
Chapter 10. Motion Planning 369

(a) (b) (c)

(d) (e) (f)

start goal

Figure 10.9: (a) The start and goal configurations for a square mobile robot (ref-
erence point shown) in an environment with a triangular and a rectangular obstacle.
(b) The grown C-obstacles. (c) The visibility graph roadmap R of Cfree. (d) The full
graph consists of R plus nodes at qstart and qgoal, along with the links connecting these
nodes to the visible nodes of R. (e) Searching the graph results in the shortest path,
shown in bold. (f) The robot is shown traversing the path.

path requires the robot to graze the obstacles, so we implicitly treat Cfree as
including its boundary.

10.4 Grid Methods

A search algorithm like A∗ requires a discretization of the search space. The
simplest discretization of C-space is a grid. For example, if the configuration
space is n-dimensional and we desire k grid points along each dimension, the
C-space is represented by kn grid points.

The A∗ algorithm can be used as a path planner for a C-space grid, with
the following minor modifications:

• The definition of a “neighbor” of a grid point must be chosen: is the robot
constrained to move in axis-aligned directions in configuration space or
can it move in multiple dimensions simultaneously? For example, for a
two-dimensional C-space, neighbors could be 4-connected (on the cardi-
nal points of a compass: north, south, east, and west) or 8-connected

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

370 10.4. Grid Methods

(diagonals allowed), as shown in Figure 10.10(a). If diagonal motions are
allowed, the cost to diagonal neighbors should be penalized appropriately.
For example, the cost to a north, south, east or west neighbor could be 1,
while the cost to a diagonal neighbor could be

√
2. If integers are desired,

for efficiency of the implementation, the approximate costs 5 and 7 could
be used.

• If only axis-aligned motions are used, the heuristic cost-to-go should be
based on the Manhattan distance, not the Euclidean distance. The
Manhattan distance counts the number of “city blocks” that must be
traveled, with the rule that diagonals through a block are not possible
(Figure 10.10(b)).

• A node nbr is added to OPEN only if the step from current to nbr is
collision-free. (The step may be considered collision-free if a grown version
of the robot at nbr does not intersect any obstacles.)

• Other optimizations are possible, owing to the known regular structure of
the grid.

An A∗ grid-based path planner is resolution-complete: it will find a solution
if one exists at the level of discretization of the C-space. The path will be a
shortest path subject to the allowed motions.

Figure 10.10(c) illustrates grid-based path planning for the 2R robot example
of Figure 10.2. The C-space is represented as a grid with k = 32, i.e., there is a
resolution of 360◦/32 = 11.25◦ for each joint. This yields a total of 322 = 1024
grid points.

The grid-based planner, as described, is a single-query planner: it solves
each path planning query from scratch. However, if the same qgoal will be
used in the same environment for multiple path planning queries, it may be
worth preprocessing the entire grid to enable fast path planning. This is the
wavefront planner, illustrated in Figure 10.11.

Although grid-based path planning is easy to implement, it is only appropri-
ate for low-dimensional C-spaces. The reason is that the number of grid points,
and hence the computational complexity of the path planner, increases expo-
nentially with the number of dimensions n. For instance, a resolution k = 100
in a C-space with n = 3 dimensions leads to kn = 1 million grid nodes, while
n = 5 leads to 10 billion grid nodes and n = 7 leads to 100 trillion nodes. An
alternative is to reduce the resolution k along each dimension, but this leads to
a coarse representation of C-space that may miss free paths.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

Chapter 10. Motion Planning 371

4-connected

8-connected

Euclid
ean

Manhattan

start

(a) (b) (c)

0

2π

θ1

θ2

goal

0 2π

Figure 10.10: (a) A 4-connected grid point and an 8-connected grid point for a space
n = 2. (b) Grid points spaced at unit intervals. The Euclidean distance between the
two points indicated is

√
5 while the Manhattan distance is 3. (c) A grid representation

of the C-space and a minimum-length Manhattan-distance path for the problem of
Figure 10.2.

