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Abstract

Common objects such as people and cars comprise

many visual parts and attributes, yet image-based track-

ing algorithms are often keyed to only one of a target's

identifying characteristics. In this paper, we present

a framework for combining and sharing information

among several state estimation processes operating on

the same underlying visual object. Well-known tech-

niques for joint probabilistic data association are

adapted to yield increased robustness when multiple

trackers attuned to disparate visual cues are deployed

simultaneously. We also formulate a measure of

tracker con�dence, based on distinctiveness and oc-

clusion probability, which permits the deactivation of

trackers before erroneous state estimates adversely af-

fect the ensemble. We will discuss experiments fo-

cusing on color-region- and snake-based tracking that

demonstrate the e�cacy of this approach.

1 Introduction

More powerful computing hardware and new vision

algorithms have expanded the scope of tracking re-

search from its origins in simple geometric shapes to

include such complex objects as people and automo-

biles. For many tasks, techniques for tracking generic

edges, curves, blobs, and textures have proven to be

applicable with minor modi�cations to tracking hands,

arms, heads, faces, and cars [2, 4, 5, 7].

Despite these advances, most visual tracking algo-

rithms are quite brittle. In particular, many systems

are easily confused in commonly occurring visual sit-

uations because of their reliance on a single cue or

methodology for locating their target. Consider the

problem of tracking a person with the goal of provid-

ing not only a rough guess of where they are, but also

of furnishing information about the current posture

of the head, torso, limbs, and so forth. The articula-

tion of human bodies makes self-occlusion [9] (where

one part of the body moves in front of the other) and

self-distraction (when similar parts|e.g., the hands|

are close to one another) common challenges to robust

state estimation. Moreover, in many situations other

moving objects and variegated backgrounds can fur-

ther aggravate problems of occlusion and distraction

[1, 7]. As recent work in multi-cue tracking suggests

[12], one way toward robust visual tracking is through

exploiting several simultaneously measured visual cues

in as 
exible a fashion as possible.

For example, a person tracker that regards its tar-

get as consisting of two colored regions|a 
esh-colored

face above a red-colored shirt|and a head silhouette,

represented by a snake. The tracker may rely heavily

on the red shirt to maintain contact when the person

is surrounded by other, distracting faces in a crowded

room. Using a priori knowledge of the geometric rela-

tionship between a standing person's torso and head,

a rough �x on the image position of the head can be

derived from the shirt's image location and scale. If

the person walks behind a piece of furniture, leaving

only their face visible, the tracker can switch its focus

to this part of their body. When the person walks in

front of a highly-textured background, the snake may

become confused, increasing the tracker's reliance on

color cues. If the background is a tan brick wall sim-

ilar in color to skin, the edge cues used by the snake

will be su�cient for disambiguation.

In short, attending to multiple cues associated with

an object can alleviate many di�culties. Approaches

to tracking in this spirit have been successful [3, 13],

but as yet little work has been done toward creating

an extensible system for tracking increasingly com-

plex, multi-part objects through a wide range of poses,

backgrounds, and lighting conditions. In this paper

we develop a framework for constructing vision-based

tracking systems that rely on multiple visual cues and

part-based decompositions to track complex objects.



The probabilistic and joint probabilistic data associa-

tion �lters introduced in [1] serve as a starting point

for developing multi-part, multi-attribute tracking

methods. We show how object state estimation using

a mixture of color region and snake trackers [8, 11] can

be made less sensitive to distraction (clutter) by ex-

ploiting inter-part relationships, and also how target

occlusion can be accommodated through measures for

deciding to \switch" a component tracking algorithm

on or o�, which we term variable tracker activation.

2 Data Association Filters

The probabilistic data association �lter (PDAF) [1]

is an extension of the Kalman �lter [1] that casts the

problem of data association, or how to update the

state when there are multiple measurements and a

single target, in a Bayesian framework. One step in

the Kalman �lter is the computation of the innovation

� = z � ẑ, where z is the observed measurement and

ẑ is the one predicted from the current state X by the

measurement equation ẑ = HX [1]. The PDAF in-

troduces the notion of the combined innovation, com-

puted over the n measurements detected at a given

time step as the weighted sum of the individual in-

novations: � =
P

n

i=1
�i�i. Each �i is the probability

of the association event �i that the ith measurement

is target-originated. Also computed is �0, the proba-

bility of the event that none of the measurements is

target-originated. These events encompass all possi-

ble interpretations of the data, so
P

n

i=0
�i = 1. The

association probabilities �i are derived from a uniform

noise model for spurious measurements and an as-

sumed normal PDF on the correct measurement. De-

tails are given in [1].

