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AbstractÐWe describe a framework that explicitly reasons about data association to improve tracking performance in many difficult

visual environments. A hierarchy of tracking strategies results from ascribing ambiguous or missing data to: 1) noise-like visual

occurrences, 2) persistent, known scene elements (i.e., other tracked objects), or 3) persistent, unknown scene elements. First, we

introduce a randomized tracking algorithm adapted from an existing probabilistic data association filter (PDAF) that is resistant to

clutter and follows agile motion. The algorithm is applied to three different tracking modalitiesÐhomogeneous regions, textured

regions, and snakesÐand extensibly defined for straightforward inclusion of other methods. Second, we add the capacity to track

multiple objects by adapting to vision a joint PDAF which oversees correspondence choices between same-modality trackers and

image features. We then derive a related technique that allows mixed tracker modalities and handles object overlaps robustly. Finally,

we represent complex objects as conjunctions of cues that are diverse both geometrically (e.g., parts) and qualitatively (e.g.,

attributes). Rigid and hinge constraints between part trackers and multiple descriptive attributes for individual parts render the whole

object more distinctive, reducing susceptibility to mistracking. Results are given for diverse objects such as people, microscopic cells,

and chess pieces.

Index TermsÐVisual tracking, data association, color regions, textured regions, snakes.

æ

1 INTRODUCTION

TRADITIONALLY, the emphasis in framing the visual
tracking problem has been on estimation [1], [2]. Given

a sequence of images containing the object that we would
like to represent concisely with a parametric model, an
estimator is a procedure for finding the parameters of the
model which best fit the data. Most of the image data is
typically irrelevant, so, if the object's image projection can
be unambiguously discriminated from the rest of the image,
it is segmented and used exclusively for estimation.

Under real world conditions, it can be difficult to
accurately identify an object's image projection because

visual phenomena such as agile motion, distractions, and

occlusions interfere with estimation. We define agile motion

as a sustained object movement that exceeds a tracker's
dynamic prediction abilities. Its occurrence undermines the

estimation process because it renders the putative location

of the object's image projection uncertain, complicating

efficient segmentation. A further obstacle to clear-cut

segmentation is a distraction or another scene element
which has a similar image appearance to the object being

tracked. Finally, occlusion results when another scene

element is interposed between the camera and the tracked

object, blocking a portion of the object's image projection.
This results in incomplete data or no data being supplied to

the estimation algorithm.

We tackle these problems with two broad approaches.

First, we adapt to vision several existing data association [3]

versions of the Kalman filter [4] constructed to handle certain

classes of these occurrences and make novel improvements to

them. The second part of our strategy is a method of defining a

tracked object more distinctively so that visual disruptions

happen less frequently and with less severity. As our

algorithms are based on the Kalman filter, they work with

point-like measurements rather than directly on images.

Another major component of this paper is therefore a process

for segmenting and summarizing a discrete set of image areas

that resemble the target (where the similarity metric depends

on the modality used for tracking). Thus, the term ªmeasure-

mentº serves as a convenient shorthand for coherent subsets

of the image data that may be used for state estimation and

data association serves to weight the influence of these

alternatives.
In the next section, we review the probabilistic founda-

tions of the visual tracking problem. In Section 3, we derive

a formulation of image similarity for three modalities that

rely on color, shape, or appearance to define the target.

Section 4 analyzes the image preprocessing necessary to

adapt data association filters to tracking a single object

visually. Section 5 examines the problem of interference

caused by other known objects. Section 6 introduces

methods for describing a tracked object more distinctively

in order to minimize the deleterious effects of unknown,

persistent distractions in the scene. Results for all of these

methods are presented in Section 7. We survey related work

on tracking in Section 8 and sum up our contributions in

Section 9. A table summarizing the key steps of each

algorithm is given in the Appendix (Fig. 16).
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2 BACKGROUND

