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Treat the trail region as an object, like a 
person or car, that we are trying to 
detect in the image
This is a classic computer vision problem
Shape here means position, scale, 

orientation, curvature—actually fewer 
parameters than many other classes of 
object

A machine learning approach would be to 
train on trail examples

Full range of gestalt cues are available, 
but which are most valuable?



Light/dark: Known a priori, or just based 
on local contrast?



Color: Helps with discrimination, but 
more complicated to define similarity, 
especially with variable illumination 
(e.g., shadows)



Color: Single color may not adequately 
describe trail region—how to compare 
mixtures of colors?



Texture: Homogeneity vs. heterogeneity, 
isotropy vs. anisotropy

A problematic case…



Gross shape: Trails taper from bottom to top, 
nearby sides are nearly straight → triangular 
under perspective



Regardless of scene appearance, bottom 
line is that we don’t want to run into 
obstacles  

If we’re lucky, obstacles will actually 
delineate the trail
Look for height contrast or variance as 

trail’s distinguishing feature?



Laser range-finder (aka ladar/lidar)

Velodyne

$60K



Laser range-finder (aka ladar/lidar)

SICK LMS

$5K



Stereopsis (static or motion-based)

Field

Left image (undistorted) Left and right images overlaid as  red & blue channels



Stereopsis (static or motion-based)

Field

Left image (undistorted) Estimated depth



Stereopsis (static or motion-based)

Forest

Left image (undistorted) Estimated depth



Treat the trail region as an object, like a 
person or car, that we are trying to 
detect in the image
This is a classic computer vision problem
Shape here means position, scale, orientation, 

curvature—actually fewer parameters than 
many other classes of object

A machine learning approach would be to 
train on trail examples

Full range of gestalt cues are available, 
but which are most valuable?

What about the top-down vs. bottom-up 
question?



Very bottom-up approach:
1. Assume sides of image are off-trail
2. Build histogram of colors of off-trail pixels 

(yellow boxes)
3. Classify remaining image pixels as trail/non-trail 

based on likelihood given by histogram
4. Median x coordinate of trail pixels is trail center
5. Adjust off-trail boxes   

(RobVis 2008)



Another bottom-up method, but at higher level
Superpixels (Felzenszwalb, 2004; Malik, 2001) 

are pixels clustered by proximity and color 
similarity   

Felzenszwalb Malik



Preprocess image into 
superpixels

Repeatedly generate randomized 
groupings of superpixels as trail 
hypotheses

Choose mostly likely grouping 
based on weighted combination 
of 
 Shape likelihood: How “triangular” is 

grouping?
 Appearance likelihood: How strongly 

does color inside grouping contrast 
with colors of neighboring 
superpixels?

 Deformation likelihood: Are overall 
size, width-to-height ratio, etc. of 
fitted triangle in expected ranges?





Approximate trail boundary viewed under 
perspective as triangle T with bottom side defined 
by image bottom

To measure contrast, look at equal-width 
triangular neighbor regions TL and TR

T
TL

TR



 Compute color features (aka textons) via k-means 
clustering in CIE-LAB space (following Blas, 2008)

 In a sense this is like superpixels without proximity
 Clustering done over 3 different feature sets (these 

are used for feature switching)
 AB (chromaticity only)
 L (brightness only)
 LAB (full color space)

 Model trail region T’s color distribution via texton 
histogram HT

LAB textons (k = 
8)

AB (k = 8) L (k = 8)Input image



Weighted sum of measures of:
Color/brightness contrast of center trail 

region with neighboring regions  
Quantify similarity using standard histogram 

metric of chi-squared distance χ2

Homogeneity of trail region—the fewer 
colors, the more likely 
Quantify heterogeneity with entropy of 

histogram

 Lappear(T) = α[χ2(h, hL) + χ2(h, hR)] + β(1 – H(h))



Find and track good trail candidates via MAP 
estimation using particle filtering
 For static images, trail estimate is highest 

likelihood particle found after t iterations
 For image sequences, state is sum                          

of particles weighted by their likelihoods
 Small fraction of particles are sampled from 

image-wide prior (rather than near previous state)



 For display, feature set selected is indicated by color of fitted triangle: LAB = red, 
AB = green, L = blue



Triangle approach works 
visually, but results cannot 
easily be translated into robot 
coordinates
 IGVC 2008 showed that 

camera with narrow field of 
view was very limiting

As with IGVC 2009, calibrated 
omnidirectional camera allows 
for trail shape hypothesis to 
be expressed in robot rather 
than image coordinates 

Don’t have to process whole 
image—just “look” where you 
need to



LAB textons AB textons

1.Width
2.Curvature
3.Lateral offset
4.Heading error





Left camera view Right camera view





Combine structural information                    
(ladar + stereo) with appearance                        
in trail likelihood function

Visual odometry for obstacle registration and 
map creation

 Incorporate trail color model into tracked state

Tracking of corresponding 
stereo features

Feature triangulation and robust
3-D motion estimation

Motion integration and accumulation
of obstacle observations in global map



Stereo depth estimation for small 
& negative obstacles 

Optical flow for visual 
odometry 
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