

Real-Time 3D Visual SLAM with a Hand-Held RGB-D Camera

Nikolas Engelhard¹, Felix Endres¹, Jürgen Hess¹, Jürgen Sturm², Wolfram Burgard¹

¹University of Freiburg, Germany

²Technical University Munich, Germany

Motivation

- Our goal: Learn 3D models of (indoor) scenes
- Applications:
 - Architecture
 - Gaming
 - Archaeology

Related Work

Visual SLAM

[Konolige, IROS 09], [Klein, ISMAR 09]

Laser scanners [Wurm, ICRA 10]

RGB-D

[Pitzer, ICRA 10], [Henry, ISER 10]

RGB-D Sensor

- Principle: structured light
 - IR projector + IR camera
 - RGB camera
- Dense depth images
- Full video frame rate

Schematic Overview

Feature Extraction and Matching SURF: scale and rotation invariant descriptor

- Runtime
 - 600-800 features
 - OpenCV: 1 sec
 - SurfGPU: 40 ms
- Matching
 - FLANN
 - < 15 ms

Features in 3D

- Associate features with 3D points
- Problem: missing data (glass, occlusion)

Estimate Relative Pose

- RANSAC: good for estimating models in the presence of outliers
- Algorithm:
 - Find correspondences
 - Repeatedly sample three correspondences, estimate pose, count inliers (and optimize)
 - Return pose with most inliers
- Runtime: < 5 ms</p>

Correspondences in 2D

Image at time t

Image at time t+1

Pose Refinement

- Iterative Closest Point
- Generalized ICP [Segal, 2009]
 - Plane-to-Plane metric
- Local optimization (prone to local maxima)
- Needs good initialization
- Runtime: ~500 ms on a sampled subset

Pose Refinement (2)

Without ICP

With ICP

Loop Closing

- Summation of incremental error \rightarrow drift
- Detect loops and average errors
- Model as pose graph
- Pose graph optimization [Grisetti, 2010]
 - System is over-determined
 - Needs to find the best globally consistent alignment

Example Pose Graph

- Axes = estimated camera poses
- White edges = relative transformations

RGBD SLAM with ROS + Kinect

[http://www.youtube.com/watch?v=XejNctt2Fcs]

Free-Hand 3D Model Reconstruction with Kinect and RGBDSLAM

by

Autonomous Intelligent Systems Lab University of Freiburg, Germany

[http://www.youtube.com/watch?v=5qrBEPfEPaY]

Free-Hand 3D Model Reconstruction with Kinect and RGBDSLAM

by

Autonomous Intelligent Systems Lab University of Freiburg, Germany

Conclusions

- Visual SLAM system
 - SURF feature matching
 - RANSAC pose estimation
 - ICP pose refinement
 - Pose graph optimization
- Real-time
- Open-source (in ROS) + Tutorial available: http://www.ros.org/wiki/openni/Contests/ROS 3D/RGBD-6DSLAM
- \rightarrow Live demo after the coffee break!

Future Work

- Ground truth evaluation using a Motion Capturing system (in cooperation with ETH Zurich)
- Improve speed of ICP
- Parallelization

Thank you!