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Abstract

We have been developing an architecture for vision-
based mavigation which relies on continuous feedback
from visual “landmarks” to control robot motion. In
this approach, landmarks are consistently located and
acquired as they come into view. To make this pro-
cess efficient and robust, it is important that the im-
age locations of these features can be predicted from
available image information. In this article, we dis-
cuss methods for direct image-based prediction of point
and line features for a mobile system operating on a
planar surface. Preliminary experimental results sug-
gest that image-based prediction can be performed ef-
ficiently and with sufficient accuracy to ensure robust
acquisition of navigational landmarks.

1 Introduction

Most prior research on robot navigation has focused
on developing methods for computing and/or control-
ling the position of a mobile system with respect to
some geometric or topological map [1, 3, 9, 11, 12,
13, 14, 16]. However, there are applications where the
ability to explicitly represent and reason about geom-
etry is not essential. For example, consider a robot
assigned to follow a routine delivery route on a flexi-
ble manufacturing floor, or a robot sentry assigned to
patrol the perimeter of a recently established military
encampment. In principle, there is no need to develop
an extensive navigation system for these functions—
the robot simply needs to constantly and reliably re-
peat the same path on a continuous basis. The system
can be “programmed” by simply “showing” it the path
that it should follow.

This problem offers a number of challenges to many
published approaches to robot navigation. Given that
the environment and the allowable paths through it
may may change often and abruptly, it is unlikely that
a prior geometric model will be available, eliminating
approaches which rely on them [1, 11, 12]. For simi-
lar reasons, “situated” approaches which implicitly use

strong assumptions about the environment are also in-
applicable [3, 9]. While it is possible to arrange fidu-
cial markers for such a task, it is onerous to erect and
calibrate such markers. Finally, the fact that the robot
may need to navigate accurately in large open areas
suggests that topological approaches based on place
recognition and approaches relying on range-limited
sensing such as sonar [13, 14] may have difficulty sup-
porting accurate and reliable motion.

Our aim is to develop a vision-based navigation sys-
tem capable of performing these types of tasks. Our
choice of vision is based on the fact that it can observe
large areas to find useful “landmarks” for defining the
path, and our desire to use passive sensing techniques.
In a previous paper [6], we outlined the general archi-
tecture of such a vision-based navigation system. The
central idea in this design is to constantly track im-
age features used as landmarks for navigation. Such
tracking is cheap and simple [7]; it quickly and con-
tinually reduces image information to the time history
of a small set of feature locations. This time history
is learned once (the teaching phase), and subsequent
motion is defined by controlling the robot so as to
replicate the learned feature time history. This pro-
vides constant and accurate control of position, yet
avoids the overhead of computing an explicit geomet-
ric model of the environment.

One central component of this architecture is the
ability to effectively predict and acquire landmarks
as they come into view. Given a geometric model,
prediction could be handled using a well-understood
combination of odometry and estimation [11, 12]. In
a purely sensor-based approach, prediction must be
performed solely on image information. This problem
is closely related to the image transfer problem dis-
cussed in the area of projective geometry applied to vi-
sion [2, 5, 8, 15]. In this paper, we describe specializa-
tions of image transfer methods for the two commonly
used image features, point-features and line features,
for a mobile system operating on a planar surface.



2 Problem Formulation

In an image- or appearance-based approach to nav-
igation, the robot can be said to be at a place if what
it sees corresponds, with some tolerance, to what can
be seen at this place. Given that we know which loca-
tion we are at from its appearance, we can use visual
tracking to extend the definition of place to a range
of locations, and require that all (or nearly all) of the
world corresponds to some place. We then utilize the
continuity of our representation to predict changes of
view between places, thereby eliminating the need for
a strong notion of recognition. Navigation is posed as
the problem of moving from place to place—that is,
from view to view—using techniques developed in the
area of visual servoing [4, 10].

