
Player/Stage Localization Approach:
Monte Carlo Localization 

• Based on techniques developed by Fox, Burgard, Dellaert, Thrun  (see 
handout of AAAI’99 article)

(Movie illustrating approach)



Two types of localization problems

• “Global” localization – figure out where the robot is, but we don’t know 
where the robot started
– Sometimes called the “hijacked robot problem”

• “Position tracking” – figure out where the robot is, given that we know 
where the robot started

  The Monte Carlo Localization approach of Fox, et al (which is in 
Player/Stage) can address both problems



Markov Localization

• Key idea:  compute a probability distribution over all possible positions in 
the environment.  
– This probability distribution represents the likelihood that the robot is in a 

particular location.
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State space = 2D, infinite #states

Slide adapted from Dellaert presentation “19-Particles.ppt”



Side note:  What does “Markov” mean?

• “Markov” means the system obeys the “Markov Property”

• “Markov Property”:  the conditional probability of the future state is 
dependent only on the current state.  It is independent of the past 
states.

• For the purposes of robot localization  
– Future sensor readings are conditionally independent of past readings, 

given the true current position of the robot.

• Means we don’t have to save all the prior sensor data and apply it each 
time we update beliefs on the robot’s location.



Markov Localization (con’t.)

• Let    l = <x, y, θ>   represent a robot position in space
• Bel(l)  represents the robot’s belief that it is at position l

–  Bel(l) is a probability distribution, centered on the correct position
–  As the robot moves, Bel(l) is updated 

• Two probabilistic models used to update Bel(l) 
– Action (or motion) model:  represents movements of robot

– Perception (or sensing) model:  represents likelihood that robot senses a 
particular reading at a particular position  (related to our discussion last class)

( ) ( | , )  ( )  Bel l P l l a Bel l dl′ ′ ′¬ ∫
“Probability that an action a in position l moves 

the robot to position l, times the likelihood the 
robot is in position l , integrated over all possible 

ways robot could have reached position l”

( )  ( | )  ( )  Bel l P s l Bel lα¬ “Probability that robot will perceive s, given 
that the robot is in position l, times the 

likelihood the robot is in position l”



Can implement Markov Localization in different ways

Very commonly used approach:
• Kalman Filter – estimates state from a series of incomplete, noisy 

measurements (e.g., sensor readings)
– At each point in time, a new estimate of robot’s position is made, using action 

(sometimes called “motion”) model and sensor model
– Maintains a single estimate of robot’s position

(Also, other Markov Localization approaches we won’t go into here…)
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Different Concept for implementing Markov Localization:  
Monte Carlo Localization using Particle Filtering

• Maintain multiple estimates of robot’s location

• Track possible robot positions, given all previous measurements 

• Key idea:  represent the belief that a robot is at a particular location by a 
set of “samples”, or “particles”

Represent Bel(l) by set of N weighted, random samples, called particles:

where a sample, si ,  is of the form: <<x, y, θ>, p>

Here, <x, y, θ> represents robot’s position (just like before)
                  p       represents a weight, where sum of all p’s is 1  (analogous to 
                           discrete probability)

{ | 1.. }iS s i N= =



Side Note:  What does “Monte Carlo” mean?

• Refers to techniques that are stochastic / random / non-deterministic

• Used in lots of modeling and simulation approaches
– Particularly useful when the system has significant uncertainty in the inputs 

(e.g., robot localization!)



Updating beliefs using Monte Carlo Localization (MCL)

• As before, 2 models:   Action (Motion) Model, Perception (Sensing) Model
• Robot Motion Model:

– When robot moves, MCL generates N new samples that approximate robot’s position 
after motion command.

– Each sample is generated by randomly drawing from previous sample set, with 
likelihood determined by p values.

– For sample drawn with position l,  new sample l  is generated from P(l | l, a)
– p value of new sample is 1/N

(From Fox, et al, AAAI-99)

Sampling-based 
approximation 

of position belief for 
non-sensing robot



• Robot Sensing Model:
– Re-weight sample set, according to the likelihood that robot’s current sensors match 

what would be seen at a given location

– Let < l, p> be a sample.
– Then, p ← α P(s | l)                             Here, s is the sensor measurement;
                                                                           α a normalization constant to enforce 
                                                                                the sum of p’s equaling 1

• After applying Motion model and Sensing model:
– Resample, according to latest weights
– Add a few uniformly distributed, random samples

• Very helpful in case robot completely loses track of its location

Updating beliefs using Monte Carlo Localization (MCL) (con’t.)



Side Note:  Common Terminology

• Prediction Phase:  Applying motion model

• Measurement Phase:  Applying sensor model

<x,y,θ>t-1 <x,y,θ> t

s

<x,y,θ> t
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Adapting the Size of the Sample Set

• Number of samples needed to achieve a desired level of accuracy varies 
dramatically depending on the situation
– During global localization:  robot is ignorant of where it is  need lots of 

samples
– During position tracking: robot’s uncertainty is small  don’t need as many 

samples

• MCL determines sample size “on the fly”
– Compare P(l) and P(l | s) (I.e., belief before and after sensing) to determine 

sample size
– The more divergence, the more samples that are kept



What sensor to use for localization?

• Can work with:
– Sonar 
– Laser 
– Vision 
– Radio signal strength



Example Results

Initially, robot doesn’t know where it is
(see particles representing possible robot 

locations distributed throughout the environment)

After robot moves some, it gets better 
estimate (see particles clustered an a few 

areas, with a few random particles also 
distributed around for robustness)



Return to Movie



More movies

• Dieter Fox movie:  MCL using Sonar

• Dieter Fox movie:  MCL using Laser



Summarizing the process:  Particle Filtering
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Mapping is much easier if robot can localize

• SLAM:  Simultaneous Localization And Mapping

• If robot knows where it is, then it can merge its sensor measurements as it 
moves, effectively building a map

• But, lots of details, like “closing the loop” in maps that are very important, 
and challenging
– “Closing the loop”:  splicing together pieces of the map that represent the same 

part of the environment, but which are explored by robot at different times

• We won’t go into details here…

Example:
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