Mumford [5] and others have suggested that many problems

in vision may be cast as an attempt to find a maximum a

posteriori (MAP) estimate [1] of the state of the world given a

signal that is a transformed version of it. Bayes' theorem [5],

[6] provides a tool for reasoning probabilistically about the

world W from the image seen I: p�W j I� � p�IjW�p�W�
p�I� . p�I�

can be deduced from the other terms, so it is typically treated

as a normalizing constant 1=k. A MAP estimate of the state of

the world (not necessarily unique) is a maximally likely one

given the observed image: argmaxw p�W j I�. To track, an

observer focuses its interest on a small part of the world,

which we call an object or target and takes past images into

account. At time t, the state Xt 2 X represents the current

estimate of the object's salient parameters. Using the

sequence of images It; Itÿ1; . . . observed so far, the MAP

tracking task is to estimate a state that maximizes

p�Xt j It; Itÿ1; . . .�. Applying Bayes' theorem and rearranging

yields the following expression [3], [7]:

p�Xt j It; Itÿ1; . . .� � ktp�It j Xt�p�Xt j Itÿ1; Itÿ2; . . .�: �1�
Here, p�Xt j Itÿ1; Itÿ2; . . .�, which summarizes prior knowl-
edge about Xt, is a prediction based on the previous state
estimate and knowledge of the object's dynamics. Asserting
that object dynamics are such that states form a Markov
chain [6] obtains

p�Xt j Itÿ1; Itÿ2; . . .� �Z
Xtÿ1

p�Xt j Xtÿ1�p�Xtÿ1 j Itÿ1; Itÿ2; . . .�:

Dropping time indices for clarity, p�X j I� describes the
probability of observing a particular image at time t given
the current state. We call this the image likelihood. The image
likelihood depends on the physics of image formation and
noise that may corrupt what is expected [8]. Let the space of
images be I and � : X ! I be an image prediction function
describing the expected image projection of the target given
a particular state. If they are not explicitly included in X,
assumptions must be made in � about lighting, occlusions,
background, object reflectance properties, camera variables
such as focal length, etc.

An efficient algorithm for computing the MAP estimate
of (1) when p�Xt j It; Itÿ1; . . .� is Gaussian is the Kalman
filter [3], [4] (see the Appendix for details). In order for
p�Xt j It; Itÿ1; . . .� to be Gaussian, p�I j X�, p�Xt j Xtÿ1�, and
the prior probability of the state before any images are
viewed must be Gaussian. Some possible causes of and
remedies for non-normality are discussed in [7]; in
Sections 4 and 5, we present data association filters that
handle certain kinds of violations of the Kalman filter's
assumptions. In nonvision tracking domains such as radar
[3], measurement extraction as a precursor to applying the
Kalman filter is fairly simple. A target might be simply a
bright point on a dark background, so thresholding alone
quickly segments out high-likelihood hypotheses for the
target location. Generating visual target measurements,
however, is usually more difficult than thresholding and

requires more information than just image location. Possible
measurement parameters include geometric characteristics
such as the location of the area's center and its height,
width, and orientation. These parameters define a measure-
ment space Z such that a point Z 2 Z is related to a state X
via a continuous measurement function H�X� � Z. The
measurement function may simply reduce the dimension-
ality of X by dropping its temporal parameters or describe a
more complicated relationship between what is measured
and what is estimated.

The bases for p�I j X� and, therefore, for the measure-
ment generation procedure described in Sections 4 and 5,
are the form of the predicted target image projection ��X�
and the method for quantifying the similarity of the image I
to that prediction. Both of these depend on what we call the
modality used to identify the object. A modality is a visual
attribute such as shape, color, direction of motion, etc., that
might constitute a tracking algorithm's complete descrip-
tion of its target. For example, suppose we want to track a
bright red ball. We might choose a color modality to predict
the hue of the ball's circular image projection and to define
a metric on circular areas of hue in order to gauge the
similarity of our prediction to the actual image. This
method does not exploit all available image information
about the ball (ignoring, for instance, any designs printed
on it or its motion), but makes a choice about what
information is relevant and adequate.

3 TRACKING MODALITIES

This section covers the form of the likelihood function
p�I j X� for three modalities used to analyze the image:
homogeneous regions, textured regions, and snakes.

