
Player/Stage Localization Approach:
Monte Carlo Localization

• Based on techniques developed by Fox, Burgard, Dellaert, Thrun (see
handout of AAAI’99 article)

(Movie illustrating approach)

Two types of localization problems

• “Global” localization – figure out where the robot is, but we don’t know
where the robot started
– Sometimes called the “hijacked robot problem”

• “Position tracking” – figure out where the robot is, given that we know
where the robot started

 The Monte Carlo Localization approach of Fox, et al (which is in
Player/Stage) can address both problems

Markov Localization

• Key idea: compute a probability distribution over all possible positions in
the environment.
– This probability distribution represents the likelihood that the robot is in a

particular location.

P(Robot Location)

X

Y

State space = 2D, infinite #states

Slide adapted from Dellaert presentation “19-Particles.ppt”

Side note: What does “Markov” mean?

• “Markov” means the system obeys the “Markov Property”

• “Markov Property”: the conditional probability of the future state is
dependent only on the current state. It is independent of the past
states.

• For the purposes of robot localization 
– Future sensor readings are conditionally independent of past readings,

given the true current position of the robot.

• Means we don’t have to save all the prior sensor data and apply it each
time we update beliefs on the robot’s location.

Markov Localization (con’t.)

• Let l = <x, y, θ> represent a robot position in space
• Bel(l) represents the robot’s belief that it is at position l

– Bel(l) is a probability distribution, centered on the correct position
– As the robot moves, Bel(l) is updated

• Two probabilistic models used to update Bel(l)
– Action (or motion) model: represents movements of robot

– Perception (or sensing) model: represents likelihood that robot senses a
particular reading at a particular position (related to our discussion last class)

() (| ,) () Bel l P l l a Bel l dl′ ′ ′¬ ∫
“Probability that an action a in position l moves

the robot to position l, times the likelihood the
robot is in position l , integrated over all possible

ways robot could have reached position l”

() (|) () Bel l P s l Bel lα¬ “Probability that robot will perceive s, given
that the robot is in position l, times the

likelihood the robot is in position l”

Can implement Markov Localization in different ways

Very commonly used approach:
• Kalman Filter – estimates state from a series of incomplete, noisy

measurements (e.g., sensor readings)
– At each point in time, a new estimate of robot’s position is made, using action

(sometimes called “motion”) model and sensor model
– Maintains a single estimate of robot’s position

(Also, other Markov Localization approaches we won’t go into here…)

motionmotion

sensor

Slide adapted from Dellaert presentation “19-Particles.ppt”

Different Concept for implementing Markov Localization:
Monte Carlo Localization using Particle Filtering

• Maintain multiple estimates of robot’s location

• Track possible robot positions, given all previous measurements

• Key idea: represent the belief that a robot is at a particular location by a
set of “samples”, or “particles”

Represent Bel(l) by set of N weighted, random samples, called particles:

where a sample, si , is of the form: <<x, y, θ>, p>

Here, <x, y, θ> represents robot’s position (just like before)
 p represents a weight, where sum of all p’s is 1 (analogous to
 discrete probability)

{ | 1.. }iS s i N= =

Side Note: What does “Monte Carlo” mean?

• Refers to techniques that are stochastic / random / non-deterministic

• Used in lots of modeling and simulation approaches
– Particularly useful when the system has significant uncertainty in the inputs

(e.g., robot localization!)

Updating beliefs using Monte Carlo Localization (MCL)

• As before, 2 models: Action (Motion) Model, Perception (Sensing) Model
• Robot Motion Model:

– When robot moves, MCL generates N new samples that approximate robot’s position
after motion command.

– Each sample is generated by randomly drawing from previous sample set, with
likelihood determined by p values.

– For sample drawn with position l, new sample l is generated from P(l | l, a)
– p value of new sample is 1/N

(From Fox, et al, AAAI-99)

Sampling-based
approximation

of position belief for
non-sensing robot

• Robot Sensing Model:
– Re-weight sample set, according to the likelihood that robot’s current sensors match

what would be seen at a given location

– Let < l, p> be a sample.
– Then, p ← α P(s | l) Here, s is the sensor measurement;
 α a normalization constant to enforce
 the sum of p’s equaling 1

• After applying Motion model and Sensing model:
– Resample, according to latest weights
– Add a few uniformly distributed, random samples

• Very helpful in case robot completely loses track of its location

Updating beliefs using Monte Carlo Localization (MCL) (con’t.)

Side Note: Common Terminology

• Prediction Phase: Applying motion model

• Measurement Phase: Applying sensor model

<x,y,θ>t-1 <x,y,θ> t

s

<x,y,θ> t

Slide adapted from Dellaert presentation “19-Particles.ppt”

Adapting the Size of the Sample Set

• Number of samples needed to achieve a desired level of accuracy varies
dramatically depending on the situation
– During global localization: robot is ignorant of where it is  need lots of

samples
– During position tracking: robot’s uncertainty is small  don’t need as many

samples

• MCL determines sample size “on the fly”
– Compare P(l) and P(l | s) (I.e., belief before and after sensing) to determine

sample size
– The more divergence, the more samples that are kept

What sensor to use for localization?

• Can work with:
– Sonar
– Laser
– Vision
– Radio signal strength

Example Results

Initially, robot doesn’t know where it is
(see particles representing possible robot

locations distributed throughout the environment)

After robot moves some, it gets better
estimate (see particles clustered an a few

areas, with a few random particles also
distributed around for robustness)

Return to Movie

More movies

• Dieter Fox movie: MCL using Sonar

• Dieter Fox movie: MCL using Laser

Summarizing the process: Particle Filtering

weighted S’
t StS’

t
St-1

Predict ReWeight Resample
Slide adapted from Dellaert presentation “19-Particles.ppt”

Mapping is much easier if robot can localize

• SLAM: Simultaneous Localization And Mapping

• If robot knows where it is, then it can merge its sensor measurements as it
moves, effectively building a map

• But, lots of details, like “closing the loop” in maps that are very important,
and challenging
– “Closing the loop”: splicing together pieces of the map that represent the same

part of the environment, but which are explored by robot at different times

• We won’t go into details here…

Example:

	Player/Stage Localization Approach: Monte Carlo Localization
	Two types of localization problems
	Markov Localization
	Side note: What does “Markov” mean?
	Markov Localization (con’t.)
	Can implement Markov Localization in different ways
	Different Concept for implementing Markov Localization: Monte Carlo Localization using Particle Filtering
	Side Note: What does “Monte Carlo” mean?
	Updating beliefs using Monte Carlo Localization (MCL)
	Updating beliefs using Monte Carlo Localization (MCL) (con’t.)
	Side Note: Common Terminology
	Adapting the Size of the Sample Set
	What sensor to use for localization?
	Example Results
	Return to Movie
	More movies
	Summarizing the process: Particle Filtering
	Mapping is much easier if robot can localize

