 4.1. The bicycle has a rear wheel 
fi xed to the body and the plane of the front wheel rotates about the vertical axis to steer 
the vehicle. We assume that the velocity of each wheel is in the plane of the wheel, and 
that the wheel rolls without slipping sideways

The pose of the vehicle is represented by its body coordinate frame {B} shown in 
Fig. 4.1, with its x-axis in the vehicle’s forward direction and its origin at the center of 
the rear axle. The confi guration of the  vehicle is represented by the generalized coor-
dinates q = (x, y, θ ) ∈ C where C⊂R2 × S1.

The dashed lines show the direction along which the wheels cannot move, the 
 lines of no motion, and these intersect at a  point known as the  Instantaneous Center 
of Rotation (ICR). The reference point of the vehicle thus follows a circular path and 
its angular velocity is

 (4.1)

and by simple geometry the  turning radius is RB = L / tanγ  where L is the length of 
the vehicle or wheel base. As we would expect the turning circle increases with vehicle 
length. The steering angle γ  is typically limited mechanically and its maximum value 
dictates the minimum value of RB.

Fig. 4.1.
 Bicycle model of a car. The car 
is shown in light grey, and the 
bicycle approximation is dark 
grey. The vehicle’s body frame 
is shown in red, and the world 
coordinate frame in blue. The 
steering wheel angle is γ  and 
the velocity of the back wheel, 
in the x-direction, is v. The two
wheel axes are extended as 
dashed lines and intersect at 
the Instantaneous Center of 
Rotation (ICR) and the distance 
from the ICR to the back and 
front wheels is RB and RF respec-
tively

Vehicle coordinate system.  The coordinate system that we will use, and a common one for vehicles 
of all sorts is that the x-axis is forward ( longitudinal  motion), the y-axis is to the left side ( lateral 
motion) which implies that the z-axis is upward. For aerospace and underwater applications the 
z-axis is often downward and the x-axis is forward.

Often incorrectly called the Ackermann 
model.
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For a fi xed steering wheel angle the car moves along a circular arc. For this reason 
curves on roads are circular arcs or clothoids� which makes life easier for the driver 
since constant or smoothly varying steering wheel angle allow the car to follow the road. 
Note that RF > RB which means the front wheel must follow a longer path and therefore 
rotate more quickly than the back wheel. When a four-wheeled vehicle goes around a 
corner the two steered wheels follow circular paths of different radii and therefore the 
angles of the steered wheels γL and γR should be very slightly different. This is achieved 
by the commonly used  Ackermann  steering mechanism which results in lower wear and 
tear on the tyres. The driven wheels must rotate at different speeds on corners which is 
why a differential gearbox is required between the motor and the driven wheels.

The velocity of the robot in the world frame is (vcosθ , vsinθ ) and combined with 
Eq. 4.1 we write the  equations of  motion as

 (4.2)

This model is referred to as a  kinematic  model since it describes the velocities of the  vehicle 
but not the forces or torques that cause the velocity. The rate of change of heading Ë is referred 
to as turn rate,  heading rate or  yaw rate and can be measured by a  gyroscope. It can also be 
deduced from the angular velocity of the nondriven wheels on the left- and right-hand sides 
of the vehicle which follow arcs of different radius, and therefore rotate at different speeds.

Equation 4.2 captures some other important characteristics of a car-like vehicle. When 
v= 0 then Ë = 0; that is, it is not possible to change the vehicle’s  orientation when it is 
not moving. As we know from driving, we must be moving in order to turn. When the 
steering angle γ = ü the front wheel is orthogonal to the back wheel, the vehicle cannot 
move forward and the model enters an undefi ned region.

In the world coordinate frame we can write an expression for velocity in the vehi-
cle’s y-direction

 (4.3)

which is the   called a nonholonomic constraint and will be discussed further in Sect. 4.3.1. 
This equation cannot be integrated to form a relationship between x, y and θ .

The  Simulink® system

>>   sl_lanechange

shown in Fig. 4.2 uses the Toolbox   Bicycle block which implements Eq. 4.2�. The 
velocity input is a constant, and the steering wheel angle is a fi nite positive pulse fol-
lowed by a negative pulse. Running the model simulates the motion of the vehicle and 
adds a new variable out to the workspace

 Rudolph Ackermann (1764–1834) was a German inventor born at Schneeberg, in Saxony. For fi nan-
cial reasons he was unable to attend university and became a saddler like his father. For a time he 
worked as a saddler and coach-builder and in 1795 established a print-shop and drawing-school 
in London. He published a popular magazine “The Repository of Arts, Literature, Commerce, 
Manufactures, Fashion and Politics” that included an eclectic mix of articles on water pumps, gas-
lighting, and lithographic presses, along with fashion plates and furniture designs. He manufactured 
paper for landscape and miniature painters, patented a method for waterproofi ng cloth and pa-
per and built a factory in Chelsea to produce it. He is buried in Kensal Green Cemetery, London.

In 1818 Ackermann took out British patent 4212 on behalf of the German inventor George 
Lankensperger for a steering mechanism which ensures that the steered wheels move on circles 
with a common center. The same scheme was proposed and tested by Erasmus Darwin (grand-
father of Charles) in the 1760s. Subsequent refi nement by the Frenchman Charles Jeantaud led 
to the mechanism used in cars to this day which is known as Ackermann steering.

Arcs with smoothly varying radius. 
Dubbins and Reeds-Shepp paths com-
prises constant radius circular arcs and 
straight line segments.

4.1  ·  Wheeled Mobile Robots

From Sharp 1896

The model also includes a maximum ve-
locity limit, a velocity rate limiter to mod-
el finite acceleration, and a limiter on the 
steering  angle to model the finite range 
of the steered wheel. These can be ac-
cessed by double clicking the Bicycle block 
in Simulink.
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>> out
Simulink.SimulationOutput:
    t: [504x1 double]
    y: [504x4 double]

from which we can retrieve the simulation time and other variables

>> t = out.get('t'); q = out.get('y');

Confi guration is plotted against time

>> mplot(t, q)

in Fig. 4.3a and the result in the xy-plane

>> plot(q(:,1), q(:,2))

shown in Fig. 4.3b demonstrates a simple lane-changing  trajectory.

