Chapter 10

Motion Planning

Motion planning is the problem of finding a robot motion from a start state
to a goal state that avoids obstacles in the environment and satisfies other
constraints, such as joint limits or torque limits. Motion planning is one of the
most active subfields of robotics, and it is the subject of entire books. The
purpose of this chapter is to provide a practical overview of a few common
techniques, using robot arms and mobile robots as the primary example systems
(Figure 10.1).

The chapter begins with a brief overview of motion planning. This is followed
by foundational material including configuration space obstacles and graph
search. We conclude with summaries of several different planning methods.

10.1 Overview of Motion Planning

A key concept in motion planning is configuration space, or C-space for short.
Every point in the C-space C corresponds to a unique configuration ¢ of the
robot, and every configuration of the robot can be represented as a point in
C-space. For example, the configuration of a robot arm with n joints can be
represented as a list of n joint positions, ¢ = (1,...,6,). The free C-space
Ctree consists of the configurations where the robot neither penetrates an obstacle
nor violates a joint limit.

In this chapter, unless otherwise stated, we assume that ¢ is an n-vector and
that C C R™. With some generalization, the concepts of this chapter apply to
non-Euclidean C-spaces such as C = SE(3).

The control inputs available to drive the robot are written as an m-vector
u € U C R™, where m = n for a typical robot arm. If the robot has second-

355

356 10.1. Overview of Motion Planning

Figure 10.1: (Left) A robot arm executing an obstacle-avoiding motion plan. The
motion plan was generated using Movelt! [180] and visualized using rviz in ROS (the
Robot Operating System). (Right) A car-like mobile robot executing parallel parking.

order dynamics, such as that for a robot arm, and the control inputs are forces
(equivalently, accelerations), the state of the robot is defined by its configuration
and velocity, © = (¢,v) € X. For ¢ € R", typically we write v = ¢. If we can
treat the control inputs as velocities, the state x is simply the configuration q.
The notation ¢(x) indicates the configuration ¢ corresponding to the state z,
and Xpee = {1’ | CI(JU) € Cfree}~

The equations of motion of the robot are written

&= f(z,u) (10.1)

or, in integral form,
T
z(T) = z(0) +/ F(x(t), u(t))dt. (10.2)
0

10.1.1 Types of Motion Planning Problems

With the definitions above, a fairly broad specification of the motion planning
problem is the following;:

Given an initial state £(0) = Tsare and a desired final state Tgoa1, find a time
T and a set of controls u : [0,T] — U such that the motion (10.2) satisfies
z(T) = Tgoa1 and q(z(t)) € Ciree for all t € [0,T].

It is assumed that a feedback controller (Chapter 11) is available to ensure
that the planned motion z(t), t € [0,7], is followed closely. It is also assumed
that an accurate geometric model of the robot and environment is available to
evaluate Cgee during motion planning.

There are many variations of the basic problem; some are discussed below.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

http://modernrobotics.org

Chapter 10. Motion Planning 357

Path planning versus motion planning. The path planning problem is a
subproblem of the general motion planning problem. Path planning is the
purely geometric problem of finding a collision-free path ¢(s),s € [0, 1],
from a start configuration ¢(0) = gstart t0 a goal configuration ¢(1) = ggoal,
without concern for the dynamics, the duration of motion, or constraints
on the motion or on the control inputs. It is assumed that the path
returned by the path planner can be time scaled to create a feasible tra-
jectory (Chapter 9). This problem is sometimes called the piano mover’s
problem, emphasizing the focus on the geometry of cluttered spaces.

Control inputs: m = n versus m < n. If there are fewer control inputs m
than degrees of freedom n, then the robot is incapable of following many
paths, even if they are collision-free. For example, a car has n = 3 (the
position and orientation of the chassis in the plane) but m = 2 (forward-
backward motion and steering); it cannot slide directly sideways into a
parking space.

Online versus offline. A motion planning problem requiring an immediate re-
sult, perhaps because obstacles appear, disappear, or move unpredictably,
calls for a fast, online, planner. If the environment is static then a slower
offline planner may suffice.

Optimal versus satisficing. In addition to reaching the goal state, we might
want the motion plan to minimize (or approximately minimize) a cost J,

e.g.,
T
J:/O L(x(t), u(t))dt.

For example, minimizing with L = 1 yields a time-optimal motion while
minimizing with L = uT (t)u(t) yields a “minimum-effort” motion.

Exact versus approximate. We may be satisfied with a final state x(T") that
is sufficiently close to zgoal, €.8., [|2(T) — Tgoal]| < €.

With or without obstacles. The motion planning problem can be challeng-
ing even in the absence of obstacles, particularly if m < n or optimality is
desired.

10.1.2 Properties of Motion Planners

Planners must conform to the properties of the motion planning problem as
outlined above. In addition, planners can be distinguished by the following
properties.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

http://modernrobotics.org

358 10.1. Overview of Motion Planning

Multiple-query versus single-query planning. If the robot is being asked
to solve a number of motion planning problems in an unchanging envi-
ronment, it may be worth spending the time building a data structure
that accurately represents Cgee. This data structure can then be searched
to solve multiple planning queries efficiently. Single-query planners solve
each new problem from scratch.

“Anytime” planning. An anytime planner is one that continues to look for
better solutions after a first solution is found. The planner can be stopped
at any time, for example when a specified time limit has passed, and the
best solution returned.