01 1

1

1

2

2

22

2

2 2

2

3

3

3

33

3

3

3

34

9

4

4

44

4

4

5

5

5

5

6

6

6

66

7

7

7

7

7

7

8

8

8

8

8

8

14

9

9

9

9

10

10

10

10

10

11

11

11

12

1212

12

13

13

13

Figure 10.11: A wavefront planner on a two-dimensional grid. The goal configuration
is given a score of 0. Then all collision-free 4-neighbors are given a score of 1. The
process continues, breadth-first, with each free neighbor (that does not have a score
already) assigned the score of its parent plus 1. Once every grid cell in the connected
component of the goal configuration is assigned a score, planning from any location in
the connected component is trivial: at every step, the robot simply moves “downhill”
to a neighbor with a lower score. Grid points in collision receive a high score.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

372 10.4. Grid Methods

original cell

subdivision 1

subdivision 2

subdivision 3

original cell subdivision 1 subdivision 2 subdivision 3

Figure 10.12: At the original C-space cell resolution, a small obstacle (indicated
by the dark square) causes the whole cell to be labeled an obstacle. Subdividing the
cell once shows that at least three-quarters of the cell is actually free. Three levels of
subdivision results in a representation using ten total cells: four at subdivision level
3, three at subdivision level 2, and three at subdivision level 1. The cells shaded light
gray are the obstacle cells in the final representation. The subdivision of the original
cell is shown in the lower panel as a tree, specifically a quadtree, where the leaves of
the tree are the final cells in the representation.

10.4.1 Multi-Resolution Grid Representation

One way to reduce the computational complexity of a grid-based planner is to
use a multi-resolution grid representation of Cfree. Conceptually, a grid point is
considered an obstacle if any part of the rectilinear cell centered on the grid point
touches a C-obstacle. To refine the representation of the obstacle, an obstacle
cell can be subdivided into smaller cells. Each dimension of the original cell
is split in half, resulting in 2n subcells for an n-dimensional space. Any cells
that are still in contact with a C-obstacle are then subdivided further, up to a
specified maximum resolution.

The advantage of this representation is that only the portions of C-space
near obstacles are refined to high resolution, while those away from obstacles
are represented by a coarse resolution. This allows the planner to find paths
using short steps through cluttered spaces while taking large steps through wide
open space. The idea is illustrated in Figure 10.12, which uses only 10 cells to
represent an obstacle at the same resolution as a fixed grid that uses 64 cells.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

Chapter 10. Motion Planning 373

q

q̇

Figure 10.13: Sample trajectories emanating from three initial states in the phase
space of a dynamic system with q ∈ R. If the initial state has q̇ > 0, the trajectory can-
not move to the left (corresponding to negative motion in q) instantaneously. Similarly,
if the initial state has q̇ < 0, the trajectory cannot move to the right instantaneously.

For n = 2, this multi-resolution representation is called a quadtree, as
each obstacle cell subdivides into 2n = 4 cells. For n = 3, each obstacle cell
subdivides into 2n = 8 cells, and the representation is called an octree.

The multi-resolution representation of Cfree can be built in advance of the
search or incrementally as the search is being performed. In the latter case, if
the step from current to nbr is found to be in collision, the step size can be
halved until the step is free or the minimum step size is reached.

10.4.2 Grid Methods with Motion Constraints

The above grid-based planners operate under the assumption that the robot
can go from one cell to any neighboring cell in a regular C-space grid. This
may not be possible for some robots. For example, a car cannot reach, in one
step, a “neighbor” cell that is to the side of it. Also, motions for a fast-moving
robot arm should be planned in the state space, not just C-space, to take the
arm dynamics into account. In the state space, the robot arm cannot move in
certain directions (Figure 10.13).

Grid-based planners must be adapted to account for the motion constraints
of the particular robot. In particular, the constraints may result in a directed
graph. One approach is to discretize the robot controls while still making use
of a grid on the C-space or state space, as appropriate. Details for a wheeled
mobile robot and a dynamic robot arm are described next.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

374 10.4. Grid Methods

ω

v

ω

v

ω

v

unicycle diff-drive robot car

Figure 10.14: Discretizations of the control sets for unicycle, diff-drive, and car-like
robots.

10.4.2.1 Grid-Based Path Planning for a Wheeled Mobile Robot

As described in Section 13.3, the controls for simplified models of unicycle, diff-
drive, and car-like robots are (v, ω), i.e., the forward–backward linear velocity
and the angular velocity. The control sets for these mobile robots are shown in
Figure 10.14. Also shown are proposed discretizations of the controls, as dots.
Other discretizations could be chosen.