4.1.1.1 
l
Moving to a  Point

Consider the problem of moving toward a goal point (x∗, y∗) in the plane. We will  con-
trol the robot’s velocity to be proportional to its distance from the goal

and to steer toward the goal which is at the vehicle-relative angle� in the world frame of

Fig. 4.2.
Simulink model  sl_lanechange 
that results in a lane changing 
maneuver. The pulse genera-
tor drives the steering  angle left 
then right. The vehicle has a de-
fault wheelbase L = 1

Fig. 4.3. Simple lane changing ma-
neuver. a Vehicle response as a 
function of time, b motion in the 
xy-plane, the vehicle moves in the 
positive x-direction

This angle can be anywhere in the inter-
val [–π, π) and is computed using the 
atan2 function.
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using a proportional  controller

which turns the steering wheel toward the target. Note the use of the operator � since θ ∗ 
and θ  are angles ∈ S1 not real numbers�. A Simulink model

>>  sl_drivepoint

is shown in Fig. 4.4. We specify a goal coordinate

>> xg = [5 5];

and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim('sl_drivepoint');

The variable r is an object that contains the simulation results from which we extract 
the confi guration as a function of time

>> q = r.fi nd('y');

The  vehicle’s path in the plane is

>> plot(q(:,1), q(:,2));

To run the Simulink model called model we fi rst load it 

>>  model

and a new window is popped up that displays the model in block-diagram form. The simulation 
can be started by pressing the play button on the toolbar of the model’s window. The model can 
also be run directly from the MATLAB command line

>> sim('model')

Many Toolbox models create additional fi gures to display robot animations or graphs as they run.
All models in this chapter have the simulation data export option set to create a MATLAB 

SimulationOutput object. All the unconnected output signals are concatenated, in port 
number order, to form a row vector and these are stacked to form a matrix y with one row per 
timestep. The corresponding time values form a vector t. These variables are packaged in a 
SimulationOutput object which is written to the workspace variable out or returned if the 
simulation is invoked from MATLAB

>> r = sim('model')

Displaying r or out lists the variables that it contains and their value is obtained using the fi nd 
method, for example

>> t = r.fi nd('t');

Fig. 4.4.  sl_drivepoint, the 
Simulink model that drives the ve-
hicle to a point. Red blocks have 
parameters that you can adjust to 
investigate the effect on perfor-
mance

The Toolbox function  angdiff com-
putes the difference between two angles 
and returns a difference in the interval 
[−π, π). This is also the shortest dis-
tance around the circle, as discussed in 
Sect. 3.3.4.1. Also available in the Toolbox 
Simulink blockset roblocks .

4.1  ·  Wheeled Mobile Robots
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which is shown in Fig. 4.5 for a number of starting poses. In each case the vehicle has 
moved forward and turned onto a path toward the goal point. The fi nal part of each path 
is a straight line and the fi nal  orientation therefore depends on the starting point.

4.1.1.2 
l
Following a Line

Another useful task for a mobile robot is to follow a line on the plane� defi ned by 
ax + by + c = 0. This requires two controllers to adjust steering. One controller

turns the robot toward the line to minimize the robot’s normal distance from the 
line

The second controller adjusts the heading angle, or orientation, of the vehicle to be 
parallel to the line

using the proportional  controller

The  combined  control law

turns the steering wheel so as to drive the robot toward the line and move along it.
The Simulink model

>>  sl_driveline

is shown in Fig. 4.6. We specify the target line as a 3-vector (a, b, c)

>> L = [1 -2 4];

Fig. 4.5.
Simulation results for
 sl_drivepoint for different 
initial poses. The goal is (5, 5)

2-dimensional lines in homogeneous 
form are discussed in Sect. C.2.1.
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and an initial pose

>> x0 = [8 5 pi/2];

and then simulate the motion

>> r = sim( 'sl_driveline');

The  vehicle’s path for a number of different starting poses is shown in Fig. 4.7.

4.1.1.3 
l
Following a  Trajectory

Instead of a straight line we might wish to follow a trajectory that is a timed sequence 
of points on the xy-plane. This might come from a  motion planner, such as discussed 
in Sect. 3.3 or 5.2, or in real-time based on the robot’s sensors.

A simple and effective algorithm for trajectory following is  pure pursuit in which 
the goal point (x∗hti, y∗hti) moves along the trajectory, in its simplest form at constant 
speed. The vehicle always heads toward the goal – think carrot and donkey.

This problem is very similar to the control problem we tackled in Sect. 4.1.1.1, mov-
ing to a point, except this time the point is moving. The robot maintains a distance d∗ 
behind the pursuit point and we formulate an error

Fig. 4.6. The Simulink model 
 sl_driveline drives the ve-
hicle along a line. The line param-
eters (a, b, c) are set in the work-
space variable L. Red blocks have 
parameters that you can adjust to 
investigate the effect on perfor-
mance

Fig. 4.7.
Simulation results from different 
initial poses for the line (1, −2, 4)

�

4.1  ·  Wheeled Mobile Robots
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that we regulate to zero by controlling the robot’s velocity using a proportional-inte-
gral (PI) controller

The integral term is required to provide a nonzero velocity demand v∗ when the 
following error is zero. The second controller steers the robot toward the target which 
is at the relative angle

and a simple proportional  controller

turns the steering wheel so as to drive the robot toward the target.
The Simulink model

>>  sl_pursuit

shown in Fig. 4.8 includes a target that moves at constant velocity along a piecewise 
linear path defi ned by a number of waypoints. It can be simulated

>> r = sim('sl_pursuit')

and the results are shown in Fig. 4.9a. The robot starts at the origin but catches up to, 
and follows, the moving goal. Figure 4.9b shows how the speed converges on a steady 
state value when following at the desired distance. Note the slow down at the end of 
each segment as the robot short cuts across the corner.

4.1.1.4 
l
Moving to a Pose

The fi nal control problem we discuss is driving to a specifi c pose (x∗, y∗, θ ∗). The con-
troller of Fig. 4.4 could drive the robot to a goal position but the fi nal  orientation de-
pended on the starting position.

Fig. 4.8. The Simulink model 
 sl_pursuit drives the vehicle 
along a piecewise linear trajecto-
ry. Red blocks have parameters 
that you can adjust to investigate 
the effect on performance
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In order to control the fi nal  orientation we fi rst rewrite Eq. 4.2 in matrix form

where the inputs to the  vehicle  model are the speed v and the turning rate ω which can 
be achieved by applying the steering angle�

We then transform the equations into polar coordinate form using the  notation shown 
in Fig. 4.10 and apply a change of variables

Fig. 4.9. Simulation results from 
pure pursuit. a Path of the robot 
in the xy-plane. The red dashed 
line is the path to be followed and 
the blue line in the path followed 
by the robot, which starts at the 
origin. b The speed of the robot 
versus time

Fig. 4.10.
Polar coordinate notation for 

the  bicycle model vehicle mov-
ing toward a goal pose: ρ  is the 

distance to the goal, β  is the an-
gle of the goal vector with re-
spect to the world frame, and 

α  is the angle of the goal vector 
with respect to the vehicle frame

We have effectively converted the Bicy-
cle kinematic  model to a Unicycle   model 
which we discuss in Sect. 4.1.2.

4.1  ·  Wheeled Mobile Robots

�
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which results in

and assumes the goal frame {G} is in front of the vehicle. The  linear control law

drives the robot to a unique equilibrium� at (ρ, α, β ) = (0, 0, 0). The intuition behind 
this controller is that the terms kρρ  and kαα  drive the robot along a line toward {G} 
while the term kββ  rotates the line so that β → 0. The closed-loop system

is stable so long as

The distance and bearing to the goal (ρ, α) could be measured by a camera or laser 
range fi nder, and the angle β  could be derived from α  and  vehicle  orientation θ  as 
measured by a compass.