3.1 Homogeneous Regions

We define a region as the image projection of a simply
connected patch of a smooth surface. Let cP be a function
describing the intrinsic color pattern over a patch P in
RGB space (akin to a computer graphics texture map [9]). If
cP �P � is roughly constant, then we call regionRa homogeneous
region. In previous work [10], [11], we described a method
based on the Dichromatic Reflection Model [12] for modeling
a given regionR0s color by having the user manually select a
set of pixels in R that are nonhighlighted, nonsaturated, and
have significant intensity variation. Using singular value
decomposition [2], an ellipsoid parametrized by a translation
matrix T, a rotation matrix R, and a scale matrix S is fit to the
sampled pixels' color distribution in RGB space. The
Mahalanobis distance [13] 
�I�x; y�;T� � jSÿ1RT �I�x; y� ÿ
T�j is used to measure the similarity 
 between the predicted
pixel color T and the actual color I�x; y� at each pixel �x; y�.

Color information is combined with a geometric repre-
sentation of R as a rectangle parametrized by image
position x, y, size w, h, and orientation �. The rectangle C
used to represent R is the best-fitting one according to an
objective function f that is minimized by minimizing the
sum of 
 over all pixels inside C while maximizing it
outside. The local image neighborhood of the positive center
C is delineated by a rectangular border F which we call the
inhibitory frame. To balance its influence on f , F is sized so
that jF j � jCj while maintaining the same aspect ratio. A
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good but suboptimal fit of a rectangle and its frame to a

human arm region is shown in Fig. 1.
These conditions are satisfied by the following expres-

sion for the image likelihood of a homogeneous region:

phregion�I j X� � sig
1

�2
hregion

X
x;y2C[F

a�x; y� �  hregion�x; y�
 !

;

�2�
where sig�x� � 1

1�eÿx and a�x; y� is the fraction of the total

area jRj of the region R represented by the pixel at �x; y�.
The degree to which each pixel in the region fits the

membership model is given by:

 hregion�x; y� � ÿ
ÿI�x; y�;T� if �x; y� 2 C


ÿ
I�x; y�;T� if �x; y� 2 F:

�
�3�

3.2 Textured Regions

A textured region is defined as a region whose patch P has

an intrinsic color pattern cP �P � with significant vertical and

horizontal intensity gradients. This allows sum-of-squared-

differences (SSD) methods [14], [15], [16] to successfully

estimate the region's geometric and photometric transfor-

mations. Here, we limit our attention to affine geometric

transformations of an intensity patch whose projection is
approximated by a rectangle.

We write cR�R� to denote the pattern by which a textured
region R is recognized. It is modeled by a user-selected
rectangular image sample IR of the target called the reference
image. An example of the selection step is shown in Fig. 2a
and the resulting reference image in Fig. 2c. During
tracking, the object state X specifies the shape of R as an
affine warp A of the reference image, yielding a predicted
image IP . In practice, the image inside the rectangle
predicted by X is inversely warped using Aÿ1 with bilinear
interpolation [9] to get a comparison image IC that is the
same size as the reference image. An example of the
predicted shape and location for the textured region
referred to above is shown in Fig. 2b; its associated
comparison image is depicted in Fig. 2d.

The gradient of textured regions makes feature compar-
ison within regions sufficient to measure scaling, obviating
the inhibitory frame necessary for homogeneous regions.
An SSD formulation expresses the image likelihood as
inversely proportional to the difference between the
reference image and the comparison image:

ptregion�I j X � exp ÿ 1

�2
tregion

X
x;y2IR

a�x; y� �  tregion�x; y�
 !

;

�4�
where a�x; y� is the fraction of jIRj represented by the pixel
at �x; y� and

 tregion�x; y� �
ÿ
IR�x; y� ÿ IC�x; y�

�2
: �5�

An image representing the residual for the example is
shown in Fig. 2e.

3.3 Snakes

We define a snake [17], [18] as the projection of a continuous
contour lying on a smooth surface onto the image. The
contour may delineate a contrast edge, the surface silhou-
ette, or a simple line; in this paper, we assume that the
contrast takes the form of an intensity difference, permitting
the use of standard edge detection algorithms. We have
found that the Canny algorithm [19] gives excellent results,
though the Sobel edge operator [20], while somewhat less
sophisticated, gives adequate results more speedily.
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Fig. 1. Homogeneous region. (a) The geometry of a region for an arm
tracker with the positive centerC and inhibitory frame F labeled. (b) Pixel
similarity 
 of the image to the modeled arm skin color, with R's
geometry overlaid. (Input image courtesy of J. MacCormick).