Completeness. A motion planner is said to be complete if it is guaranteed to
find a solution in finite time if one exists, and to report failure if there is
no feasible motion plan. A weaker concept is resolution completeness.
A planner is resolution complete if it is guaranteed to find a solution if
one exists at the resolution of a discretized representation of the problem,
such as the resolution of a grid representation of Cgee. Finally, a planner
is probabilistically complete if the probability of finding a solution, if
one exists, tends to 1 as the planning time goes to infinity.

Computational complexity. The computational complexity refers to charac-
terizations of the amount of time the planner takes to run or the amount of
memory it requires. These are measured in terms of the description of the
planning problem, such as the dimension of the C-space or the number of
vertices in the representation of the robot and obstacles. For example, the
time for a planner to run may be exponential in n, the dimension of the
C-space. The computational complexity may be expressed in terms of the
average case or the worst case. Some planning algorithms lend themselves
easily to computational complexity analysis, while others do not.

10.1.3 Motion Planning Methods

There is no single planner applicable to all motion planning problems. Below
is a broad overview of some of the many motion planners available. Details are
left to the sections indicated.

Complete methods (Section 10.3). These methods focus on exact repre-
sentations of the geometry or topology of Cgee, ensuring completeness.
For all but simple or low-degree-of-freedom problems, these representa-
tions are mathematically or computationally prohibitive to derive.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

http://modernrobotics.org

Chapter 10. Motion Planning 359

Grid methods (Section 10.4). These methods discretize Cyyee into a grid and
search the grid for a motion from g¢ga,¢ to a grid point in the goal region.
Modifications of the approach may discretize the state space or control
space or they may use multi-scale grids to refine the representation of Cgee
near obstacles. These methods are relatively easy to implement and can
return optimal solutions but, for a fixed resolution, the memory required
to store the grid, and the time to search it, grow exponentially with the
number of dimensions of the space. This limits the approach to low-
dimensional problems.

Sampling methods (Section 10.5). A generic sampling method relies on a
random or deterministic function to choose a sample from the C-space
or state space; a function to evaluate whether the sample is in Xpee; a
function to determine the “closest” previous free-space sample; and a lo-
cal planner to try to connect to, or move toward, the new sample from
the previous sample. This process builds up a graph or tree representing
feasible motions of the robot. Sampling methods are easy to implement,
tend to be probabilistically complete, and can even solve high-degree-of-
freedom motion planning problems. The solutions tend to be satisficing,
not optimal, and it can be difficult to characterize the computational com-
plexity.

Virtual potential fields (Section 10.6). Virtual potential fields create forces
on the robot that pull it toward the goal and push it away from obstacles.
The approach is relatively easy to implement, even for high-degree-of-
freedom systems, and fast to evaluate, often allowing online implementa-
tion. The drawback is local minima in the potential function: the robot
may get stuck in configurations where the attractive and repulsive forces
cancel but the robot is not at the goal state.

Nonlinear optimization (Section 10.7). The motion planning problem can
be converted to a nonlinear optimization problem by representing the path
or controls by a finite number of design parameters, such as the coefficients
of a polynomial or a Fourier series. The problem is to solve for the design
parameters that minimize a cost function while satisfying constraints on
the controls, obstacles, and goal. While these methods can produce near-
optimal solutions, they require an initial guess at the solution. Because
the objective function and feasible solution space are generally not convex,
the optimization process can get stuck far away from a feasible solution,
let alone an optimal solution.

Smoothing (Section 10.8). Often the motions found by a planner are jerky.

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

http://modernrobotics.org

360 10.2. Foundations

A smoothing algorithm can be run on the result of the motion planner to
improve the smoothness.

A major trend in recent years has been toward sampling methods, which are
easy to implement and can handle high-dimensional problems.

10.2 Foundations

Before discussing motion planning algorithms, we establish concepts used in
many of them: configuration space obstacles, collision detection, graphs, and
graph search.

10.2.1 Configuration Space Obstacles

Determining whether a robot at a configuration ¢ is in collision with a known
environment generally requires a complex operation involving a CAD model of
the environment and robot. There are a number of free and commercial software
packages that can perform this operation, and we will not delve into them here.
For our purposes, it is enough to know that the workspace obstacles partition
the configuration space C into two sets, the free space Cgee and the obstacle
space Cops, where C = Cpree U Cons. Joint limits are treated as obstacles in the
configuration space.

With the concepts of Cree and Cops, the path planning problem reduces to
the problem of finding a path for a point robot among the obstacles Cops. If
the obstacles break Cree into separate connected components, and ¢g.-¢ and
Qgoal do not lie in the same connected component, then there is no collision-free
path.

The explicit mathematical representation of a C-obstacle can be exceedingly
complex, and for that reason C-obstacles are rarely represented exactly. Despite
this, the concept of C-obstacles is very important for understanding motion
planning algorithms. The ideas are best illustrated by examples.

10.2.1.1 A 2R Planar Arm

Figure 10.2 shows a 2R planar robot arm, with configuration ¢ = (61, 62), among
obstacles A, B, and C in the workspace. The C-space of the robot is represented
by a portion of the plane with 0 < 6; < 27, 0 < 03 < 2m. Remember from
Chapter 2, however, that the topology of the C-space is a torus (or doughnut)
since the edge of the square at #; = 27 is connected to the edge 7 = 0; similarly,
0, = 27 is connected to 3 = 0. The square region of R? is obtained by slicing

Dec 2019 preprint of updated first edition of Modern Robotics, 2017. http://modernrobotics.org

http://modernrobotics.org