For the case where the goal is behind the robot, that is α ∉ (−ü, ü], we reverse the 
vehicle by negating v and γ  in the control  law. The velocity v always has a constant 
sign which depends on the initial value of α .

So far we have described a regulator that drives the vehicle to the pose (0, 0, 0). To 
move the robot to an arbitrary pose (x∗, y∗, θ ∗) we perform a change of coordinates

This pose controller is implemented by the Simulink model

>>  sl_drivepose

shown in Fig. 4.11 and the transformation from Bicycle to Unicycle kinematics is clearly 
shown, mapping angular velocity ω  to steering wheel angle γ . We specify a goal pose

The control law introduces a disconti-
nuity at ρ = 0 which satisfies Brockett’s 
theorem.

Fig. 4.11. The Simulink model 
 sl_drivepose drives the ve-
hicle to a pose. The initial and fi -
nal poses are set by the workspace 
variable x0 and xf respectively. 
Red blocks have parameters that 
you can adjust to investigate the 
effect on performance
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>> xg = [5 5 pi/2];

and an initial pose

>> x0 = [9 5 0];

and then simulate the motion

>> r = sim( 'sl_drivepose');

As before, the simulation results are stored in r and can be plotted

>> q = r.fi nd('y');
>> plot(q(:,1), q(:,2));

to show the  vehicle’s path in the plane. The vehicle’s path for a number of starting pos-
es is shown in Fig. 4.12. The vehicle moves forwards or backward and takes a smooth 
path to the goal pose.�

4.1.2 
l
Differentially-Steered  Vehicle

Having steerable wheels as in a car-like vehicle is mechanically complex. Differential 
steering does away with this and steers by independently controlling the speed of the 
wheels on each side of the vehicle – if the speeds are not equal the vehicle will turn. Very 
simple differential steer robots have two driven wheels and a front and back castor to 
provide stability. Larger differential steer vehicles such as the one shown in Fig. 4.13 
employ a pair of wheels on each side, with each pair sharing a drive motor via some 
mechanical  transmission. Very large differential steer vehicles such as bulldozers and 
tanks sometimes employ caterpillar tracks instead of wheels. The vehicle’s velocity is 
by defi nition v in the vehicle’s x-direction, and zero in the y-direction since the wheels 
cannot slip sideways. In the vehicle frame {B} this is

The pose of the vehicle is represented by the body coordinate frame {B} shown in 
Fig. 4.14, with its x-axis in the vehicle’s forward direction and its origin at the centroid 
of the four wheels. The confi guration of the vehicle is represented by the generalized 
coordinates q = (x, y, θ) ∈ C where C⊂R2 × S1.

The vehicle follows a curved path centered on the   Instantaneous Center of Rotation 
(ICR). The left-hand wheels move at a speed of vL along an arc with a radius of RL 

Fig. 4.12.
Simulation results from differ-

ent initial poses to the fi nal pose 
(5, 5, ü). Note that in some cas-
es the robot has backed into the 

fi nal pose

The controller is based on the bicycle mod-
el but the Simulink model  Bicycle 
has additional hard nonlinearities in-
cluding steering angle limits and veloc-
ity rate limiting. If those limits are violated 
the pose controller may fail.

4.1  ·  Wheeled Mobile Robots
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Fig. 4.13.
Clearpath Husky robot with dif-
ferential drive steering (photo by 
Tim Barfoot)

Fig. 4.14.
Differential drive robot is shown 
in light grey, and the unicycle 
approximation is dark grey. The 
vehicle’s body coordinate frame 
is shown in red, and the world 
coordinate frame in blue. The 
vehicle follows a path around 
the Instantaneous Center of 
Rotation (ICR) and the distance 
from the ICR to the left and 
right wheels is RL and RR respec-
tively. We can use the alterna-
tive body frame {B′} for trajec-
tory tracking control
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while the right-hand wheels move at a speed of vR along an arc with a radius of RR. 
The angular velocity of {B} is

and since RR = RL + W we can write the turn rate

 (4.4)

in terms of the differential velocity and wheel separation W. The  equations of  motion 
are therefore

 (4.5)

where v= ½(vR + vL) and v∆ = vR − vL are the average and differential velocities re-
spectively. For a desired speed v and turn rate Ë we can solve for vR and vL. This kine-
matic  model is often called the unicycle  model  .

There are similarities and differences to the bicycle  model of Eq. 4.2. The turn rate 
for this vehicle is directly proportional to v∆ and is independent of speed – the vehicle 
can turn even when not moving forward. For the 4-wheel case shown in Fig. 4.14 the 
axes of the wheels do not intersect the ICR, so when the vehicle is turning the wheel 
velocity vectors vL and vR are not tangential to the path – there is a component in 
the lateral direction which violates the no-slip constraint. This causes skidding or 
scuffi ng� which is extreme when the vehicle is turning on the spot – hence differen-
tial steering is also called skid steering  . Similar to the car-like vehicle we can write 
an expression for velocity in the vehicle’s y-direction expressed in the world coor-
dinate frame

 (4.6)

which is the nonholonomic constraint  . It is important to note that the ability to turn 
on the spot does not make the vehicle holonomic and is fundamentally different to the 
ability to move in an arbitrary direction which we will discuss next.

If we move the vehicle’s reference frame to {B′} and ignore orientation we can re-
write Eq. 4.5 in matrix form as

and if a ≠ 0 this can be be inverted

 (4.7)

to give the required forward speed and turn rate to achieve an arbitrary velocity (¾, Á) 
for the origin of frame {B′}.

The Toolbox   Simulink block library roblocks  contains a block called Unicycle  
to implement this model and the coordinate frame shift a is one of its parameters. It 
has the same outputs as the Bicycle  model used in the last section. Equation 4.7 is 
implemented in the block called Tracking Controller .

4.1  ·  Wheeled Mobile Robots

From Sharp 1896

For indoor applications this can destroy 
carpet.
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4.1.3  
l
Omnidirectional  Vehicle

The vehicles we have discussed so far have a constraint on lateral  motion, the non-
holonomic constraint, which necessitates complex maneuvers in order to achieve 
some goal poses. Alternative wheel designs such as shown in Fig. 4.15 remove this 
constraint and allow  omnidirectional  motion. Even more radical is the spherical wheel 
shown in Fig. 4.16.

In this section we will discuss the mecanum or “Swedish” wheel� shown in Fig. 4.15b 
and schematically in Fig. 4.17. It comprises a number of rollers set around the circum-
ference of the wheel with their axes at an angle of α  relative to the axle of the wheel. 
The dark roller is the one on the bottom of the wheel and currently in contact with the 
ground. The rollers have a barrel shape so only one point on the roller is in contact 
with the ground at any time.