Fig. 2. Textured region. (a) Selecting the reference image for a face tracker. (b) One possible state. (c) Reference image IR from (a). (d) Normalized

comparison image IC for the state in (b). (e) Difference image IR ÿ ICj j.



A snake is represented as a periodic or nonperiodic cubic
B-spline [17], [21], [22] constrained to deform affinely. The
spline approach allows an arbitrarily detailed description of
the shape of the tracked object, while the affine constraint
efficiently captures the snake's degrees of freedom if its
associated contour is a rigid, planar curve restricted to
translation, scaling, and in-plane rotation. The image
prediction function � for snakes hypothesizes a curve
derived from the current affine parameters Q along which
there is an intensity disparity. To compute the image
similarity between the image and this prediction, we define
p�I j X� by adapting the formula for ªp�z j x�,º as described
in [23].

For each of the n segment borders comprising the
B-spline parametrized by a particular Q, edge detection is
performed along a line of length L (typically 10-20 pixels)
that is normal to and bisected by the curve at that point. Let
���i� be the image location of the curve at segment i, where
0 � i < n. Using the Canny algorithm, we let z�i� be the
location of the edge segment along the ith normal that is
found nearest to ���i�. For the Sobel method, z�i� is the
strongest edge along the normal whose strength is over the
threshold � . The shape of a nonperiodic snake and the Sobel
edges detected on its normals are illustrated in Fig. 3.

Assuming the state X includes Q, we express the
likelihood as:

psnake�I j X� � exp ÿ 1

�2
snake

Xnÿ1

i�0

l�i� �  snake�i�
 !

; �6�

where l�i� is the fraction of the total length j��j of the snake
represented by normal i. The degree to which the location
of each detected edge fits the shape model is given by

 snake�i� � j���i� ÿ z�i�j if an edge is found
� otherwise;

�
�7�

� serves as a penalty value for  �i� when there is no edge
detected along the ith normal.

4 TRACKING A SINGLE OBJECT

In this section, we discuss techniques for tracking single,
unoccluded objects that are atomic in the sense that they are

identified by only one of the modalities presented in the
previous section. The combination of an identifying
modality and the observable parameters of that modality
(size, color, shape, etc.) constitute an attribute of an object.
To visually track an atomic object, we want to follow the
area of the image that is the best match to it. A filter such as
the Kalman filter [3], [4] can be used to predict the most
likely location and other characteristics of this area,
indicating where to begin searching for it. In the first part
of this section, we discuss methods for finding and
parametrizing a set of hypotheses for good matches. The
best match thus found is suitable for input to a standard
Kalman filter as the measurement. Later in the section, we
examine the Probabilistic Data Association Filter (PDAF)
[3], an extension to the Kalman filter that considers other
highly likely alternatives.

4.1 The Measurement Process

The measurement extraction process is essentially a search
for maxima of the image likelihood p�I j X� in the
neighborhood of bX, the state predicted from the filter at
time t. The geometric characteristics (such as x 2 X; y 2 Y ,
orientation � 2 �, and scale s 2 S) of the image areas
corresponding to these maximally likely states are derived
as measurements Z. Perhaps the simplest class of suitable
techniques are gradient ascent methods such as conjugate
gradient and Powell's method [2]. Vision-specific forms of
gradient ascent are often used to efficiently obtain a single
best measurement with which to update a tracking filter:
For example, with snakes [18], [17] and textured regions
[16], [24], [25]. Gradient ascent works best, however, when
p�I j X� is unimodal. The object state must also be changing
slowly enough that the filter can keep up if the algorithm is
terminated after a maximum number of steps (i.e., it only
gets a fraction of the way to the true maximum for each new
image), or if the posterior is multimodal that the predicted
state will not wind up in another basin of attraction.
Another assumption if there is multimodality is that there
will not be significant interference between modes, such as
two modes (the correct one and an incorrect one) merging
and splitting, creating the possibility of an incorrect choice
after the split.