Using the control discretization, we can use a variant of Dijkstra’s algorithm
to find short paths (Algorithm 10.2).

The search expands from qstart by integrating forward each control for a time
∆t, creating new nodes for the paths that are collision-free. Each node keeps
track of the control used to reach the node as well as the cost of the path to the
node. The cost of the path to a new node is the sum of the cost of the previous
node, current, plus the cost of the action.

Integration of the controls does not move the mobile robot to exact grid
points. Instead, the C-space grid comes into play in lines 9 and 10. When a
node is expanded, the grid cell it sits in is marked “occupied.” Subsequently,
any node in this occupied cell will be pruned from the search. This prevents the
search from expanding nodes that are close by nodes reached with a lower cost.

No more than MAXCOUNT nodes, where MAXCOUNT is a value chosen by the
user, are considered during the search.

The time ∆t should be chosen so that each motion step is “small.” The
size of the grid cells should be chosen as large as possible while ensuring that
integration of any control for a time ∆t will move the mobile robot outside its
current grid cell.

The planner terminates when current lies inside the goal region, or when
there are no more nodes left to expand (perhaps because of obstacles), or when
MAXCOUNT nodes have been considered. Any path found is optimal for the choice
of cost function and other parameters to the problem. The planner actually

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

Chapter 10. Motion Planning 375

Algorithm 10.2 Grid-based Dijkstra planner for a wheeled mobile robot.

1: OPEN ← {qstart}
2: past_cost[qstart] ← 0
3: counter ← 1
4: while OPEN is not empty and counter < MAXCOUNT do
5: current ← first node in OPEN, remove from OPEN

6: if current is in the goal set then
7: return SUCCESS and the path to current

8: end if
9: if current is not in a previously occupied C-space grid cell then

10: mark grid cell occupied
11: counter ← counter + 1

12: for each control in the discrete control set do
13: integrate control forward a short time ∆t from current to qnew

14: if the path to qnew is collision-free then
15: compute cost of the path to qnew

16: place qnew in OPEN, sorted by cost

17: parent[qnew] ← current

18: end if
19: end for
20: end if
21: end while
22: return FAILURE

runs faster in somewhat cluttered spaces, as the obstacles help to guide the
exploration.

Some examples of motion plans for a car are shown in Figure 10.15.

10.4.2.2 Grid-Based Motion Planning for a Robot Arm

One method for planning the motion for a robot arm is to decouple the problem
into a path planning problem followed by a time scaling of the path:

(a) Apply a grid-based or other path planner to find an obstacle-free path in
C-space.

(b) Time scale the path to find the fastest trajectory that respects the robot’s
dynamics, as described in Section 9.4, or use any less aggressive time
scaling.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

376 10.4. Grid Methods

start goal

start

goal

Figure 10.15: (Left) A minimum-cost path for a car-like robot where each action has
identical cost, favoring a short path. (Right) A minimum-cost path where reversals
are penalized. Penalizing reversals requires a modification to Algorithm 10.2.

Since the motion planning problem is broken into two steps (path planning fol-
lowed by time scaling), the resultant motion will not be time-optimal in general.

Another approach is to plan directly in the state space. Given a state (q, q̇)
of the robot arm, let A(q, q̇) represent the set of accelerations that are feasible
on the basis of the limited joint torques. To discretize the controls, the set
A(q, q̇) is intersected with a grid of points of the form

n∑

i=1

caiêi,

where c is an integer, ai > 0 is the acceleration step size in the q̈i-direction, and
êi is a unit vector in the ith direction (Figure 10.16).

As the robot moves, the acceleration set A(q, q̇) changes but the grid remains
fixed. Because of this, and assuming a fixed integration time ∆t at each “step”
in a motion plan, the reachable states of the robot (after any integral number of
steps) are confined to a grid in state space. To see this, consider a single joint
angle of the robot, q1, and assume for simplicity zero initial velocity, q̇1(0) = 0.
The velocity at timestep k takes the form

q̇1(k) = q̇1(k − 1) + c(k)a1∆t,

where c(k) is any value in a finite set of integers. By induction, the velocity at
any timestep must be of the form a1kv∆t, where kv is an integer. The position
at timestep k takes the form

q1(k) = q1(k − 1) + q̇1(k − 1)∆t+
1

2
c(k)a1(∆t)2.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

Chapter 10. Motion Planning 377

q̈1

A(q, q̇)

a1

a2

q̈2

Figure 10.16: The instantaneously available acceleration set A(q, q̇) for a two-joint
robot, intersected with a grid spaced at a1 in q̈1 and a2 in q̈2, gives the discretized
control actions (shown as larger dots).