As shown in Fig. 4.17 we establish a wheel coordinate frame {W} with its x-axis 
pointing in the direction of wheel motion. Rotation of the wheel will cause forward 
velocity of Rϖ'w where R is the wheel radius and ϖ  is the wheel rotational rate. 
However because the roller is free to roll in the direction indicated by the green line, 
normal to the roller’s axis, there is potentially arbitrary velocity in that direction. A 
desired velocity v can be resolved into two components, one parallel to the direction 
of wheel motion 'w and one parallel to the rolling direction

 (4.8)

where vw is the speed due to wheel rotation and vr is the rolling speed. Expressing 
v = vx'w + vy(w in component form allows us to solve for the rolling speed vr = vy/ sin α 
and substituting this into the fi rst term we can solve for the required wheel velocity

 (4.9)

The required wheel rotation rate is then ϖ = vw / R. If α =  0 then vw is undefi ned 
since the roller axes are parallel to the wheel axis and the wheel can provide no trac-
tion. If α = ü as in Fig. 4.15a, the wheel allows sideways rolling but not sideways driv-
ing since there is zero coupling from vw to vy.

Fig. 4.15.
Two types of  omnidirectional 
wheel, note the different roller 
orientation. a Allows the wheel 
to roll sideways (courtesy Vex 
Robotics); b allows the wheel 
to drive sideways (courtesy of 
Nexus Robotics)

Fig. 4.16. The Rezero ballbot  de-
veloped at ETH Zurich (photo by 
Péter Fankhauser)

Mecanum was a Swedish company where 
the wheel was invented by Bengt Ilon  in 
1973. It is described in US patent 3876255.
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A single mecanum wheel does not allow any control in the rolling direction but 
for three or more mecanum wheels, suitably arranged, the motion in the rolling di-
rection of any one wheel will be driven by the other wheels. A vehicle with four me-
canum wheels is shown in Fig. 4.18. Its pose is represented by the body frame {B} 
with its x-axis in the vehicle’s forward direction and its origin at the centroid of the 
four wheels. The confi guration of the vehicle is represented by the generalized co-
ordinates q = (x, y, θ ) ∈ C where C⊂R2 × S1. The rolling axes of the wheels are or-
thogonal which means that when the wheels are not rotating the vehicle cannot roll 
in any direction or rotate.

The four wheel contact points indicated by grey dots have coordinate vectors Bpi. 
For a desired body velocity BvB and angular rate Bω the velocity at each wheel contact 
point is

and we then apply Eq. 4.8 and 4.9 to determine wheel rotational rates ϖi, while noting 
that α has the opposite sign for wheels 2 and 4 in Eq. 4.8.

Fig. 4.17.
Schematic of a mecanum wheel 

in plan view. The light roll-
ers are on top of the wheel, the 

dark roller is in contact with the 
ground. The green arrow indi-

cates the rolling direction

Fig. 4.18. a Kuka youBot, which has 
has four mecanum wheels (image 
courtesy youBot Store); b schemat-
ic of a vehicle with four mecanum 
wheels in the youBot confi guration

4.1  ·  Wheeled Mobile Robots
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4.2 
l
Flying Robots

In order to fl y, all one must do is simply miss the ground.
Douglas Adams

Flying robots or  unmanned aerial vehicles ( UAV) are becoming increasingly common and 
span a huge range of size and shape as shown in shown in Fig. 4.19. Applications include 
military operations, surveillance, meteorological observation, robotics research, commer-
cial photography and increasingly hobbyist and personal use. A growing class of fl ying 
machines are known as  micro air vehicles or MAVs which are smaller than 15 cm in all di-
mensions. Fixed wing UAVs are similar in principle to passenger aircraft with wings to pro-
vide lift, a propeller or jet to provide forward thrust and control surface for maneuvering. 
Rotorcraft UAVs have a variety of confi gurations that include conventional helicopter de-
sign with a main and tail rotor, a coax with counter-rotating coaxial rotors and  quadrotors. 
Rotorcraft UAVs have the advantage of being able to take off vertically and to hover.

Flying robots differ from ground robots in some important ways. Firstly they 
have 6 degrees of freedom  and their  confi guration q ∈ C where C ⊂R3 × S1× S1× S1. 
Secondly they are actuated by forces; that is their motion  model is expressed in terms 
of forces, torques and accelerations rather than velocities as was the case for the ground 
vehicle models – we use a dynamic rather than a kinematic  model. Underwater robots 
have many similarities to fl ying robots and can be considered as vehicles that fl y through 
water and there are underwater equivalents to fi xed wing aircraft and rotorcraft. The 
principal differences underwater are an upward buoyancy force, drag forces that are 
much more signifi cant than in air, and added mass.

In this section we will create a model for a  quadrotor fl ying vehicle such as shown 
in Fig. 4.19d. Quadrotors are now widely available, both as commercial products and 
as open-source projects. Compared to fi xed wing aircraft they are highly maneuverable 
and can be fl own safely indoors which makes them well suited for laboratory or hob-
byist use. Compared to conventional helicopters, with a large main rotor and tail rotor, 
the quadrotor is easier to fl y, does not have the complex swash plate mechanism and is 
easier to model and control.

Fig. 4.19.
Flying robots. a  Global Hawk 
unmanned aerial vehicle (UAV) 
(photo courtesy of NASA), b a 
micro air vehicle (MAV) (photo
courtesy of AeroVironment, Inc.),
c a 1 gram co-axial helicopter
with 70 mm rotor diameter 
(photo courtesy of Petter Muren 
and Proxfl yer AS), d a quadro-
tor which has four rotors and 
a block of sensing and control 
electronics in the middle (photo 
courtesy of 3DRobotics)
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The  notation for the  quadrotor  model is shown in Fig. 4.20. The body coordinate 
frame {B} has its z-axis downward following the aerospace convention. The quadrotor 
has four rotors, labeled 1 to 4, mounted at the end of each cross arm. Hex- and octo-
rotors are also popular, with the extra rotors providing greater  payload lift capability. 
The approach described here can be generalized to N rotors, where N is even.

The rotors are driven by electric motors powered by electronic speed controllers. 
Some low-cost quadrotors use small motors and reduction gearing to achieve suffi -
cient torque. The rotor speed is ϖ i and the thrust is an upward vector

 (4.10)

in the vehicle’s negative z-direction, where b > 0 is the lift constant that depends on 
the air density, the cube of the rotor blade radius, the number of blades, and the chord 
length of the blade.�

The translational  dynamics of the vehicle in world coordinates is given by   Newton’s 
second  law

 (4.11)

where v is the velocity of the vehicle’s center of mass in the world frame, g is gravita-
tional acceleration, m is the total mass of the vehicle, B is  aerodynamic friction and 
T = ΣTi is the total upward thrust. The fi rst term is the force of  gravity which acts 
downward in the world frame, the second term is the total  thrust in the vehicle frame 
rotated into the world coordinate frame and the third term is  aerodynamic drag.

