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Abstract

Autonomous robots relying on vision as a primary
sensor frequently must identify and track common ob-
jects such as people and cars in order to successfully
perform navigation, interaction, and grasping tasks.
These objects comprise many visual parts and
attributes, yet image-based tracking algorithms are of-
ten keyed to only one of a target’s identifying char-
acteristics. In this paper, we present a framework
for sharing information among disparate state estima-
tion processes operating on the same underlying visual
object. Well-known techniques for joint probabilistic
data association are adapted to yield increased robust-
ness when multiple trackers attuned to different cues
such as color and shape are deployed simultaneously.
The utility of each cue varies according to image con-
ditions, necessitating adaptation in the weighting of
the various methods to avoid bias. This is achieved
by formulating a measure of tracker confidence based
on distinctiveness and occlusion probability, which per-
mits deactivating trackers before erroneous state esti-
mates adversely affect the ensemble. We will discuss
experiments using color-region-based tracking in tan-
dem with snake tracking that demonstrate the efficacy
of this approach.

1 Introduction

More powerful computing hardware and new vision
algorithms have expanded the scope of tracking re-
search from its origins in simple geometric shapes to
include such complex objects as people and automo-
biles. For many tasks, techniques for tracking generic
edges, curves, blobs, and textures have proven to be
applicable with minor modifications to tracking hands,
arms, heads, faces, and cars [2, 3, 4, 6].

Despite these advances, most visual tracking algo-
rithms are quite brittle. In particular, many systems
are easily confused in commonly occurring visual sit-
uations because of their reliance on a single cue or
methodology for locating their target. As recent work

in multi-cue tracking suggests [12], one way toward
robust visual tracking is through exploiting several
simultaneously measured visual cues in as flexible a
fashion as possible. Approaches to tracking in this
spirit have been successful [13], yet even more flexi-
bility may become necessary in order to track increas-
ingly complex objects through a wide range of poses,
backgrounds, and lighting conditions.

In this paper we consider some of the issues which
arise in constructing vision-based tracking systems
that rely on multiple visual cues and part-based de-
compositions to track complex objects. The proba-
bilistic and joint probabilistic data association filters
introduced in [1] serve as a starting point for develop-
ing multi-attribute, multi-part tracking methods. We
show how object state estimation using an appropriate
mixture of color region [7] and snake trackers [11] can
be made less sensitive to distraction (clutter) by ex-
ploiting inter-part relationships, and also how target
occlusion can be accommodated in a natural manner
through measures for deciding to “switch” a compo-
nent tracking algorithm on or off.

2 Using Multiple Cues

A vision-equipped autonomous robot tasked with
moving among and interacting with people or other
dynamic vehicles must deal with the problem of track-
ing them as it and they maneuver in a complex visual
environment. Robust state estimation processes that
furnish information not only about where a target is in
robot coordinates, but also about its current posture
and orientation, are critical for motion planning and
object and gesture recognition modules. The articula-
tion of human bodies and much industrial machinery
implies that self-occlusion [9] (where one part of the
body moves in front of another) and self-distraction
(when similar parts—e.g., hands or grippers—are close
to one another) are common hurdles to be overcome.
Moreover, in many situations other moving objects
and variegated backgrounds can further aggravate



problems of occlusion and distraction [6, 1].

Following multiple parts and attributes of an ob-
ject in parallel can alleviate many such difficulties.
Consider a person tracker that regards its target as
consisting of two colored regions—a flesh-colored face
above a red-colored shirt—and a head silhouette, rep-
resented by a snake. The tracker may rely heavily on
the red shirt to maintain contact when the person is
surrounded by other, distracting faces in a crowded
workspace. Using a priori knowledge of the geomet-
ric relationship between a standing person’s torso and
head, a rough fix on the image position of the head can
be derived from the shirt’s image location and scale. If
the person walks behind a piece of equipment, leaving
only their face visible, the tracker can switch its focus
to this part of their body. When the person walks in
front of a highly-textured background, the snake may
become confused, increasing the tracker’s reliance on
color cues. If the background is a tan brick wall sim-
ilar in color to skin, the edge cues used by the snake
will be sufficient for disambiguation.

