Difference between revisions of "CISC849 F2019"

From class_wiki
Jump to: navigation, search
(Schedule)
(Schedule)
Line 174: Line 174:
 
|12
 
|12
 
|Oct. 3
 
|Oct. 3
|<!--Particle filters and localization-->
+
|Perception for stepping<!--Particle filters and localization-->
|<!--[http://www2.informatik.uni-freiburg.de/~wurm/papers/hornung10iros.pdf Humanoid Robot Localization in Complex Indoor Environments], A. Hornung, K. Wurm, M. Bennewitz, IROS 2010-->
+
|"Learning Locomotion over Rough Terrain using Terrain Templates", M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, IROS 2009<!--[http://www2.informatik.uni-freiburg.de/~wurm/papers/hornung10iros.pdf Humanoid Robot Localization in Complex Indoor Environments], A. Hornung, K. Wurm, M. Bennewitz, IROS 2010-->
 
|<!--[http://robots.stanford.edu/probabilistic-robotics/ppt/particle-filters.ppt Thrun particle filtering slides]-->
 
|<!--[http://robots.stanford.edu/probabilistic-robotics/ppt/particle-filters.ppt Thrun particle filtering slides]-->
 
|-
 
|-
Line 181: Line 181:
 
|Oct. 8
 
|Oct. 8
 
|style="background:rgb(255, 102, 0)"|NO CLASS<br>''Instructor away''<!--Motion planning background-->
 
|style="background:rgb(255, 102, 0)"|NO CLASS<br>''Instructor away''<!--Motion planning background-->
|"Learning Locomotion over Rough Terrain using Terrain Templates", M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, IROS 2009
+
|
|[https://docs.google.com/presentation/d/1HQdeZ2JjATrWN7Y7BIgpeiFoIJa0J44P2d0bN_YSwRY/edit?usp=sharing slides]<br>[https://www.youtube.com/watch?v=G4lT9CLyCNw DeepLoco highlights video] (6:23)
+
|<!--[https://docs.google.com/presentation/d/1HQdeZ2JjATrWN7Y7BIgpeiFoIJa0J44P2d0bN_YSwRY/edit?usp=sharing slides]<br>-->
 
|-
 
|-
 
|13
 
|13
 
|Oct. 10
 
|Oct. 10
|Perception for stepping
+
|Imitation learning
 
|<!--[http://wiki.ros.org/gmapping gmapping] demos: [http://www.youtube.com/watch?v=7iIDdvCXIFM Pirobot], [http://www.youtube.com/watch?v=_jwBKo0SXng MIT]<br>[http://www.youtube.com/watch?v=F8pdObV_df4 Darmstadt "Hector" mapping]<br>
 
|<!--[http://wiki.ros.org/gmapping gmapping] demos: [http://www.youtube.com/watch?v=7iIDdvCXIFM Pirobot], [http://www.youtube.com/watch?v=_jwBKo0SXng MIT]<br>[http://www.youtube.com/watch?v=F8pdObV_df4 Darmstadt "Hector" mapping]<br>
 
Nao 3-D mapping and planning: [http://www.youtube.com/watch?v=srcx7lPoIfw 1], [http://www.youtube.com/watch?v=g2NZ_EasJv0 2]-->
 
Nao 3-D mapping and planning: [http://www.youtube.com/watch?v=srcx7lPoIfw 1], [http://www.youtube.com/watch?v=g2NZ_EasJv0 2]-->
|<!--ETH SLAM lectures: [http://nameless.cis.udel.edu/class_data/849_s2018/ETH_SLAM_I_2017.pdf 1] [http://nameless.cis.udel.edu/class_data/849_s2018/ETH_SLAM_II_2017.pdf 2]<!--[http://nameless.cis.udel.edu/class_data/cisc829/oct18/thrun_fastslam.pdf Thrun FastSLAM slides] (grids from slide 29)<br>[http://www.youtube.com/watch?v=3Yl2aq28LFQ Accompanying Stachniss lecture]-->''HW #2 due Friday, March 23''
+
|
 +
* [http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots], Giusti ''et al.'', ''IEEE Robotics and Automation Letters'', 2016
 +
* [https://arxiv.org/pdf/1604.07316.pdf End to End Learning for Self-Driving cars], Bojarski ''et al.'', 2016
 +
* [https://www.youtube.com/watch?v=NJU9ULQUwng Dave-2 driving a Lincoln], [https://www.youtube.com/watch?v=umRdt3zGgpU Quadcopter Navigation in the Forest...], [https://www.youtube.com/watch?v=hNsP6-K3Hn4 DAgger for drones]
 +
* [https://www.youtube.com/watch?v=ZMhO1FO_j0o&t=566s Hal Daume DAgger explanation] (9:26-12:43)
 +
|[http://rll.berkeley.edu/deeprlcourse/ Berkeley Levine course] [http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_2_behavior_cloning.pdf IL slides] (DAgger defined on slide 14); [https://katefvision.github.io/katefSlides/immitation_learning_I_katef.pdf CMU Fragkiadaki IL slides] (1-29)
 +
<!--ETH SLAM lectures: [http://nameless.cis.udel.edu/class_data/849_s2018/ETH_SLAM_I_2017.pdf 1] [http://nameless.cis.udel.edu/class_data/849_s2018/ETH_SLAM_II_2017.pdf 2]<!--[http://nameless.cis.udel.edu/class_data/cisc829/oct18/thrun_fastslam.pdf Thrun FastSLAM slides] (grids from slide 29)<br>[http://www.youtube.com/watch?v=3Yl2aq28LFQ Accompanying Stachniss lecture]--><!--''HW #2 due Friday, March 23''-->
 