Pairwise differences in rotor thrusts cause the vehicle to rotate. The torque about 
the vehicle’s x-axis, the rolling torque, is generated by the moments

The propeller blades on a rotor craft have fascinating dynamics. When fl ying into the wind the 
blade tip coming forward experiences greater lift while the receding blade has less lift. This is 
equivalent to a torque about an axis pointing into the wind and the rotor blades behave like a 
gyroscope (see Sect. 3.4.1.1) so the net effect is that the rotor blade plane pitches up by an amount 
proportional to the apparent or nett wind speed, countered by the blade’s bending stiffness and 
the change in lift as a function of blade bending. The pitched blade plane causes a component of 
the thrust vector to retard the vehicle’s forward motion and this velocity dependent force acts 
like a friction force. This is known as  blade fl apping and is an important characteristic of blades 
on all types of rotorcraft.

Fig. 4.20.
Quadrotor notation showing the 

four rotors, their thrust vectors 
and directions of rotation. The 

 body frame {B} is attached to the 
vehicle and has its origin at the 
vehicle’s center of mass. Rotors 

1 and 3 (blue) rotate counter-
clockwise (viewed from above) 

while rotors 2 and 4 (red) rotate 
clockwise

4.2  ·  Flying Robots

Close to the ground, height <2d, the ve-
hicle experiences increased lift due to a 
cushion of air beneath it – this is ground 
effect.
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where d is the distance from the rotor axis to the center of mass. We can write this in 
terms of rotor speeds by substituting Eq. 4.10

 (4.12)

and similarly for the y-axis, the pitching torque is

 (4.13)

The torque applied to each propeller by the motor is opposed by aerodynamic drag

where k depends on the same factors as b. This torque exerts a reaction torque on the 
airframe which acts to rotate the airframe about the propeller shaft in the opposite 
direction to its rotation. The total reaction torque about the z-axis is

 (4.14)

where the different signs are due to the different rotation directions of the rotors. A 
yaw torque can be created simply by appropriate coordinated control of all four ro-
tor speeds.

The total torque applied to the airframe according to Eq. 4.12 to 4.14 is τ = (τx, τy, τz)
T 

and the rotational acceleration is given by  Euler’s  equation of motion from Eq. 3.10

 (4.15)

where J is the 3 × 3   inertia matrix of the vehicle and ω  is the angular velocity vector.
The motion of the quadrotor is obtained by integrating the   forward  dynamics equa-

tions Eq. 4.11 and Eq. 4.15 where the forces and moments on the airframe 

 (4.16)

are functions of the rotor speeds. The matrix A is constant, and full rank if b, k, d > 0 
and can be inverted

 (4.17)

to solve for the rotor speeds� required to apply a specifi ed thrust T and moment τ to 
the airframe.

To control the vehicle we will employ a nested control structure which we describe 
for pitch and x-translational motion. The innermost loop uses a proportional and de-
rivative controller� to compute the required pitching torque on the airframe

 (4.18)

based on the error between desired and actual pitch angle.� The gains Kτ,p and Kτ,d 
are determined by classical control design approaches based on an approximate dy-

The rotational dynamics has a second-
order transfer function of Θy(s) / τy(s) =
1 / (Js2 + Bs) where J is rotational in-
ertia and B is aerodynamic damping 
which is generally quite small. To regu-
late a second-order system requires a 
proportional-derivative controller.

The term Ëp
* is commonly ignored.

The direction of rotation is as shown in 
Fig. 4.20. Control of motor velocity is dis-
cussed in Sect. 9.1.6.



117

namic model and then tuned to achieve good performance. The actual vehicle pitch 
angle θp

# would be estimated by an  inertial navigation system as discussed in Sect. 3.4 
and Ëp

# would be derived from gyroscopic sensors. The required rotor speeds are then 
determined using Eq. 4.17.

Consider a coordinate frame {B′} attached to the vehicle and with the same origin 
as {B} but with its x- and y-axes in the horizontal plane and parallel to the ground. The 
thrust vector is parallel to the z-axis of frame {B} and pitching the nose down, rotat-
ing about the y-axis by θp, generates a force

which has a component

that accelerates the vehicle in the B′x-direction, and we have assumed that θp is small. 
We can control the velocity in this direction with a proportional control  law

where Kf > 0 is a gain. Combining these two equations we obtain the desired pitch angle

 (4.19)

required to achieve the desired forward velocity. Using Eq. 4.18 we compute the re-
quired pitching torque, and then using Eq. 4.17 the required rotor speeds. For a vehicle 
in vertical equilibrium the total thrust equals the weight force so m / T ≈ 1 / g.

The actual vehicle velocity Bvx would be estimated by an  inertial  navigation system as 
discussed in Sect. 3.4 or a  GPS receiver. If the position of the vehicle in the xy-plane of the 
world frame is p ∈R2 then the desired velocity is given by the proportional control law

 (4.20)

based on the error between the desired and actual position. The desired velocity in 
the xy-plane of frame{B′} is

which is a function of the yaw angle θ y

Figure 4.21 shows a Simulink model of the complete control system for a  quadro-
tor� which can be loaded and displayed by

>>  sl_quadrotor

Working our way left to right and starting at the top we have the desired position 
of the quadrotor in world coordinates. The position error is rotated from the world 
frame to the body frame and becomes the desired velocity. The velocity controller 
implements Eq. 4.19 and its equivalent for the roll axis and outputs the desired pitch 
and roll angles of the quadrotor. The attitude controller is a proportional-derivative 
controller that determines the appropriate pitch and roll torques to achieve these 

This model is hierarchical and organized 
in terms of subsystems. Click the down 
arrow on a subsystem (can be seen on-
screen but not in the figure) to reveal 
the detail. Double-click on the subsys-
tem box to modify its parameters.

4.2  ·  Flying Robots
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angles based on feedback of current attitude and attitude rate.� The yaw control block 
determines the error in heading angle and implements a proportional-derivative con-
troller to compute the required yaw torque which is achieved by speeding up one pair 
of rotors and slowing the other pair.

Altitude is controlled by a proportional-derivative controller

which determines the average rotor speed. T0 = mg is the weight of the vehicle and this 
is an example of  feedforward  control – used here to counter the effect of gravity which 
otherwise is a constant disturbance to the altitude control loop. The alternatives to 
feedforward control would be to have very high gain for the altitude loop which often 
leads to actuator saturation and instability, or a proportional-integral (PI) control-
ler which might require a long time for the integral term to increase to a useful value 
and then lead to overshoot. We will revisit  gravity  compensation in Chap. 9 applied 
to arm-type robots.

The control mixer block combines the three torque demands and the vertical thrust 
demand and implements Eq. 4.17 to determine the appropriate rotor speeds. Rotor 
speed limits are applied here. These are input to the quadrotor block� which implements 
the forward  dynamics integrating Eq. 4.16 to give the position, velocity, orientation and 
 orientation rate. The output of this block is the state vector x = (0p, 0Γ, B¹, B¶) ∈R12. 
As is common in aerospace applications we represent orientation Γ and orientation 
rate ¶ in terms of   roll-pitch-yaw angles. Note that position and attitude are in the 
world frame while the rates are expressed in the body frame.