The remainder of this paper will cover the founda-
tions of the tracking skills necessary for the above sce-
nario. We will start with an exposition of the data as-
sociation background material, describe its extension
to include inter-part and inter-attribute constraints,
abstract some principles that can be applied to other
tracking methods, and discuss our approach to focus-
switching, which we term wvariable tracker activation.

3 Data Association Filters

The probabilistic data association filter (PDAF) [1]
is an extension of the Kalman filter [1] that casts the
problem of data association, or how to update the
state when there are multiple measurements and a sin-
gle target, in a Bayesian framework. The fundamental
idea of the PDAF is of the combined innovation, com-
puted over the n measurements detected at a given
time step as the weighted sum of the individual in-
novations: v = Y " | Biv;. Bach ; is the probability
of the association event 6; that the ¢th measurement
is target-originated. Also computed is fy, the proba-
bility of the event that none of the measurements is
target-originated. These events encompass all possible
interpretations of the data, so Y. 3 = 1. Details of
the calculation of each f3; are given in [1].

The PDAF also develops the notion of a walida-
tion gate, or an ellipsoidal volume in measurement
space, derived from the current estimate and uncer-
tainty of the target state, such that the probability of
a target-originated measurement appearing outside of
it is negligible. Little accuracy is thus lost by disre-
garding measurements falling outside the gate. Using

a tracking window to limit target search is a common
approximation of the validation gate

3.1 Joint PDAF

The distractor model used by the PDAF to calcu-
late each association probability 3; assumes that the
target-originated measurement is the only persistent
one in the environment. This is a questionable as-
sumption for many distractors, but it certainly does
not hold for multi-part objects. Because of the spa-
tial proximity of the parts, one target-originated mea-
surement may often fall within another target’s over-
lapping validation gate. Such persistent interference,
were one to simply run a separate PDA filter on each
part, could lead to multiple trackers locked onto the
same part.

The joint probabilistic data association filter
(JPDAF) [1] deals with this problem by sharing in-
formation among separate PDAF trackers in order
to more accurately calculate association probabilities.
The essential result is an exclusion principle of sorts
that prevents two trackers from latching onto the same
target.

A key notion in the JPDAF is of a joint event O,
or conjunction of possible target-measurement pair-
ings ©j,, where ¢; is the index of the target to which
measurement j is matched. Because the expression
of joint event probabilities is simplified by using the
entire surveillance region as each target’s validation
gate, efficiency is achieved by considering only feasi-
ble joint events. The first criterion for a feasible joint
event is that each measurement comes from exactly
one source. We define 7; to be 0 if measurement j
is attributed to noise and 1 if it is associated with a
target. Letting d; be the number of measurements as-
sociated with target ¢, the second and final feasibility
criterion is that §; < 1.

Let w;(©) = 1if ©; C © and 0 otherwise. Then
the probability of association between measurement j
and target ¢ given measurements Z is 8j; = » o P(O]
Z)w;j(0), where:

n

T
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1

K contains terms for normalization and scaling, - is
a prior probability on the target being visible (see [1]
for details), and N is the Gaussian PDF N|z;; 2%, S%]
for measurement j (zj is the measurement value, z%/
is the predicted measurement value for target ¢;, and
Sti is the associated innovation covariance). State es-
timation is then the same as for the PDAF.



4 Constrained JPDAF: Parts

The JPDAF, originally developed to track aircraft
radar returns, does not provide for any constraints on
targets to maintain a particular configuration. Such a
stipulation could help to distinguish a complex tracked
object from the background or other objects. This
capability is added by altering the calculation of the
probability of a joint event given in (1) to also quan-
tify how well the measurements fit a multi-part object
model. We define a part as a spatially distinct sub-
target physically attached to the object of interest—
e.g., hands and a face are parts of the human body.

Intuitively, an object model describes how the like-
lihood of one part of an object being in a certain
state depends on the states of the other parts. A
model for an object comprising n parts p; can be
embedded within a probability function C(Z,X) that
quantifies the degree of fit over a given set of feasible
matches between the measurements Z and X = {X?%},
the matched parts’ states. Here we consider the case
where C' can be decomposed into a product of pairwise
constraint functions C;;(z;,z;, X%, X% ) (denoted Cj;)
such that C'(Z,X) = [[;=, [T}—, Cij. The absence of
a constraint between two parts p; and p; is indicated
by Ci]' =1. We let C“ = ]., and allow Ci]' ;é C]z

Using inter-part constraints, (1) becomes:

i T

P(@|Z):mHleH[Cij]“ I ©

For each measurement z;, the product containing Cj;
cycles through every other measurement z;, accumu-
lating how well the relationship between them matches
the constraint between their associated targets.