These difficulties with gradient methods are why in
many situations we favor other algorithms that allow for
faster state changes and multiple modalities in the state
posterior. Randomized methods such as the factored
sampling approach of the Condensation algorithm [23]
have proven successful at finding nonlocal maxima of
multimodal image likelihoods. Accordingly, we use a
measurement generation method which we call measure-
ment sampling which is adapted from factored sampling but
retains the notion of locality around a single predicted state.
Intuitively, we sample points in state space from the prior
distribution on the state p�X�, compute their image like-
lihoods p�I j X�, throw away all but the top fraction, and
derive the measurement parameters of what remains.
N samples are taken from a normal distribution in the
target's state space X centered on its current predicted statebX. N and the covariance of the distribution �X are chosen
to give adequate coverage to a ªtracking windowº about the
target. p�I j X� is computed for each sample by scoring the
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Fig. 3. Snake. State of a sample snake head tracker (infrared image).

Circles on curve normals indicate locations of strongest Sobel edges.



degree of fit between the hypothesized target and the
current image. Finally, a winnowing step sorts the samples
by their likelihoods and keeps only the n most likely ones
�n� N� for input to the tracking filter.

The measurement sampling process for a textured region
tracker constrained to translation is shown in Fig. 4. The
object of interest is the face of a baseball player in a team
photograph. For simple translation of the region, state space
is X � X � Y . In Fig. 4a, N � 250 states are sampled about
the predicted face location with a sampling covariance of
�X � diag �100; 100� and the n � 5 best are selected as
measurements in Fig. 4b. Fig. 4c is explained in the next
section.

4.2 Probabilistic Data Association Filter

Kalman filtering [3], [4] is an efficient method for tracking

when the distribution on measurements is Gaussian (see the

Appendix for a brief overview). Situations in which there are

departures from the assumption that the posterior is

Gaussian, however, require extensions to the Kalman filter.

For example, noise might temporarily create multiple

measurements or cause the target-originated measurement

to disappear. Or, we might be tracking T objects as

independent entities and, thus, expect there to be a persistent

measurement for each one. Proper target-measurement

correspondences are maintained by continually computing

the association probabilities of the various possibilities.
The measurement processes described above derive a

group of candidate states for each tracker. The Probabilistic
Data Association Filter (PDAF) [3], [26] is an extension of
the Kalman filter [3] that uses a Bayesian approach to the
problem of data association or how to update the state
when there is a single target and possibly no measurements
or multiple measurements due to noise. Rather than
possibly erring by choosing the nearest neighbor [3], [26], or
data closest to what is expected in order to update the state,
the PDAF hedges its bets by weighting the influence of the
various candidate measurements based on two assump-
tions. First, it assumes that there is exactly one target giving
rise to one ªtrueº measurement which may sporadically
disappear either because the target is temporarily occluded
or because of suboptimal feature detection at any stage of
the pipeline between the camera and (for example) the edge
detection algorithm. Second, the PDAF assumes that all

other measurements are ªfalseº and arise from a uniform
noise process.

The relevant step in the Kalman filter is the computation

of the innovation ��. The PDAF introduces a notion of the

combined innovation, computed over the n measurements

detected at a given time step as the weighted sum of the

individual innovations: �� �Pn
i�1 �i��i. Each �i is the

probability of the association event �i that the ith measure-

ment is target-originated. Also computed is �0, the prob-

ability of the event that none of the measurements is target-

originated (i.e., the target is associated with the null

measurement). These events encompass all possible inter-

pretations of the data, so
Pn

i�0 �i � 1.
Sampling randomly from a normal distribution and

selecting the top fraction of the samples as measurements
does not precisely satisfy the PDAF assumption of a
uniform distribution of false measurements, but it is usually
a reasonable approximation. Multiple measurements com-
ing from the true, target-originated peak in the image
likelihood function p�I j X� tend to be tightly clustered in
one part of state space. Because the effect of the PDAF
association probabilities is to average the contribution of the
measurements to the state estimate, measurements closely
arranged around a maximum of p�I j X� harmlessly average
out to that maximum.