In order to make this problem precise, we define the
following terms (detailed more fully in [6]). We use
the term marker to denote any visual entity that is in
some way visually distinctive so that it can be tracked
as the robot moves. A scene is a set of markers which
are tracked concurrently in an image. A sequence is
an ordered list of scenes containing the same set of
markers. A map is a directed graph of sequences. In
operation, the robot first “learns” a series of sequences
(a map) by discovering, tracking, and recording the
motion of visual features as it moves. Later, in order to
move from its current location to a specified goal, the
robot “follows” a series of stored sequences or partial
sequences in the map, all directed head to tail, from
its current scene to the chosen goal scene.

Central to this approach is the idea that the tran-
sition from one sequence to the next, a process which
involves determining the image locations of a new set
of markers, can be accomplished using only image in-
formation. This motivates the problem considered in
this paper:

Given the locations of n markers tracked
through a sequence of images during learn-
ing, and the locations of m < n of the same
markers in an image acquired during navi-
gation, predict the location of the remaining
n — m markers.

Specifically, the n markers are those needed to initi-
ate tracking for the next sequence in the path. The m
known markers are those common to both the current
sequence and the next sequence — in other words, the
markers whose location is already known. Our goal is
to establish a lower bound on m as well as to describe
algorithms for performing the prediction for different
types of markers.

Within this paper, we simplify the problem by only
considering the locations of the markers in two images

within the sequence since this is sufficient for the pre-
diction task. Thus, the information at our disposal
is two scenes with n markers (the map images) taken
at two different locations in the world, and a third
scene (the current image) which contains a subset of
m markers. We are to predict the location of each of
the remaining n — m markers.

The problem of predicting the location of markers
or features without explicitly reconstructing their 3-D
Euclidean location is known in photogrammetry as im-
age transfer[2]. Using projective geometry and projec-
tive invariance, methods for performing image transfer
have been developed for point and line features under
a variety of assumptions about the configurations of
the features, the camera model (orthographic projec-
tion, affine, perspective, projective), and availability
of camera calibration [2, 5, 8].

For point features, Barrett et. al. show that linear
methods can be used to transfer points from two map
images to a third image if eight additional points are
observed in all three images [2]. Hartley’s methods for
projective reconstruction of lines can be used for line
transfer, and it requires observing thirteen lines in all
three images [8]. In both of these general methods, the
camera can be at an arbitrary 3-D position and orien-
tation, and the camera may have different calibration
parameters at each location. However, transfer can
be accomplished with many fewer points or lines if
the motion of the camera is constrained, if the camera
parameters at each location are identical, and if some
of the calibration parameters are available.

In particular, we will consider a mobile robot mov-
ing on a plane (the ground plane) with a camera whose
optical axis is parallel to the ground plane. We will
model the camera as pin-hole perspective, and with-
out loss of generality assume unit focal length. We
define a world coordinate system centered at the op-
tical center of the first camera with the x and y axes
spanning the image plane and the z-axis aligned with
the optical axis. Now, consider three camera locations
denoted by coordinate frames 0,1 and 2. For planar
robot motion, the rotation matrix R and translation
vector T' between frames 0 and 1 take on the form

e e I
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Similarly, a rotation matrix S and translation vector
U characterizes the relation of frames 0 and 2.

As the camera moves, the height of the camera cen-
ter remains constant; the plane through the moving
camera center is parallel to the ground plane and is



called the horizon plane. For any camera position, ev-
ery point on the horizon plane projects to a single line
in the image named the horizon line (the intersection
of the horizon plane with the image plane).

3 Prediction

We now develop transfer methods for two types of
markers: point-like markers and line-like markers.
3.1 Points

Equation and unknown counting can be used to
show that a minimum of two point features are re-
quired to perform prediction. This leads to a set of
quartic equations to be solved. Unfortunately, we
have observed that the results are unacceptably noisy,
perhaps due to inaccuracies in the camera calibration
coupled with image noise propagating through non-
linear equations. Instead, we have developed a sim-
pler method based on a specialization of the method
by Barrett et. al. [2]. For a particular point x whose
coordinates in the world frame (and the frame of cam-
era 0) are (z,y,2)!, the image coordinates (p,q) for
camera 1 can be expressed as:

R(X - T) = (m’7ylazl)t7

and
(p—p0) =2'/2" (¢—q0)=y'/

where (p0, ¢0) is the center of projection in internal
camera coordinates. When the camera is fully cali-
brated, R has the form in (1). When it is uncalibrated,
the cosines and sines become arbitrary numbers.