|-
 
|-
 
|style="background:rgb(102, 204, 255)"|14
 
|style="background:rgb(102, 204, 255)"|14
 
|Oct. 15
 
|Oct. 15
 +
|Reinforcement learning
 
|
 
|
|
+
|[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html UCL Silver course]: [http://nameless.cis.udel.edu/class_data/849_s2018/intro_RL.pdf RL slides] (7-42), [https://www.youtube.com/watch?v=2pWv7GOvuf0 RL video] (15:40-21:20, 1:02:13-1:04:40 contains movies missing from PDF); [http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf Stanford deep-Q lecture slides] (23-62); [https://www.nature.com/articles/nature14236.pdf original deep-Q paper]
|
 
 
|-
 
|-
 
|15
 
|15
 
|Oct. 17
 
|Oct. 17
 +
|RL for locomotion
 
|
 
|
 
|
 
|
|
+
* [https://www.youtube.com/watch?v=G4lT9CLyCNw DeepLoco highlights video] (6:23)
 
|-
 
|-
 
|style="background:rgb(102, 204, 255)"|16
 
|style="background:rgb(102, 204, 255)"|16
 
|Oct. 22<br>''Withdraw deadline''
 
|Oct. 22<br>''Withdraw deadline''
|Imitation learning
 
 
|
 
|
* [http://rpg.ifi.uzh.ch/docs/RAL16_Giusti.pdf A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots], Giusti ''et al.'', ''IEEE Robotics and Automation Letters'', 2016
+
|
* [https://arxiv.org/pdf/1604.07316.pdf End to End Learning for Self-Driving cars], Bojarski ''et al.'', 2016
+
<!--<br>''Paper presentation choice due''-->
* [https://www.youtube.com/watch?v=NJU9ULQUwng Dave-2 driving a Lincoln], [https://www.youtube.com/watch?v=umRdt3zGgpU Quadcopter Navigation in the Forest...], [https://www.youtube.com/watch?v=hNsP6-K3Hn4 DAgger for drones]
 
* [https://www.youtube.com/watch?v=ZMhO1FO_j0o&t=566s Hal Daume DAgger explanation] (9:26-12:43)
 
|[http://rll.berkeley.edu/deeprlcourse/ Berkeley Levine course] [http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_2_behavior_cloning.pdf IL slides] (DAgger defined on slide 14); [https://katefvision.github.io/katefSlides/immitation_learning_I_katef.pdf CMU Fragkiadaki IL slides] (1-29)<br>''Paper presentation choice due''
 
 
|-
 
|-
 
|17
 
|17
 
|Oct. 24
 
|Oct. 24
|Reinforcement learning
 
 
|
 
|
|[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html UCL Silver course]: [http://nameless.cis.udel.edu/class_data/849_s2018/intro_RL.pdf RL slides] (7-42), [https://www.youtube.com/watch?v=2pWv7GOvuf0 RL video] (15:40-21:20, 1:02:13-1:04:40 contains movies missing from PDF); [http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf Stanford deep-Q lecture slides] (23-62); [https://www.nature.com/articles/nature14236.pdf original deep-Q paper]
+
|
 +
|
 