5 TRACKING MULTIPLE OBJECTS JOINTLY

The PDAF tracker in the previous section assumes that
there are no other strong, persistent features in the image
that have attributes similar to those of the tracked target.
False peaks in p�I j X� can be due to actual noise
sourcesÐe.g., capture hardware or unpredictable phenom-
ena like rustling leaves or highlights on a rippling water
surface. However, many scene elementsÐother parts of a
compound object being tracked, a static background, other
moving objects, etc.Ðmay engender strong enough peaks
that measurements from them will be generated dispro-
portionately, biasing the PDAF filter's state estimates. If, for
example, the states of the multiple parts become proximate,
one target-originated measurement may be claimed by
another target. Simply running a separate PDAF tracker on
each part could lead to multiple trackers locked onto the
same part.
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Fig. 4. Measurement sampling for textured regions. (a) Samples with small covariance. (b) Top fraction of samples becomes measurements. (c) Best

measurement after thinning by gradient ascent and enforcement of minimum separation (see Section 5.1.1).



This section introduces new methods for dealing with
this class of problems by tracking all of the image features
that may mutually cause distraction and adding a layer of
logic to ensure that trackers are correctly distributed over
the measurements. One such technique that we discuss is
an existing extension to the PDAF called the Joint
Probabilistic Data Association Filter (JPDAF) [3]. The first
part of the section investigates the issues involved in
adapting the JPDAF to vision; one limitation is that it can
only be used for groups of objects of the same modality. In
the second half of the section, we introduce a new approach
called the Joint Likelihood Filter (JLF). The JLF captures the
crux of the JPDAF but is applicable to mixtures of tracking
modalities, is more efficient than the JPDAF, and reasons
about occlusion relationships between objects.

5.1 Joint Probabilistic Data Association Filter

The Joint Probabilistic Data Association Filter (JPDAF) [3],

[26] enforces a kind of exclusion principle that prevents two

or more trackers from latching onto the same target by

calculating target-measurement association probabilities

jointly. Suppose that we are tracking T objects, for which

a total of n measurements have been generated from the

current image (methods for deriving measurements for all

objects jointly are presented below). A key notion in the

JPDAF is that of a joint event �� or conjunction of association

events �jtj (the subscript tj denotes which target measure-

ment j is matched to). The probability of a particular ��

depends, as with the PDAF, on the distances between each

target's predicted measurement and the actual measure-

ment it is associated with in ��. However, an additional

influence on the probability of �� stems from the interaction

of the various association events in ��. If the measurement

process generates, at most, one measurement for each peak

in the image likelihood function p�I j X� and each target

induces at most one peak in p�I j X�, two kinds of

combinations of associations are logically infeasible. First, a

joint event �� containing two associations �jt1 ;�jt2 such that

t1 6� t2 and j 6� 0, implies that two different targets are

responsible for the same measurement, a contradiction.

Second, if �� includes associations �iti ;�jtj such that i 6� j
but ti � tj, this amounts to an interpretation that a single

target has spawned multiple measurementsÐalso an

impossibility. The JPDAF disregards infeasible joint events

and, thus, avoids inappropriate state convergence. The

precise formula for the probability of each particular target-

measurement association is given in [3], [26].

5.1.1 JPDAF Measurement Generation

A desirable characteristic of joint measurement generation
is that only one measurement be created for each peak in
p�I j X�. Random sampling alone typically extracts multiple
measurements not attributable to noise for each target,
which violates one of the presumptions of the JPDAF and
can lead to multiple targets becoming incorrectly associated
with that peak. We address these issues by introducing a
single, joint measurement process over all targets that
apportions measurements rationally.

The joint method we use for T targets is based on the
random sampling technique presented in the previous
section. After eliminating low-fitness samples per the
process previously described, each remaining sample Zi is
ªimprovedº using conjugate gradient ascent [2] to obtain a
local maximum Z0i. The purpose of the hill-climbing step is
twofold. First, the resulting samples Z0i are more consistent,
reducing error in the state estimate. Second, states that are
on the slopes of the same peak of p�I j X� but separated by
the randomness of the sampling process tend to converge in
state space X as they ascend (provided certain local
conditions on p�I j X� hold). Thus, we deduce that aggrega-
tions of samples after hill-climbing will be relatively tightly
clustered around local maxima, allowing the selection of the
best sample in each cluster as representative of a peak.