The parameters of a specifi c quadrotor can be loaded

>>  mdl_quadrotor

which creates a structure called quadrotor in the workspace, and its elements are 
the various dynamic properties of the quadrotor. The simulation can be run using the 
Simulink menu or from the MATLAB command line

>> sim( 'sl_quadrotor');

and it displays an animation in a separate window.� The vehicle lifts off and fl ies around 
a circle while spinning slowly about its own z-axis. A snapshot is shown in Fig. 4.22. 
The simulation writes the results from each timestep into a matrix in the workspace

>> about result
result [double] : 2412x16 (308.7 kB) 

Fig. 4.21. The Simulink® model
 sl_quadrotor which is a closed-
loop simulation of the quadrotor.
The vehicle takes off and fl ies in a cir-
cle at constant altitude. A Simulink 
bus is used for the 12-element state 
vector X output by the Quadrotor 
block. To reduce the number of 
lines in the diagram we have used 
Goto and From blocks to trans-
mit and receive the state vector

Note that according to the coordinate 
conventions shown in Fig. 4.20 x-direc-
tion motion requires a negative rotation 
about the y-axis (pitch angle) and y-di-
rection motion requires a positive rota-
tion about the x-axis (roll angle) so the 
gains have different signs for the roll and 
pitch loops.

The Simullink library roblocks also 
includes a block for an N-rotor vehicle.

Loading and displaying the model using 
>>  sl_quadrotor automatically 
loads the default quadrotor model. This 
is done by the PreLoadFcn callback set 
from model’s properties File+Model
Properties+Model Properties+Call-
backs+PreLoadFcn.
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which has one row per timestep, and each row contains the time followed by the state 
vector (elements 2–13) and the commanded rotor speeds ω i (elements 14–17). To 
plot x and y versus time is

>> plot(result(:,1), result(:,2:3));

To recap on control of the quadrotor. A position error results in a required trans-
lational velocity. To achieve this requires appropriate pitch and roll angles so that a 
component of the vehicle’s thrust acts in the horizontal plane and generates a force to 
accelerate the vehicle.� As it approaches its goal the airframe must be rotated in the 
opposite direction so that a component of thrust decelerates the motion. To achieve 
the pitch and roll angles requires differential propeller thrust to create a moment that 
rotationally accelerates the airframe.

This indirection from translational motion to rotational motion is a consequence 
of the vehicle being under-actuated – we have just four rotor speeds to adjust but the 
vehicle’s confi guration space is 6-dimensional. In the confi guration space we cannot 
move in the x- or y-direction, but we can move in the pitch- or roll-direction which 
results in motion in the x- or y-direction. The cost of under actuation is once again a 
maneuver. The pitch and roll angles are a means to achieve translation control and 
cannot be independently set.

4.3 
l
Advanced Topics

4.3.1 
l
Nonholonomic and Under-Actuated Systems

We introduced the notion of confi guration space   in Sect. 2.3.5 and it is useful to re-
visit it now that we have discussed several different types of mobile robot platform. 
Common vehicles – as diverse as cars , hovercrafts , ships  and aircraft  – are all able to 
move forward effectively but are unable to instantaneously move sideways. This is a 
very sensible tradeoff that simplifi es design and caters to the motion we most com-
monly require of the vehicle. Sideways motion for occasional tasks such as parking a 
car, docking a ship or landing an aircraft are possible, albeit with some complex ma-
neuvering but humans can learn this skill.

Consider a hovercraft  which moves over a planar  surface. To fully describe all its con-
stituent particles we need to specify three generalized coordinates: its position in the
xy-plane and its rotation angle. It has three degrees of freedom and its confi guration 
space is C⊂R2 × S1. This hovercraft has two propellers whose axes are parallel but not 

Fig. 4.22.
One frame from the quadrotor 
simulation. The marker on the 
ground plane is a projection of 

the vehicle’s centroid

The total thrust must be increased so 
that the vertical thrust component still 
balances gravity.

4.3  ·  Advanced Topics
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collinear. The sum of their thrusts provide a forward force and the difference in thrusts 
generates a yawing torque for steering. The number of actuators, two, is less than its 
degrees of  freedom   dimC= 3 and we call this an  under-actuated system . This imposes 
signifi cant limitations on the way in which it can move. At any point in time we can 
control the forward (parallel to the thrust vectors) acceleration and the rotational ac-
celeration of the hovercraft  but there is zero sideways (or lateral) acceleration  since it 
cannot generate any lateral thrust. Nevertheless with some clever maneuvering, like 
with a car, the hovercraft can follow a path that will take it to a place to one side of where 
it started. In the hovercraft’s 3-dimensional confi guration space this means that at any 
point there are certain directions in which acceleration is not possible. We can reach 
points in those direction but not directly, only by following some circuitous path.

All fl ying and underwater vehicles have a confi guration that is completely de-
scribed by six generalized coordinates – their position and orientation in 3D space. 
C⊂R3 × S1 × S1 × S1 where the orientation is expressed in some three-angle repre-
sentation – since dimC= 6 the vehicles have six degrees of freedom. A  quadrotor  has 
four actuators, four thrust-generating propellers, and this is fewer than its degrees 
of freedom making it  under-actuated. Controlling the four propellers causes motion 
in the up/down, roll, pitch and yaw directions of the confi guration space but not in 
the forward/backward or left/right directions. To access those degrees of freedom it 
is necessary to perform a maneuver : pitch down so that the thrust vector provides a 
horizontal force component, accelerate forward, pitch up so that the thrust vector 
provides a horizontal force component to decelerate, and then level out.

For a helicopter only four of the six degrees of freedom are practically useful: up/down, 
forward/backward, left/right and yaw. Therefore a helicopter requires a minimum of 
four actuators: the main rotor generates a thrust vector whose magnitude is controlled 
by the collective pitch and whose direction is controlled by the lateral and longitudi-
nal cyclic pitch. The tail rotor provides a yawing moment. This leaves two degrees of 
freedom unactuated, roll and pitch angles, but clever design ensures that gravity actu-
ates them and keeps them close to zero – without gravity a helicopter cannot work. A 
fi xed-wing aircraft moves forward very effi ciently and also has four actuators: engine 
thrust provides acceleration in the forward direction and the ailerons, elevator and 
rudder exert respectively roll, pitch and yaw moments on the aircraft.� To access the 
missing degrees of freedom such as up/down and left/right translation, the aircraft 
must pitch or yaw while moving forward.

The advantage of under-actuation  is having fewer actuators. In practice this means 
real savings in terms of cost, complexity and weight. The consequence is that at any 
point in its confi guration space there are certain directions in which the vehicle can-
not move. Full actuation  is possible but not common, for example the DEPTHX un-
derwater robot   shown on page 96 has six degrees of freedom  and six actuators . These 
can exert an arbitrary force and torque on the vehicle, allowing it to accelerate in any 
direction or about any axis.