These expressions can be rearranged into a system
of equations that are linear in the homogeneous coor-
dinates of x,

(%)

Denoting the image coordinates of the corresponding
feature in image 0 by (p, 7), the projection equations
for camera O can be written similarly. Combining the
two systems of equations, we arrive at a homogeneous
equation of the form

= diag(p, ¢) ( 2 )

=N e 8
=N e 8

where X are the homogeneous coordinates of x. A
necessary condition for there to be a nontrivial value
of X is that

|A — diag(p, ¢,p,9)C| = 0 (2)

where | - | denotes the matrix determinant.

Expanding the determinant and grouping terms
yields an equation involving sixteen unique combina-
tions of observables multiplied by coefficients. These
coefficients can be expressed as determinants of ma-
trices composed of rows from A and C. In the general
case, it is shown in [2] that the first seven of these
coefficients are zero. The remaining coefficients are
multipliers of the terms (pp,pq, ¢p,qd,p,q,D,q,1)- It
follows that only eight points can have independent
vectors of this form, and hence the determinant of a
matrix composed of nine such point pairs vanishes.
This provides a linear constraint on the values of the
observations of these points [2] .

For the case of planar motion, we can specialize this
result and show that the coefficients of pp, q7 and p are
zero. This would mean that six points determine an
invariant relationship. Suppose that we also know the
image coordinates of the center of projection. Setting
p0 and g0 to zero causes the coefficients of p and 1 to
drop out. Hence, (2) becomes a linear homogeneous
equation in b = (pg, ¢p, ¢, 7).

As a result, given two views of four points, we can
predict the location (s,t) of a fourth point in a third
view from the other three points. Two linear equa-
tions in (s,t) can be established and solved. To set
up these two equations, a 4 x 4 transfer matrix can be
established with the four rows composed of the vector
b given above computed for four distinct points. Let
the first row correspond to the point being transferred,
and let us decompose this matrix as

qgs pt t q
d, d» ds dy

where each d; is a 3 element column vector, (p, q) is the
location of the point in the first image, and (s, ¢) is the
unknown coordinates in the third view. Expanding
the determinant in terms of the minors of the matrix
yields the following linear equation in (s,t)

q|d17d27d3| _q|d27d37d4|8+ (3)
(p|d17d37d4|_|d17d27d4|)t :0

The second training view yields a second linear
equation in (s,t), which can be readily solved. Since
this result is independent of the scale of the image
coordinate, it holds when the focal length or internal
scaling parameters are unknown.

3.1.1 Degeneracies

The degeneracies of this solution can be determined by
analyzing when the linear system defined above looses



rank. This analysis was carried out using Mathemat-
ica, and it was found that the singularities of the linear
system can be reduced to the following three cases:

1. One or more points are in the horizon plane and
project to the horizon line. Since the horizon line
is invariant under the allowed camera transfor-
mations, no information is obtained from the y
coordinate of the feature.

2. If the three camera centers are collinear, the pen-
cils of epipolar planes for all pairs of camera posi-
tions are identical. Therefore, the two equations
in (s,t) given by (3) become linearly dependent.
Note this includes the case when the camera does
not move, but only rotates.

3. The final condition can be expressed as the van-
ishing of a determinant:

r1 21 1
T2 29 1 =0 (4)
Iy Z3 1

This determinant vanishes when the projections
of the three points onto the ground plane (the x-z
plane) are collinear, i.e. when the three points lie
on a vertical plane.

The first condition is easily avoided when choosing
markers to include in the sequence, and hence never
arises in practice. In the case of the last two con-
ditions, it is still possible to compute the line in the
image that the transferred point must lie on, hence
the constraint still provides useful information for con-
straining marker search.

3.2 Lines

In this section, we consider the problem of using
image transfer to predict the location of a line in an
image under perspective projection, assuming that the
camera is constrained to move in a plane. Recall that
a line in a plane can be represented as a point in P2
whereas a 3-D line can be characterized as a point on
a 4-D manifold. Thus, the problem of line transfer
differs from that of point transfer; they are not duals.
Note also that we are not using information about the
location of the endpoints of measured line segments.
Often the endpoints are difficult to localize because
edge detectors break down near corners. Furthermore,
when the endpoint is a t-junction, the images of the
endpoint may not correspond to the same 3-D point
because of occlusion.