Substituting the velocity from the previous equation, we find that the position
at any timestep must be of the form a1kp(∆t)

2/2+q1(0), where kp is an integer.
To find a trajectory from a start node to a goal set, a breadth-first search can

be employed to create a search tree on the state space nodes. When exploration
is made from a node (q, q̇) in the state space, the set A(q, q̇) is evaluated to find
the discrete set of control actions. New nodes are created by integrating the
control actions for time ∆t. A node is discarded if the path to it is in collision
or if it has been reached previously (i.e., by a trajectory taking the same or less
time).

Because the joint angles and angular velocities are bounded, the state space
grid is finite and therefore it can be searched in finite time. The planner is
resolution-complete and returns a time-optimal trajectory, subject to the reso-
lution specified in the control grid and timestep ∆t.

The control-grid step sizes ai must be chosen small enough that A(q, q̇), for
any feasible state (q, q̇), contains a representative set of points of the control
grid. Choosing a finer grid for the controls, or a smaller timestep ∆t, creates a
finer grid in the state space and a higher likelihood of finding a solution amidst
obstacles. It also allows the choice of a smaller goal set while keeping points of
the state space grid inside the set.

Finer discretization comes at a computational cost. If the resolution of the
control discretization is increased by a factor r in each dimension (i.e., each ai is
reduced to ai/r), and the timestep size is divided by a factor τ , the computation
time spent growing the search tree for a given robot motion duration increases

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

378 10.5. Sampling Methods

by a factor rnτ , where n is the number of joints. For example, increasing the
control-grid resolution by a factor r = 2 and decreasing the timestep by a factor
τ = 4 for a three-joint robot results in a search that is likely to take 23×4 = 4096
times longer to complete. The high computational complexity of the planner
makes it impractical beyond a few degrees of freedom.

The description above ignores one important issue: the feasible control set
A(q, q̇) changes during a timestep, so the control chosen at the beginning of the
timestep may no longer be feasible by the end of the timestep. For that reason,
a conservative approximation Ã(q, q̇) ⊂ A(q, q̇) should be used instead. This
set should remain feasible over the duration of a timestep regardless of which
control action is chosen. How to determine such a conservative approximation
Ã(q, q̇) is beyond the scope of this chapter, but it has to do with bounds on how
rapidly the arm’s mass matrix M(q) changes with q and how fast the robot is
moving. At low speeds q̇ and short durations ∆t, the conservative set Ã(q, q̇) is
very close to A(q, q̇).

10.5 Sampling Methods

Each grid-based method discussed above delivers optimal solutions subject to
the chosen discretization. A drawback of these approaches, however, is their
high computational complexity, making them unsuitable for systems having
more than a few degrees of freedom.

A different class of planners, known as sampling methods, relies on a random
or deterministic function to choose a sample from the C-space or state space:
a function to evaluate whether a sample or motion is in Xfree; a function to
determine nearby previous free-space samples; and a simple local planner to try
to connect to, or move toward, the new sample. These functions are used to
build up a graph or tree representing feasible motions of the robot.

Sampling methods generally give up on the resolution-optimal solutions of
a grid search in exchange for the ability to find satisficing solutions quickly in
high-dimensional state spaces. The samples are chosen to form a roadmap or
search tree that quickly approximates the free space Xfree using fewer samples
than would typically be required by a fixed high-resolution grid, where the
number of grid points increases exponentially with the dimension of the search
space. Most sampling methods are probabilistically complete: the probability of
finding a solution, when one exists, approaches 100% as the number of samples
goes to infinity.

Two major classes of sampling methods are rapidly exploring random trees
(RRTs) and probabilistic roadmaps (PRMs). The former use a tree represen-
tation for single-query planning in either C-space or state space, while PRMs

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

http://modernrobotics.org