|-
 
|-
 
|style="background:rgb(102, 204, 255)"|18
 
|style="background:rgb(102, 204, 255)"|18

Revision as of 13:42, 27 August 2019

Course information

Title CISC849 Robot Vision and Learning
Description Survey of image-based 2-D and 3-D sensing algorithms for mobile robot navigation and interaction, including motion estimation, obstacle segmentation, terrain modeling, and object recognition, with a particular focus on deep learning techniques to dramatically improve performance.
When Tuesdays and Thursdays, 2-3:15 pm
Where Gore 317
Instructor Christopher Rasmussen, 446 Smith Hall, cer@cis.udel.edu
Office hours Mondays and Wednesdays, 2-3 pm
Grading
  • 20% Oral paper presentation (individual, 30 minutes)
  • 30% Two programming assignments (individual)
  • 50% Final project (1 or 2 students)
    • 10% = 2 page proposal, including planned methods, citations of relevant papers, data sources, and division of labor
    • 10% = Joint 15-minute presentation on final results, with accompanying slides
    • 30% = Actual results and estimated effort, factoring in difficulty of problem tackled
Academic policies Programming projects are due by midnight of the deadline day (with a grace period of a few hours afterward...after sunrise is definitely late). A late homework is a 0 without a valid prior excuse. To give you a little flexibility, you have 6 "late days" to use on homeworks to extend the deadline by one day each without penalty. No more than three late days may be used per assignment. Late days will automatically be subtracted, but as a courtesy please notify the instructor in an e-mail of your intention to use late days before the deadline. See submission instructions below.

Students can discuss problems with one another in general terms, but must work independently on programming assignments. This also applies to online and printed resources: you may consult them as references (as long as you cite them), but the words and source code you turn in must be yours alone. The University's policies on academic dishonesty are set forth in the student code of conduct here.

Homeworks Assignment submissions should consist of a directory containing all code (your .cpp files, makefile, etc.), any output data generated (e.g., images, movies, etc.), and an explanation of your approach, what worked and didn't work, etc. contained in a separate text or HTML file. Do not submit executables or .o files, please! The directory you submit for each assignment should be packaged by tar'ing and gzip'ing it or just zip'ing it. The resulting file should be submitted through Canvas.

You may develop your C/C++ code in any fashion that is convenient--that is, with any compiler and operating system that you want. However, we will be grading your homework on a Linux system with a makefile, and so you must avoid OS- and hardware-specific functions and provide a makefile for us that will work (like one of the templates above).

Possible Papers to Present (not a complete list)


Schedule

Note: The blue squares in the "#" column below indicate Tuesdays.

# Date Topic Links/Readings/videos Assignments/slides
1 Aug. 27 Background slides
2 Aug. 29 Finish background
3 Sep. 3 Introduction to DARPA Urban Challenge (UC), Robotics Challenge (DRC) and algorithm components
4 Sep. 5 Current grand challenges
5 Sep. 10
Register/add deadline
Traditional 2-D/3-D shape/object segmentation, part I
6 Sep. 12 Traditional 2-D/3-D shape/object segmentation, part II
7 Sep. 17 Image classification background Stanford CS231n Image classification slides (6-61),
8 Sep. 19 More classification background Loss/optimization slides (8-10, 37-77, finish with web demo), Intro to NN (83-88)
HW #1 due
9 Sep. 24 Introduction to convolutional neural networks Stanford CS231n Convolutional Neural Networks slides (15-63, 71-78), CNN architectures (8-36), Detection and Segmentation slides (15-27)
10 Sep. 26 Finish detection & segmentation background, introduction to TensorFlow library YOLOv2, Redmon and Farhadi (CVPR 2017) Stanford CS231n Detection and Segmentation slides (44-49, 53-85), deep learning software slides (21-33, 40-59)
TensorFlow code sample from Stanford lecture
11 Oct. 1 More on TensorFlow programming and detection/segmentation HW #2
12 Oct. 3 Perception for stepping "Learning Locomotion over Rough Terrain using Terrain Templates", M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, IROS 2009
Oct. 8 NO CLASS
Instructor away
13 Oct. 10 Imitation learning Berkeley Levine course IL slides (DAgger defined on slide 14); CMU Fragkiadaki IL slides (1-29)
14 Oct. 15 Reinforcement learning UCL Silver course: RL slides (7-42), RL video (15:40-21:20, 1:02:13-1:04:40 contains movies missing from PDF); Stanford deep-Q lecture slides (23-62); original deep-Q paper
15 Oct. 17 RL for locomotion
16 Oct. 22
Withdraw deadline
17 Oct. 24
18 Oct. 29 Student paper presentation
19 Oct. 31 Student paper presentation Project proposal due Sunday, April 15
20 Nov. 5 Student paper presentations
21 Nov. 7 Student paper presentations
22 Nov. 12 Student paper presentation
23 Nov. 14 Student paper presentations
24 Nov. 19 Student paper presentation
25 Nov. 21 Instructor paper presentation Rasmussen, "Real-Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels", N. Fairfield, G. Kantor, and D. Wettergreen, JFR 2007 DepthX slides
Nov. 26 NO CLASS
Thanksgiving break
Nov. 28 NO CLASS
Thanksgiving break
26 Dec. 3 Final project presentations part I
27 Dec. 5 Final project presentations part II