Again, equation and unknown counting can be used
to show that a minimum of four lines must be mea-
sured in three images to transfer a fifth line; how-
ever, the resulting system of equations is again highly

image edge

image plane

Figure 1. The image of a 3-D line can be represented by
a normal n to the plane spanned by the line and camera
center.

nonlinear. Here we will consider a linear method to
predict the location of a seventh line from six corre-
sponding lines in three images and the seventh line
observed in the two map images.

Expressing the rotation matrices in terms of the
column vectors R = [Ry|Rz| R3] and S =
[S1|S2|Ss], we can define the following:

E = RUT-TST,
F = RyUT -T5ST,
G = RU' -TSI.

Taken together, these three 3 x 3 matrices form the so-
called trifocal tensor. For point and/or line correspon-
dences, methods have been developed for estimating
the trifocal tensor when the cameras are uncalibrated
and in arbitrary locations [8, 15].

Now, consider the image of a 3-D line as shown in
Figure 1. The 3-D line and the center of projection
define a plane. In turn, the intersection of this plane
with the image plane defines a line which can be mea-
sured in the image. Conversely, from a line segment
measured in an image, the normal to the plane can
be determined. If image coordinates are (p, ¢) and the
line’s equation is ap + bg + ¢ = 0, the coordinates of
the normal in the camera frame are n = (a, b, ¢).

For three images of the same line, it is shown in a
paper by Weng, Huang and Ahuja [18] that the nor-
mals to the corresponding planes are related by:

ngEnl
nyx | nfFn; | =0 (5)
nanl

where n; denotes the normal to the plane defined by
a line and camera center ;. Hartley observes that for
three uncalibrated cameras, this same set of equations



holds where E, F' and G are arbitrary 3 x 3 matrices
forming the trifocal tensor [8].

While the cross product in (5) defines three scalar
equations, only two of these are linearly independent.
Furthermore, the elements of the 3 x 3 matrices E, F'
and G enter linearly in this constraint. Five entries of
E F and G are constant because of the constrained
camera motion, and so (5) can be expressed as a lin-
ear equation in only 12 unknowns rather than 27 un-
knowns. Therefore, given six lines measured in three
views, we can define 12 homogeneous equations in u =
(Ue, Uy, T2, Ty, F11, F31, F13, F33, E11, E31, E3, E33)
which can be expressed in matrix form as Ku = 0
where K is a 12 x 12 matrix whose elements are func-
tions of the image measurements (nl, ny, ng for each
line). u must lie in the kernel of K which is gener-
ically one dimensional except for degenerate motions
or line configurations. This equation can be solved for
the elements of E, F,U and T'. To transfer a seventh
line measured in two images and represented by ng
and n;, we note from (5) that

ngEnl
ny= | nlFn; |. (6)
nanl

3.2.1 Degeneracies

Like point transfer, there are degeneracies for line
transfer. For the same reasons, transfer is impossi-
ble when two camera centers are coincident or when
the three camera centers are collinear. Like the third
degeneracy mentioned above, transfer is not possible if
one of the lines lies in horizon plane. As noted in [18],
there are other degeneracies for structure from motion
from straight lines that are likely to apply to this case
of image transfer under constrained motion.
3.3 Relaxing Assumptions

When formulating the transfer problem in Sec-
tion 2, we assumed that the camera was neither tilted
nor rotated about the optical axis; (i.e. that the opti-
cal axis is parallel to the ground plane, and the cam-
era’s y axis is pointing vertically). It is straightfor-
ward to use information derived from images to han-
dle tilted or rotated cameras. For a moving camera,
the focus of expansion (FOE) must lie on the horizon
line. From a sequence of images from a moving cam-
era, the motion of the FOE can be used to estimate
the horizon line. Under our assumptions, the horizon
line should be aligned with z axis in the image and
pass through the principal point. Now, if the camera
is tilted and rotated about the optical axis, the hori-
zon line will be tilted and will not pass through the