As an example C, consider an object composed of
n rigidly linked parts, restricted to translations par-
allel to the image plane. If measurements for all part
trackers are simply image coordinate pairs, then the
physical constraints of the system can be captured
by a set of image vectors between parts. For each
part pair p;,pj, an expected measurement difference
vector p;; = H/ X — H X} is computed (H is the
measurement matrix from a tracker’s filter equations
[1]), as well a covariance ¥;; on the expected mea-
surement, difference. Then we can define a Gaussian
Cij(zi,2, X5, X") = N(zj — 2;5 st Stit; |-

The approach to an object model here should be
distinguished from other methods that affect state up-
date directly [10, 11]. This formulation simply biases
a probabilistic state estimator to favor, when there is a
choice, an interpretation of the data that best matches
the target model.

&

(a)

Figure 1: Color Regions and PDAF (from an MPEG).
(a) Tracking window; (b) Largest connected components of
flesh color; (c) Measurements derived from their centroids.

4.1 Color Regions as Parts

We now discuss applying the PDAF and JPDAF
to parts consisting of uniformly colored regions [7]. A
part’s color is formally defined by pixel membership in
a five-dimensional ellipsoid in image-RGB space with
mean and covariance [u, X]. For reasons explained in
[7], the state X of a color part is restricted to the ellip-
soid mean p = [z,v,7,9,b]7, while ¥ is retained as a
fixed parameter. The state is initialized by computing
the principal components of manually-sampled target
pixels. We have found that a static dynamical model
with relatively high process noise often works well for
tracking people’s body parts.

For the filter update at time ¢, measurements are
first validated by eliminating image pixels outside the
ellipsoid [p, 2] (a rectangular tracking window serves
as the image-spatial gate). To facilitate computation
of the association probabilities 3, the remaining pixels
must be converted to point-like measurements. Each
pixel could be a separate measurement, but this would
be combinatorially cumbersome and it loses the con-
cept of a region. Instead, the mean positions and col-
ors of the largest connected components (CC) of the
validated pixels are used as measurements. This ap-
proximation gives good results as long as each CC is
relatively compact. The process is illustrated in Fig-
ure 1.

Application of the PDA and JPDA filters is straight-
forward after the completion of these steps. Our im-
plementation of a constrained JPDAF tracker uses the
same Cj; as the example in the previous section, ex-
cept that measurements have an additional [r, g, b]”
color component, increasing the dimensionality of the
Gaussian. This constraint model is an adequate de-
scription of the situation when tracking a person’s
face, shirt, and pants while sitting or walking. Just
one rigid constraint is often sufficient to discriminate
an object in an otherwise distracting situation. Parts
attached in a non-rigid way, such as hands, can be in-



(d)

Figure 2: Avoiding distraction (from an MPEG). (a) Ini-
tial states of color parts; (b) Face and hand overlap (from
constrained JPDAF sequence); (¢) PDAF: hand tracker
sticks to face; (d) JPDAF with constraint between face
and shirt: trackers stay with correct targets.

corporated by specifying no constraints between them
and other parts.

Figure 2 shows the utility of the JPDAF and con-
strained JPDAF for avoiding mistracking. Color-based
trackers are initialized on a person’s hand, face, and
shirt; the hand then passes in front of the face and
moves away. When running as independent PDAF’s
the hand tracker, attracted to skin color, often “sticks”
to the face after the hand is removed, and vice versa.
Using an MPEG for identical image conditions and
initialization, we confirmed that a JPDAF avoids this
problem because the eventuality of the hand and face
tracker locking onto the same color region is excluded
as an infeasible joint event. However, the JPDAF does
not prevent the hand and face trackers from switching
places when their paths cross. A constraint to pre-
fer candidate face regions at a vertical offset from the
current shirt tracker state effectively anchors the face
tracker to the shirt. Although the hand cannot be dis-
tinguished from the face while they are overlapping,
when it is moved away from the expected face position
it is disfavored.