The PDAF also develops the idea of a validation

gate, or an ellipsoidal volume in measurement space,

derived from the current estimate and uncertainty of

the target state, such that the probability of a target-

originated measurement appearing outside of it is neg-

ligible. Little accuracy is thus lost by disregarding

measurements falling outside the gate. Using a track-

ing window to limit target search is a common approx-

imation of the validation gate

2.1 Joint PDAF

The distractor model used by the PDAF to calcu-

late each association probability �i assumes that the

target-originated measurement is the only persistent

one in the environment. This is a questionable as-

sumption for many distractors, but it certainly does

not hold for multi-part objects. Because of the spa-

tial proximity of the parts, one target-originated mea-

surement may often fall within another target's over-

lapping validation gate. Such persistent interference,

were one to simply run a separate PDAF on each part,

could lead to multiple trackers locked onto the same

part.

The joint probabilistic data association �lter

(JPDAF) [1] deals with this problem by sharing in-

formation among separate PDAF trackers in order

to more accurately calculate association probabilities.

The essential result is an exclusion principle of sorts

that prevents two trackers from latching onto the same

target.

A key notion in the JPDAF is of a joint event �,

or conjunction of possible target-measurement pair-

ings �jtj
, where tj is the index of the target to which

measurement j is matched. Because the expression

of joint event probabilities is simpli�ed by using the

entire surveillance region as each target's validation

gate, e�ciency is achieved by considering only feasible

joint events. The two criteria for a feasible joint event

are that each measurement has exactly one source and

that the number of measurements associated with each

target t is either 0 or 1. Accordingly, we de�ne �j to

be 0 if measurement j is attributed to noise and 1 if

it is associated with a target.

Let !jt(�) = 1 if �jt � � and 0 otherwise. Then

the probability of association between measurement j

and target t given measurements Z is given by

�jt =
P

�
P (� jZ)!jt(�), where:

P (� jZ) = �

nY
j=1

[Nj ]
�j

TY
t=1


t: (1)

� contains terms for normalization and scaling, 
t is a

prior probability on target t being visible (see [1] for

details), and Nj is the Gaussian PDF N [zj ; ẑ
tj ;Stj ]

for measurement j (zj is the measurement value, ẑtj

is the predicted measurement value for target tj , and

S
tj is the associated innovation covariance). State es-

timation is then the same as for the PDAF.

3 Constrained JPDAF: Parts
We de�ne a part as a spatially distinct sub-target

physically attached to the object of interest|e.g.,

hands and a face are parts of the human body. The

JPDAF, originally developed to track aircraft radar

returns, does not provide for any constraints on tar-

gets to maintain a particular con�guration. Such a

stipulation could help to distinguish a complex tracked

object from the background or other objects. This

capability is added by altering the calculation of the

probability of a joint event given in (1) to also quan-

tify how well the measurements �t a multi-part object

model.



Intuitively, an object model describes how the like-

lihood of one part of an object being in a certain state

depends on the states of the other parts. Suppose

we let zt be the index of the measurement associated

with target t. A model for an object comprising T

parts pi can be embedded within a probability func-

tion C(Z;X) that quanti�es the degree of �t over a

given set of feasible matches between the object parts'

states X = fXtg and the measurements Z = fzztg

matched to them. Here we consider the case where

C can be decomposed into a product of pairwise con-

straint probability functions Cij(zzi ; zzj ;X
i;Xj) (de-

noted Cij) such that C(Z;X) =
Q

T

i=1

Q
T

j=1
Cij . The

absence of a constraint between two parts pi and pj
is indicated by Cij = 1. We let Cii = 1, and allow

Cij 6= Cji.

We insert inter-part constraints into the �lter equa-

tions by modifying (1) to become:

P (� jZ) = �

nY
j=1

"
Nj

nY
i=1

[Ctitj
]�i

#�j TY
t=1


t: (2)

For each measurement zj , the product containing Ctitj

cycles through every other measurement zi, accumu-

lating how well the relationship between them matches

the constraint between their associated targets.