A 4-wheeled car has many similarities to the hovercraft discussed above. It moves 
over a planar surface and its confi guration can be fully described by its generalized 
coordinates: its position in the xy-plane and a rotation angle. It has three degrees of 
freedom and its confi guration space is C⊂R2 × S1. A car has two actuators, one to 
move forwards or backwards and one to change the heading direction. A car, like a 
hovercraft , is  under-actuated.

We know from our experience with cars that we cannot move directly in certain 
directions and sometimes needs to perform a maneuver to reach our goal. A differ-
ential- or skid-steered vehicle, such as a tank, is also under-actuated – it has only two 
actuators, one for each track. While this type of vehicle can turn on the spot it cannot 
move sideways. To do that it has to turn, proceed, stop then turn – this need to ma-
neuver is the clear signature of an under-actuated system.

We might often wish for an ability to drive our car  sideways but the standard wheel 
provides real benefi t when cornering – lateral friction between the wheels and the 

Some low-cost hobby aircraft have no 
rudder and rely only on ailerons to bank 
and turn the aircraft. Even cheaper hob-
by aircraft have no elevator and rely on 
engine speed to control height.
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road provides, for free, the centripetal force which would otherwise require an extra 
actuator to provide. The hovercraft  has many similarities to a car but we can push a 
hovercraft sideways – we cannot do that with a car. This lateral friction is a distin-
guishing feature of the car.

The inability to slip sideways is a constraint, the   rolling constraint, on the velocity� 
of the vehicle just as under-actuation  is. A vehicle with one or more velocity constraints, 
due to under-actuation or a rolling constraint, is referred to as a nonholonomic system  . 
A key characteristic of these systems is that they cannot move directly from one con-
fi guration to another – they must perform a maneuver  or sequence of motions. A car 
has a velocity constraint due to its wheels and is also  under-actuated.

A holonomic constraint restricts the possible confi gurations that the system can 
achieve – it can be expressed as an equation written in terms of the confi guration 
variables.� A nonholonomic constraint such as Eq. 4.3 and 4.6 is one that restricts the 
velocity (or acceleration) of a system in confi guration space – it can only be expressed 
in terms of the derivatives of the confi guration variables.� The nonholonomic con-
straint does not restrict the possible confi gurations the system can achieve but it does 
preclude instantaneous velocity or acceleration in certain directions.

In control theoretic terms Brockett’s theorem (Brockett 1983) states that nonholo-
nomic systems are controllable but they cannot be stabilized to a desired state using 
a differentiable, or even continuous, pure state-feedback controller. A time-varying 
or nonlinear control  strategy is required which means that the robot follows some 
generally nonlinear path. One exception is an under-actuated system moving in 3-di-
mensional space within a force fi eld, for example a gravity fi eld – gravity acts like an 
additional actuator and makes the system linearly controllable (but not holonomic), 
as we showed for the quadrotor example in Sect. 4.2.

 Mobility parameters for the various robots that we have discussed here, and earlier 
in Sect. 2.3.5, are tabulated in Table 4.1. We will discuss under- and over-actuation   in 
the context of arm robots in Chap. 8.

4.4 
l
Wrapping Up

In this chapter we have created and discussed models and controllers for a number of 
common, but quite different, robot platforms. We fi rst discussed wheeled robots. For 
car-like vehicles we developed a kinematic model which we used to develop a number of 
different controllers in order that the platform could perform useful tasks such as driv-
ing to a point, driving along a line, following a trajectory or driving to a pose. We then 
discussed differentially steered vehicles on which many robots are based, and omnidi-
rectional robots based on novel wheel types. Then we we discussed a simple but common 

Table 4.1.
Summary of confi guration space  
characteristics for various robots. 

A nonholonomic system is
under-actuated and/or has a

rolling constraint           

The hovercraft , aerial and underwater 
vehicles   are controlled by forces so in 
this case the constraints are on vehicle 
acceleration in configuration space not 
velocity.

The constraint cannot be integrated to a 
constraint in terms of configuration vari-
ables, so such systems are also known as 
nonintegrable systems .

4.4  ·  Wrapping Up

For example fixing the end of the 10-joint 
robot arm introduces six holonomic con-
straints (position and orientation) so the 
arm would have only 4 degrees of freedom.
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fl ying vehicle, the quadrotor, and developed a dynamic model and a hierarchical control 
system that allowed the quadrotor to fl y a circuit. This hierarchical or nested control ap-
proach is described in more detail in Sect. 9.1.7 in the context of robot arms.

We also extended our earlier discussion about confi guration space to include the 
velocity constraints due to under actuation and rolling constraints from wheels.

The next chapters in this Part will discuss how to plan paths for robots through 
complex environments that contain obstacles and then how to determine the loca-
tion of a robot.

Further Reading

Comprehensive modeling of mobile ground robots is provided in the book by Siegwart 
et al. (2011). In addition to the models covered here, it presents in-depth discussion of 
a variety of wheel confi gurations with different combinations of driven wheels, steered 
wheels and passive castors. The book by Kelly (2013) also covers vehicle modeling and 
control. Both books also provide a good introduction to  perception, localization and 
 navigation which we will discuss in the coming chapters.

The paper by Martins et al. (2008) discusses kinematics, dynamics and control of 
differential steer robots. The Handbook of Robotics (Siciliano and Khatib 2016, part E) 
covers modeling and control of various vehicle types including aerial and underwater. 
The theory of helicopters with an emphasis on robotics is provided by Mettler (2003) 
but the defi nitive reference for helicopter  dynamics is the very large book by Prouty 
(2002). The book by Antonelli (2014) provides comprehensive coverage of modeling 
and control of underwater robots.

Some of the earliest papers on quadrotor modeling and control are by Pounds, 
Mahony and colleagues (Hamel et al. 2002; Pounds et al. 2004, 2006). The thesis by 
Pounds (2007) presents comprehensive aerodynamic modeling of a quadrotor with 
a particular focus on blade fl apping, a phenomenon well known in conventional he-
licopters but largely ignored for quadrotors. A tutorial introduction to the control of 
multi-rotor fl ying robots is given by Mahony, Kumar, and Corke (2012). Quadrotors 
are now commercially available from many vendors at quite low cost. There are also 
a number of hardware kits and open-source software projects such as  ArduCopter 
and  Mikrokopter.

Mobile ground robots are now a mature technology for transporting parts around 
manufacturing plants. The research frontier is now for vehicles that operate autono-
mously in outdoor environments (Siciliano and Khatib 2016, part F). Research into 
the automation of passenger cars has been ongoing since the 1980s and a number of 
automative manufacturers are talking about commercial autonomous cars by 2020.

Historical and interesting. The  Navlab project at Carnegie-Mellon University started 
in 1984 and a series of autonomous vehicles, Navlabs, were built and a large body of 
research has resulted. All vehicles made strong use of computer vision for navigation. 
In 1995 the supervised autonomous Navlab 5 made a 3 000-mile journey, dubbed “No 
Hands Across America” (Pomerleau and Jochem 1995, 1996). The vehicle steered itself 
98% of the time largely by visual sensing of the white lines at the edge of the road.