5 Heterogeneous Cues: Attributes

Thus far we have limited our discussion of tracking
objects using multiple cues to tracking them accord-
ing to their parts. Each part tracker has used a single
method—color so far, but one could easily imagine

a collection of snakes, as with [10], in which coupled
snakes track a person’s mouth and head (using a dif-
ferent approach to constraints). In this situation, the
JPDAF guards against multiple trackers “clumping”
on the same target or swapping places when their re-
spective targets are brought into proximity. We now
discuss another kind of cue, which we call an attribute,
not susceptible to this phenomenon.

An attribute is a visual characteristic such as color,
edges, texture, depth, or motion. Fundamentally, a
part is what a tracker tracks, while an attribute is how
the tracker identifies its target. By its nature, a sin-
gle part can possess multiple attributes, so it does not
make sense to retain a JPDAF-style exclusion princi-
ple that prevents multiple trackers of different modal-
ities from following the same target. However, con-
straints do apply: a color region tracker and a B-spline
snake [2] both locked onto a hand, for instance, could
be expected to have coincident centers of image mass,
or the angle of the major axis of the region could be
expected to agree with that of the B-spline.

Different kinds of trackers have distinct measure-
ment spaces, so a separate JPDAF tracker must be
run for each attribute. Suppose an object is tracked
with m attributes, where each attribute has n; parts.
Then let szljb be the constraint function between the
ith part of the ath attribute and the jth part of the
bth attribute. C{® = Cj;, the familiar single JPDAF
inter-part constraint. We modify (2) as follows for the
JPDAF on attribute a:

3

m ny T
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The superscript on each 7 is to clarify which attribute
generated the measurement, since there are m differ-
ent sets of measurements. Note that this formula re-
duces to (2) when there is only one attribute (m = 1).

(3) can be directly applied to tracking objects with
attributes as amenable to a point-like characteriza-
tion as color regions, such as motion blobs and dispar-
ity maps. Combining snakes with regions seems like
a more challenging and fruitful endeavor, but for a
number of reasons it is problematic to cast snakes in a
JPDAF mold. Kalman snakes [11], for example, effec-
tively use nearest-neighbor data association [1] with
short lines as validation gates; considering multiple
edges within search windows large enough that they
all overlap would lead to a combinatorial explosion.
(See also [4] for more discussion of this). Nonetheless,
we believe that the JPDAF exclusion principle and



the constraint function machinery that we have de-
veloped here can be abstracted and applied to other
state estimation techniques. In particular, we have
been investigating modifications to the Condensation
algorithm [4, 5] for state estimation.

5.1 Condensation: Color and Snakes

The Condensation algorithm has been used, with
more complexity than we can do justice to here, to
successfully track snakes in highly cluttered environ-
ments. Very briefly, the algorithm stochastically esti-
mates state by maintaining a pool of n sample states
for each object tracked. Every iteration, the fitness of
each sample state s; is measured against the current
image Z as a conditional probability P(Z |s;). The
P(Z|s;)’s are then normalized to sum to 1. Using a
probabilistic scheme tied to the object dynamics, more
sample states are generated in the state space neigh-
borhoods of fit states, and less fit states are removed
from the pool, always maintaining a constant n. One
can estimate the object state as X = S siP(Z]s;).

We have implemented a simple version of a Con-
densation snake tracker, as well as a Condensation
analog of the color region tracking method described
in Section 4.1 [8], in order to demonstrate some of
the benefits of multi-attribute tracking. Figure 3 il-
lustrates how more than one of an object’s attributes
may be necessary to distinguish it. In the image are
four objects, each with a different shape and color
attribute: the first row is black, the second green;
the first column is egg-shaped, the second is gourd-
shaped. Superimposed on the image are the sample
states (n = 50) of a snake Condensation tracker run-
ning on the green egg and a color Condensation tracker
running on the black gourd. When the tracked objects
are moved near another object with a similar value
for the attribute being tracked—here the black egg—
distraction results. This difficulty cannot be overcome
by adding more parts to the object model, as before,
but only by adding an attribute. By considering color
and shape jointly, the tracked object becomes unique
in this image environment.