As an example constraint function C, consider an

object composed of n rigidly linked parts, restricted to

translations parallel to the image plane. If measure-

ments for all part trackers are simply image coordinate

pairs, then the physical constraints of the system can

be captured by a set of image vectors between parts.

For each part pair pi; pj , an expected measurement

di�erence vector �ij = ẑ
j

0
� ẑi0 is computed from some

canonical state X0, as well a covariance �ij on the ex-

pected measurement di�erence. Then we can de�ne a

Gaussian Cij(zzi ; zzj ;X
i;Xj) = N [zzj � zzi ;�ij ;�ij ].

Since the case above is a rigid linkage, one could use

a single position vector in <2 to describe the system

[10, 11]. However, we have found that our formulation,

which simply biases a probabilistic state estimator to

favor an interpretation of the data that best matches

the target model, works quite well while retaining a

useful degree of modularity and 
exibility. We note

that it is always possible to combine the information

contained within the separate state vectors to obtain

a single, consolidated state estimate if desired.

3.1 Color Regions as Parts

A uniformly colored region [8] part is formally de-

�ned by pixel membership in a �ve-dimensional ellip-

soid in image-RGB space with center � and scale and

(a) (b) (c)

Figure 1: Color Regions and PDAF (from an MPEG).

(a) Tracking window; (b) Largest connected components of


esh color; (c) Measurements derived from their centroids.

rotation given by �. For reasons explained in [8], the

state X of a color part is restricted to the ellipsoid

center � = [x; y; r; g; b]T , while � is retained as a �xed

parameter. The state is initialized by computing the

principal components of manually-sampled target pix-

els. We have found that a stationary dynamical model

with relatively high process noise often works well for

tracking people's body parts.

For the �lter update at time t, measurements are

�rst validated by eliminating image pixels outside the

ellipsoid [�t;�] (a rectangular tracking window serves

as the image-spatial gate). To facilitate computation

of the association probabilities �, the remaining pixels

must be converted to point-like measurements. Each

pixel could be a separate measurement, but this would

be combinatorially cumbersome and it loses the con-

cept of a region. Instead, the mean positions and col-

ors of the largest connected components (CC) of the

validated pixels are used as measurements. This ap-

proximation gives good results as long as each CC is

relatively compact. The process is illustrated in Fig-

ure 1.

Application of any of the above data association

�lters is straightforward after the completion of these

steps. Our implementation of a constrained JPDAF

tracker uses the same Cij as the example in the previ-

ous section, except that measurements have an addi-

tional [r; g; b]T color component, increasing the dimen-

sionality of the Gaussian. This constraint model is an

adequate description of the situation when tracking a

person's face, shirt, and pants while sitting or walking.

Just one rigid constraint is often su�cient to discrim-

inate an object in an otherwise distracting situation.

Parts attached in a non-rigid way, such as hands, can

be incorporated by specifying only a weak proximity

constraint between them and other parts.

Figure 2 shows the utility of the JPDAF and con-

strained JPDAF for avoiding mistracking. Color-based

trackers are initialized on a person's hand, face, and

shirt; the hand then passes in front of the face and



(a) (b)

(c) (d)

Figure 2: Avoiding distraction (from an MPEG). (a) Ini-

tial states of color parts; (b) Face and hand overlap (from

constrained JPDAF sequence); (c) PDAF: hand tracker

sticks to face; (d) JPDAF with constraint between face

and shirt: trackers stay with correct targets.

moves away. When running as independent PDAF's

the hand tracker, attracted to skin color, often \sticks"

to the face after the hand is removed, and vice versa.

Using the same image sequence, we con�rmed that a

JPDAF avoids this problem because the possibility of

the hand and face tracker locking onto the same color

region is excluded as an infeasible joint event. How-

ever, the JPDAF does not prevent the hand and face

trackers from switching places when their paths cross.

A constraint to prefer candidate face regions at a ver-

tical o�set from the current shirt tracker state e�ec-

tively anchors the face tracker to the shirt. Although

the hand cannot be distinguished from the face while

they are overlapping, when it is moved away from the

expected face position it is disfavored.

