Difference between revisions of "CISC220 F2023 Lab5"

From class_wiki
Jump to: navigation, search
(2. BST timing comparison [1 point])
(2. BST timing comparison [1 point])
Line 24: Line 24:
 
===2. BST timing comparison [1 point] ===  
 
===2. BST timing comparison [1 point] ===  
  
In addition to the normal parts of your README file, add a section with a comparison of '''BSTree_Fast''' vs. '''BSTree_Slow''' with respect to ''efficiency.''  Specifically, devise, carry out, and report the results of several timing tests with (a) large input files and (b) sets of multiple commands such as <tt>frequency</tt>, <tt>delete</tt>, and/or <tt>findMin()/findMax()</tt>.  To get precise timing under Unix, use the ''gettimeofday()'' function.  There is a code snippet under the Unix, Linux and Mac section [http://www.songho.ca/misc/timer/timer.html here] that should help.
+
In addition to the normal parts of your README file, add a section with a comparison of '''BSTree_Fast''' vs. '''BSTree_Slow''' with respect to ''efficiency.''  Specifically, devise, carry out, and report the results of several timing tests with (a) large input files and (b) sets of multiple commands such as <tt>frequency</tt>, <tt>remove</tt>, and/or <tt>findMin()/findMax()</tt>.  To get precise timing under Unix, use the ''gettimeofday()'' function.  There is a code snippet under the Unix, Linux and Mac section [http://www.songho.ca/misc/timer/timer.html here] that should help.
  
 
===3. Submission===
 
===3. Submission===

Revision as of 09:28, 28 September 2023

1. Binary Search Tree (BST) implementation [4 points]

Your task for this lab is to fill in the key member functions of a templatized binary search tree class BSTree_Fast (starter code and some test files are linked here). The class is defined in bst_fast_and_slow.hh -- this is where you should make all of your additions. Specifically, you need to complete the following functions using a traditional pointer-based linked structure as detailed in Chap. 6.2 of the textbook:

  • insert(key). Put key into the BST. When a key is inserted more than once, there should not be multiple BSTNodes created, but rather the number member variable of the original BSTNode should be incremented
  • remove(key): Delete key from the BST if it exists
  • int frequency(key): How many of a given key are in the BST? This is the number variable referred to above
  • key findMin(): What is the smallest key in the BST?
  • key findMax(): What is the largest key in the BST?
  • int computeHeight(): What is the height of the BST tree?

For comparison and debugging purposes, a naive implementation called BSTree_Slow which uses an unordered STL vector of pointers to BSTNodes (the left, right, and parent pointer variables of each node are NULL and unused) is provided. This version does not attempt to keep things organized, so it is rather inefficient. Note that this NOT the same as representing a binary tree's structure with an array as in Lab #4. Also, height is undefined for this implementation so computeHeight() returns -1.

main.cpp (linked above) contains driver code to demonstrate (aka test) the functionality of the BSTree_X class -- you can choose whether the Fast or Slow version is running by commenting/uncommenting the appropriate class declaration. The driver works as follows: two input filenames are expected as arguments to the program. The first input file contains words which are automatically added to the tree with insert(). The second file contains one or more of the following commands:

  • SIZE: Print the result of the tree size() member function
  • HEIGHT: Print the result of the tree size function
  • MIN: Print the result of the tree size function
  • MAX: Print the result of the tree size function
  • FREQUENCY arg: Print the result of calling frequency(arg)
  • REMOVE arg: Call remove(arg), with the special interpretation of arg == "MAX" as an instruction to remove(findMax()), and similarly for arg == "MIN". Otherwise arg is just interpreted as a literal string

You should not have to change how any of the driver code works in main.cpp, except to choose which version of the BST you are running and possibly insert print statements for debugging. Just be aware that in Gradescope main.cpp will set the BST version to Fast.

2. BST timing comparison [1 point]

In addition to the normal parts of your README file, add a section with a comparison of BSTree_Fast vs. BSTree_Slow with respect to efficiency. Specifically, devise, carry out, and report the results of several timing tests with (a) large input files and (b) sets of multiple commands such as frequency, remove, and/or findMin()/findMax(). To get precise timing under Unix, use the gettimeofday() function. There is a code snippet under the Unix, Linux and Mac section here that should help.

3. Submission

  • Include a PDF file <Your Name>_README.pdf which contains:
    • Answers to the questions above. Do NOT include the full listing from your print() functions. However, a call to print() for both versions of the BST should be in your driver code.
    • The timing measurements requested, in a nicely-formatted table, as well as comments on why you think the timings vary for the different (1) BST implementations, (2) operations being performed, and (3) files from which the BSTs were created.
  • Rename your code directory <Your Last Name>_Lab5 and create a single tar/zip/rar file out of it named <Your Last Name>_Project1.tar (or .zip or .rar, etc.).
  • Submit it in Canvas by midnight at the end of Tuesday, October 5