To implement a constrained Condensation tracker,
we adapt (3) by modifying the calculation of P, (Z|s)
for each part p;’s sample states to incorporate ij,
the estimated states of the other parts, via a modified
constraint function Cj; for each pair of parts. More
details and preliminary results are given in [§].

6 Variable Tracker Activation

Tracking failure [12] occurs when contact with a
target is lost, either from occlusion or because clutter
distracts the tracker away from the true target. The

Figure 3: A group of objects unique only when conjunc-
tions of their attributes are considered together.

JPDAF and constrained JPDAF try to prevent fail-
ure due to distraction, but they can not completely
eliminate it. When tracking an object with multiple
parts or attributes, it is desirable to cease state estima-
tion temporarily for any failing parts. Otherwise, erro-
neous state estimates may be propagated from failing
trackers to healthy ones linked by constraints.

Our framework for recognizing and managing par-
tial failure follows from a notion of tracker confidence,
or a tracker’s self-estimated probability of mistracking
based on image conditions and its capabilities. Many
phenomena bear on confidence, but here we limit our-
selves to two parameters that can be estimated heuris-
tically fairly easily. We quantify the confidence y of
the tracker of a part p; as a combination of the esti-
mated probabilities of part occlusion P(O,,) and dis-
traction P(D),,), the latter of which can be character-
ized as a function of part distinctiveness. Confidence
is only as high as the greatest source of uncertainty al-
lows, so x(p;) = 1 — max(P(O,,), P(Dy,)). Details of
the calculation of P(O,,) and P(Dp,) under the con-
strained JPDAF framework are given below. We are
currently investigating heuristics for these values for
Condensation tracking.

When x(p;) of the tracker for a part p; with con-
straint links at least one other part falls below some
threshold p € [0,1], it is deactivated. This means that
its image-based state estimation is switched off dis-
cretely, and C;; = 1 for purposes of calculating (2).
The state of p; is instead chosen to maximize
[T}_, C(H7 X7, H' X?, X7, X") (for the rigid object de-
scribed in Section 4, this works out to the average of
the states of those parts linked to p; plus their respec-



Figure 4: Tracker activation/deactivation due to occlu-
sion. (a) Parts p1,p2 unoccluded, active; (b) Part p» oc-
cluded, inactive; (c) Inactive part p2’s state passively es-
timated from active part p; as object moves; (d) Part p;
becomes occluded, inactive as part p2 is reactivated.

tive state difference vectors). While a tracker is deac-
tivated it continues to perform confidence estimation
until x(p;) > p, at which point it is re-activated.

The probability of a target t being occluded can be
derived directly from the JPDA filter as P(O;) = Bot,
the probability that none of the observed measure-
ments are associated with the target. We estimate the
probability of a tracker being distracted by measuring
the distinctiveness of its target in the image environ-
ment. Viewing the data association problem as one of
cluster assignment, distinctiveness is intuitively a mea-
sure of cluster separation. With the JPDAF, a target
t’s distinctiveness depends on how much more proba-
ble one association is than the rest. The peakedness
of the association probabilities 3;; can be captured to
a large extent by their entropy:

Hy=->_ Bjilog B (4)

=0

When §j; = 1 for some j, entropy is minimized be-
cause there is no uncertainty about which association
to make. When all s are equal, the entropy is maxi-
mal for a particular number of measurements n, mean-
ing that no association is more likely than any other.
We convert the entropy of a target ¢ to a probability
of distraction with the formula P(D;) = H;/Haz,
where H,,,, is the maximal entropy for the current
number of measurements.

The tracker activation framework is demonstrated
in Figure 4 for a two-part object with a rigid con-
straint. Despite occlusions first of one part and then
the other, tracking proceeds smoothly through multi-
ple activation switches as the state of the currently oc-
cluded part is derived from its unoccluded partner or
the image as conditions warrant. A white inside black
circle indicates normal state estimation, a black cir-
cle indicates passive estimation via a constraint, and
a white circle indicates normal state estimation while
driving another part’s passive estimation.

7 Conclusion

We have found that defining a target as a conjunc-
tion of parts and attributes and using an intelligent
focus-switching scheme lessens the chances of distrac-
tion and susceptibility to occlusion, enabling state es-
timation to proceed in a broader range of visual situ-
ations. Work continues on extending these techniques
to more tracking algorithms and object models.
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