4 Heterogeneous Cues: Attributes

Thus far we have limited our discussion of tracking

objects using multiple cues to collections of spatially

distinct instances of the same method. We now dis-

cuss another kind of cue, which we call an attribute,

for which multiple trackers \clumping" on the same

target may actually be desirable. An attribute is a vi-

sual characteristic such as color, edges, texture, depth,

or motion. Fundamentally, a part is what a tracker

tracks, while an attribute is how the tracker identi�es

its target. By its nature, a single part can possess

multiple attributes, so it does not make sense to re-

tain a JPDAF-style exclusion principle that prevents

multiple trackers of di�erent modalities from follow-

ing the same target. However, constraints do apply:

a color region tracker and a B-spline snake [2] both

locked onto a hand, for instance, could be expected

to have coincident centers of image mass, or the angle

of the major axis of the region could be expected to

agree with that of the B-spline.

Di�erent kinds of trackers have distinct measure-

ment spaces, so a separate JPDAF tracker is run for

each attribute. Nonetheless, constraint information

must be communicated between each group of same-

attribute trackers. Suppose we have an object con-

sisting of Ta parts for each attribute a out of m total

attributes. Then let Cab

ij
be the constraint function

between the ith part of the ath attribute and the jth

part of the bth attribute. It follows that Caa

ij
= Cij ,

the familiar single JPDAF inter-part constraint. If na
measurements are detected for the ath attribute, we

can modify (2) as follows for the constrained JPDAF

on that attribute:

Pa(� jZ) = �

naY
j=1

"
Nj

mY
b=1

nbY
i=1

[Cab

t
a
i
t
b
j
]�

b
i

#�aj TaY
t=1


t: (3)

The superscripts on the � 's, ti and tj are to clar-

ify which attribute generated the measurement or to

which set of parts the target belongs, since there are

m di�erent sets of measurements. Any other variables

that implicitly refer to a particular attribute should

be assumed to use a. Note that this formula reduces

to (2) when there is only one attribute (m = 1).

4.1 Snakes as Parts

An attribute well-suited to combination with color

regions is snake tracking [2, 11]. We follow [2] by rep-

resenting a snake as an a�ne parametrization of a B-

spline (only translation is used for state in the exper-

iment below). Linking edge fragments into contours

to derive a set of discrete measurements in a manner

similar to the color pixel grouping by connectivity is

combinatorially problematic. Rather, we employ an

approach adapted from the state sampling technique

used in the Condensation algorithm [5]. First, n mini-

mally separated samples (n � 100) are generated from

a normal distribution in the target snake's state space,

centered on its current state X. The value of n and

the variance along the translational (image) axes are

chosen to give adequate image coverage to a circu-

lar \tracking window" about the snake. Each sample

snake is scored based on how well it corresponds to an

actual image contour at that location (using p(z jx) as



(a) (b)

(c) (d)

Figure 3: Multi-attribute tracking (from an MPEG). (a)

The white line traces the true path of a tracked chess pawn;

(b) A color PDAF tracker (whose state is indicated by the

}) is distracted by the white knight; (c) A snake PDAF

tracker (whose contour is highlighted) is distracted by the

black pawn; (d) A joint color region and snake tracker over-

comes both distractions. Color and snake measurements

are overlaid as boxes and crosses, respectively.

described in [5]). The top k scoring samples (k � n)

are projected to measurement space as putative snake

locations. Minimal image separation between the sam-

ples is enforced in order to reduce the phenomenon of

multiple samples being drawn from the same underly-

ing image feature.

Figure 3 illustrates the advantage of utilizing mul-

tiple attributes. Tracking the white pawn as it moves

behind the white knight and the black pawn is a dif-

�cult task for PDAF trackers relying solely on color

or shape as cues. Such trackers can be distracted by

nearby image features similar in that attribute, as Fig-

ures 3(b) and (c) show. Constraining a snake and color

region tracker to prefer coincident centers using (3),

however, enables both to successfully follow the tar-

get along its entire course, as shown in Figure 3(d).

5 Variable Tracker Activation

Tracking failure [12] occurs when contact with a

target is lost, either from occlusion or because clutter

distracts the tracker away from the true target. The

JPDAF and constrained JPDAF try to prevent failure

due to distraction, but they can not completely elimi-

nate it. When tracking an object with multiple parts

or attributes, the utility of each cue relative to current

image conditions is thus used to weight the various

methods to avoid bias. By ceasing state estimation

temporarily for any failing parts, erroneous state esti-

mates may be prevented from propagating from failing

trackers to healthy ones linked by constraints.