Point Error Line Error in Degrees
Image Pixels Line 1 | Line 2 | Line 3
c (28.9, -5.6) 1.25 .72 71
d (9.2, -3.1) 1.85 1.12 1.46
e (-12.2,-0.3) .74 1.12 93
f (-6.7, -1.6) 1.29 .64 A1
g (-13.9,-0.2) 1.07 .88 1.14
h (-13.9, -1.6) 1.27 A48 81

Table 1. A summary of the errors for point and line
transfer for the examples in Figures 2 and 3. The point
error is measured in pixels, and the line error is measured
in degrees between the predicted and measured normal.

principal point. However, from the horizon line esti-
mated using the motion of the FOE, it is possible to
determine a transformation from image coordinates to
a frame corresponding to a virtual camera that meets
our assumption. The coordinates of all markers would
then be transformed to the virtual camera frame, and
the transfer methods of Sections 3.1 and 3.2 could be
applied.

4 Experiments

The transfer methods described above have been
tested on video images of a typical cluttered labora-
tory environment. In each case, two images were ac-
quired and used to “train” the system by selecting a
set of features by hand. In a series of subsequent im-
ages, a subset of the features were tracked, and the
locations of one or more features were predicted from
the information provided by tracking.

Figure 4 shows two training images (labelled a and
b). Figure 4.b was taken about three feet to the left
of Figure 4.a, looking in the same direction. The re-
maining images were taken at equal intervals as the
robot moved forward approximately ten feet from its
position in Figure 4.b. During training the image co-
ordinates of all four features marked in Figure 4.a were
known initially, then tracked to their positions in Fig-
ure 4.b. The crosses in the subsequent six images in-
dicate the robot’s predictions of the feature location.
Table 1 shows errors in units of pixels for each im-
age. The mean error magnitude of the x coordinate
is 14.1 pixels, and for the y coordinate it is 2.1 pixels;
the mean distance between the predicted and actual
location of the point is thus about 14.3 pixels.

Figures 3.a and 3.b show two images of a labora-
tory scene with nine line segments that were detected
using an implementation of the Canny edge detector.
Six of these segments along with corresponding lines
detected in a third image were used to estimate F, F’
and G. From these estimates, the location of three ad-
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Figure 2. The location of four features (circles and box) are shown in the upper two “training” images. In the subsequent
six images, the predicted location of one of the features is indicated by a cross.

==

Figure 3. Nine line segments are shown in the upper two “training” images. Six of these are used to estimate E, F' and
G, and subsequently transfer the other three lines. In the subsequent six images, the predicted locations of the three lines
are shown.



ditional lines were predicted. The remaining images
in Figure 3 show the predicted location of the three
lines in six images. The error between the predicted
normal ny from (6) and the measured normal can be
expressed as the angle between these two vectors. Ta-
ble 1 presents the error for all 18 predicted lines.

5 Discussion

As noted in the introduction, this work is part of
a larger approach to navigation that is based on ac-
tive vision and prediction. The results on transfer in
this paper suggest that image-based prediction can be
used reliably for transfer when combined with a search
mechanism for matching previously observed markers
to the new image.

Our current work is progressing toward integrat-
ing prediction with image search routines and image-
based control, and in unifying the framework to sup-
port mixtures of point and line features. Recent work
by Hartley has shown how a line matched in three
images provides four constraints on the trifocal ten-
sor while a point provide six constraints on the trifo-
cal tensor. In our case, there are further constraints
on the elements this tensor. We are still experiment-
ing with various possibilities for using prediction for
image-level search. Efficient search and image-level
matching is clearly important, particularly when the
prediction equations are singular or nearly so. We plan
to compute the covariance of the predicted feature lo-
cations, and to use this to generate a search region.
This formulation is particularly appealing as it allows
for a unified formulation for singular and non-singular
systems.

Prediction can also be used to control the motion
of the robot. For example, it may be the case that the
predicted image location is outside the image plane,
suggesting the robot must pan the camera in order to
acquire it. Likewise, the variance of the prediction can
be used to control motion to improve prediction.
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