In Europe, Ernst Dickmanns and his team at Universität der Bundeswehr München 
demonstrated autonomous control of vehicles. In 1988 the  VaMoRs system, a 5 tonne 
Mercedes-Benz van, could drive itself at speeds over 90 km h−1 (Dickmanns and Graefe 
1988b; Dickmanns and Zapp 1987; Dickmanns 2007). The European  Prometheus Project 
ran from 1987–1995 and in 1994 the robot vehicles VaMP and VITA-2 drove more 
than 1 000 km on a Paris multi-lane highway in standard heavy traffi c at speeds up 
to 130 km h−1. They demonstrated autonomous driving in free lanes, convoy driv-
ing, automatic tracking of other vehicles, and lane changes with autonomous passing 
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of other cars. In 1995 an autonomous S-Class Mercedes-Benz made a 1 600 km trip 
from Munich to Copenhagen and back. On the German Autobahn speeds exceeded 
175 km h−1 and the vehicle executed traffi c maneuvers such as overtaking. The mean 
time between human interventions was 9 km and it drove up to 158 km without any 
human intervention. The UK part of the project demonstrated autonomous driving 
of an  XJ6 Jaguar with vision (Matthews et al. 1995) and radar-based sensing for lane 
keeping and collision avoidance. More recently, in the USA a series of Grand Challenges 
were run for autonomous cars. The 2005 desert and 2007 urban challenges are com-
prehensively described in compilations of papers from the various teams in Buehler 
et al. (2007, 2010). More recent demonstrations of self-driving vehicles are a journey 
along the fabled silk road described by Bertozzi et al. (2011) and a classic road trip 
through Germany by Ziegler et al. (2014).

Ackermann’s magazine can be found online at http://smithandgosling.wordpress.
com/2009/12/02/ackermanns-repository-of-arts and the carriage steering mecha-
nism is published in the March and April issues of 1818. King-Hele (2002) provides a 
comprehensive discussion about the prior work on steering geometry and Darwin’s 
earlier invention.

Toolbox and  MATLAB Notes

In addition to the Simulink Bicycle model used in this chapter the Toolbox also 
provides a MATLAB class which implements these kinematic equations and which 
we will use in Chap. 6. For example we can create a vehicle model with steer angle 
and speed limits

>> veh = Bicycle('speedmax', 1, 'steermax', 30*pi/180);

and evaluate Eq. 4.2 for a particular state and set of control inputs (v, γ)
>> veh.deriv([], [0 0 0], [0.3, 0.2])
ans =
    0.3000         0    0.0608

The  Unicycle class is used for a differentially-steered robot and has equivalent 
methods.

The Robotics System Toolbox™ from The MathWorks has support for differentially-steered 
mobile robots which can be created using the function  ExampleHelperRobotSimulator. 
It also includes a class robotics.PurePursuit that implements pure pursuit for a 
differential steer robot. An example is given in the Toolbox RST folder.

Exercises

1. For a 4-wheel vehicle with L = 2 m and width between wheel centers of 1.5 m
a) What steering wheel angle is needed for a turn rate of 10 deg s−1 at a forward 

speed of 20 km h−1?
b) compute the difference in wheel steer angle for Ackermann  steering around 

curves of radius 10, 50 and 100 m.
c) If the vehicle is moving at 80 km h−1 compute the difference in back wheel rota-

tion rates for curves of radius 10, 50 and 100 m.
2. Write an expression for turn rate in terms of the angular rotation rate of the two 

back wheels. Investigate the effect of errors in wheel radius and vehicle width.
3. Consider a car and bus with L = 4 and 12 m respectively. To follow a curve with 

radius of 10, 20 and 50 m determine the respective steered wheel angles.
4. For a number of steered wheel angles in the range −45 to 45° and a velocity of 

2 m s−1 overlay plots of the vehicle’s trajectory in the xy-plane.

4.4  ·  Wrapping Up
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5. Implement the � operator used in Sect. 4.1.1.1 and check against the code for 
angdiff.

6. Moving to a point (page 103) plot x, y and θ  against time.
7. Pure pursuit example (page 106)

a) Investigate what happens if you vary the look-ahead distance, heading gain or 
proportional gain in the speed controller.

b) Investigate what happens when the integral gain in the speed controller is zero.
c) With integral set to zero, add a constant to the output of the controller. What 

should the value of the constant be?
d) Add a velocity feedforward term.
e) Modify the pure pursuit example so the robot follows a slalom course.
f) Modify the pure pursuit example to follow a target moving back and forth along 

a line.
8. Moving to a pose (page 107)

a) Repeat the example with a different initial orientation.
b) Implement a parallel parking maneuver. Is the resulting path practical?
c) Experiment with different control parameters.

9. Use the MATLAB GUI interface to make a simple steering wheel and velocity con-
trol, and use this to create a very simple driving simulator. Alternatively interface 
a gaming steering wheel and pedal to MATLAB.

10. Adapt the various controllers in Sect. 4.1.1 to the differentially steered robot.
11. Derive Eq. 4.4 from the preceding equation.
12. For constant forward velocity, plot vL and vR as a function of ICR position along 

the y-axis. Under what conditions do vL and vR have a different sign?
13. Using Simulink implement a controller using Eq. 4.7 that moves the robot in its

y-direction. How does the robot’s orientation change as it moves?
14. Sketch the design for a robot with three mecanum wheels. Ensure that it cannot 

roll freely and that it can drive in any direction. Write code to convert from desired 
vehicle translational and rotational velocity to wheel rotation rates.

15. For the 4-wheel omnidirectional robot of Sect. 4.1.3 write an algorithm that will al-
low it to move in a circle of radius 0.5 m around a point with its nose always pointed 
toward the center of the circle.

16. Quadrotor (page 115)
a) At equilibrium, compute the speed of all the propellers.
b) Experiment with different control gains. What happens if you reduce the damp-

ing gains to zero?
c) Remove the gravity feedforward and experiment with large altitude gain or a 

PI controller.
d) When the vehicle has nonzero roll and pitch angles, the magnitude of the verti-

cal thrust is reduced and the vehicle will slowly descend. Add compensation to 
the vertical thrust to correct this.

e) Simulate the quadrotor fl ying inverted, that is, its z-axis is pointing upwards.
f) Program a ballistic motion. Have the quadrotor take off at 45 deg to horizontal 

then remove all thrust.
g) Program a smooth landing.
h) Program a barrel roll maneuver. Have the quadrotor fl y horizontally in its

x-direction and then increase the roll angle from 0 to 2π .
i) Program a fl ip maneuver. Have the quadrotor fl y horizontally in its x-direction 

and then increase the pitch angle from 0 to 2π .
j) Add another four rotors.
k) Use the function mstraj to create a trajectory through ten via points (Xi, Yi, Zi, θy) 

and modify the controller of Fig. 4.21 for smooth pursuit of this trajectory.
l) Use the MATLAB GUI interface to make a simple joystick control, and use this 

to create a very simple fl ying simulator. Alternatively interface a gaming joystick 
to MATLAB.
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