Our framework for recognizing and managing par-

tial failure follows from a notion of tracker con�dence,

or a tracker's self-estimated probability of mistracking

based on image conditions and its capabilities. Many

phenomena bear on con�dence, but here we limit our-

selves to two parameters that can be estimated heuris-

tically fairly easily. We quantify the con�dence � of

the tracker of a part pi as a combination of the esti-

mated probabilities of part occlusion P (Opi
) and dis-

traction P (Dpi
), the latter of which can be character-

ized as a function of part distinctiveness. Con�dence

is only as high as the greatest source of uncertainty

allows, so �(pi) = 1 � max(P (Opi
); P (Dpi

)). Details

of the calculation of P (Opi
) and P (Dpi

) under the

constrained JPDAF framework are given below.

When �(pi) of the tracker for a part pi with con-

straint links at least one other part falls below some

threshold � 2 [0; 1], it is deactivated. This means that

its image-based state estimation is switched o� dis-

cretely, and Cij = 1 for purposes of calculating (2).

The state of pi is instead chosen to maximizeQ
T

j=1
C(ẑj ; ẑi;Xj ;Xi). For the rigid object described

in Section 4, this works out to the average of the

states of those parts constraining pi plus their respec-

tive state di�erence vectors. While a tracker is deac-

tivated it continues to perform con�dence estimation

until �(pi) � �, at which point it is reactivated.

The probability of a target t being occluded can be

derived directly from the JPDA �lter as P (Ot) = �0t,

the probability that none of the observed measure-

ments are associated with the target. We estimate the

probability of a tracker being distracted by measuring

the distinctiveness of its target in the image environ-

ment. With the JPDAF, a target t's distinctiveness

depends on how much more probable one association

is than the rest. We are only interested in positive as-

sociations, or those for which j > 0, because if �0t = 1

then the target is not visible, which is equivalent to

saying that it cannot be distinguished from the back-

ground. Therefore, if �0t = 1 then P (Dt) = 0.

Otherwise, we normalize each of the remaining �jt's

so that they sum to 1, yielding �̂jt. The peakedness of

these modi�ed association probabilities �̂jt indicates

the degree of certainty about the best match choice,

and can be captured to a large extent by the entropy:



(a) (b)

(c) (d)

Figure 4: Constrained JPDAF color region tracker ex-

hibiting activation/deactivation due to occlusion. (a)

Parts p1; p2 unoccluded, active; (b) Part p2 occluded, inac-

tive; (c) Inactive part p2's state passively estimated from

active part p1 as object moves; (d) Part p1 becomes oc-

cluded, inactive as part p2 is reactivated.

Ht = �

nX
j=1

�̂jt log �̂jt (4)

When �̂jt = 1 for some j, entropy is minimized

because there is no uncertainty about which associa-

tion to make. When every �̂ is equal, the entropy is

maximal, meaning that no association is more likely

than any other. We convert the entropy of a tar-

get t to a probability of distraction with the formula

P (Dt) = Ht=Hmax , whereHmax = � log 1

n
is the max-

imal entropy for the current number of measurements.

The tracker activation framework is demonstrated

in Figure 4 for a two-part object with a rigid con-

straint. Despite occlusions �rst of one part and then

the other, tracking proceeds smoothly through multi-

ple activation switches as the state of the currently oc-

cluded part is derived from its unoccluded partner or

the image as conditions warrant. A white inside black

circle indicates normal state estimation, a black cir-

cle indicates passive estimation via a constraint, and

a white circle indicates normal state estimation while

driving another part's passive estimation.

6 Conclusion
We believe the approach described in the paper is a

promising step toward developing visual tracking sys-

tems which 
exibly combine multiple parts and at-

tributes to track complex targets in unstructured envi-

ronments. Our current work is proceeding in a variety

of directions. Although phrased in terms of classical

linear state-estimation techniques, many of the con-

cepts carry over to other types of state estimation|

e.g., the Condensation algorithm [5, 6]. Experimen-

tally, we are adapting the Condensation algorithm to

perform joint color region and contour tracking with

the goal of comparing its computational and statistical

performance vs. modi�ed JPDAF. Also, the image-to-

measurement-set methods for color regions and snakes

have thus far been largely heuristically motivated. We

hope to base these criteria on a more fundamental

problem statement. Finally, we are working to extend

our techniques to further tracking modalities and more

complex inter-part constraint relationships.
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