The last step is therefore to try to choose one exemplar
for each group of samples. This is done by enforcing a
minimum separation between samples in X . Starting with the
most fit sample Xbest, all less fit samples Xi such that
jXbest ÿXij � � are eliminated. In practice, we use a
different threshold �k for each parameter of the joint
measurement and eliminate samples which are too close
along any dimension. (Unless otherwise noted, we use
�X � �Y � 10 pixels, �� � 0:1 radians, and �S � 0:01).
The purpose of � is to compensate for any lack of precision
in the hill-climbing algorithm. The thinning process is
repeated for the next fittest sample and so on, yielding a set
of n measurements generally equal to the number of tracked
objects T . The value of n can vary due to the randomness of
the sampling procedure and whether the image actually has
only T target-like features.

This method is applied in Fig. 4c to the baseball team
picture from the previous section, resulting in a single
measurement.

5.2 Joint Likelihood Filter

The JPDAF, though a useful advance over the PDAF, lacks

certain desirable properties. First, due to its requirement

that every tracker have the same image likelihood p�I j X�
(so that any candidate image feature for one tracker can be

plausibly associated with any other), the JPDAF is

inapplicable to mixtures of different kinds of trackers.

Second, the measurement generation process outlined can

encounter difficulties when targets overlap one another.

This is because of the JPDAF's assumption that the image

likelihoods of multiple objects are independent when they

actually are not. Consider the analog of (1) for multiple

object states (assuming conditioning on previous images):

p�X1; . . . ;XT j I� � kp�I j X1; . . . ;XT �p�X1; . . . ;XT �:
The last term on the right hand side, which we call the joint

state prior, is embodied in the JPDAF by the joint feasibility

logic in its formula for association probabilities [3].

However, thus far, we have assumed that the first term

on the right hand side, which we call the joint image

likelihood, can be factored as

p�I j X1; . . . ;XT � � p�I j X1� � � � p�I j XT �:
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Evaluating image likelihoods independently is an approx-
imation that tends to break down when targets are very
close or overlapping because this is exactly when their
appearances become dependent on one another. When
object A occludes or abuts object B, it affects expectations
about the appearance of object B and at least part of the
immediate background of both objects. Ignoring this effect
can introduce a systematic bias in the position, angle, or
scale estimate that leads to mistracking. To track objects
more accurately, p�I j X1; . . . ;XT � must consider the order-
ing of the depths, relative to the camera, of the tracked
objects. Knowing which object is in front of which when
they overlap is the key to properly predicting the image's
appearance ��X1; . . . ;XT � from the objects jointly.

The joint image likelihood effectively functions as the
joint event probability of the JPDAF since it encodes a
measurement association (as well as the likelihood of that

measurement) for every target. However, by sampling the
prior in state space for each tracker we can build up a joint
measurement ZJ and directly assess its likelihood without

incurring the combinatorial penalty associated with the
JPDAF. Repeating this joint sampling step yields a pool of
joint samples. We call the process that results from these
changes the Joint Likelihood Filter (JLF). Details are

presented in the next two sections.

5.2.1 Joint Measurement Process

The first step in the joint measurement process of the JLF is to
generate N joint samples. A given joint sample XJ

i ,
1 � i � N , is built from T component samples Xj, 1 � j � T ,

each generated by one of the trackers in its state space X j.
The component sampling process is the same as that used
by PDAF and JPDAF trackers: A sample is generated either

randomly from the distribution defined by the predicted
state bXj and sampling covariance �X j , or nonrandomly
(when, for example, pure gradient ascent is being used).

The component samples are then stacked to get a joint
sample: XJ

i � �X1; . . . ;XT �T , so XJ � X1 � . . .�XT . Asso-
ciations, in the JPDAF sense, are implicit: target j is

associated with component sample Zj.
The second step for each joint sample is to pick the most

likely depth ordering of its T component samples. To do
this, all permutations of depth orderings are enumerated,

tagging each component sample with a depth order index
in the process. Different depth orderings of nonoverlapping
component samples are visually equivalent, inducing
equivalence classes of depth orderings, so we automatically

eliminate all but one representative of each class. Let DXJ
i
�

fd1; . . . ;dK
XJ
i

g be the set of visually distinct depth order
permutations of joint sample XJ

i . For efficiency, we only do

gradient ascent on the most likely depth ordering di of each
joint sample (a joint image likelihood objective function is
described in the next section) rather than all of them.

Finally, the most probable of all of the joint samples XJ
i is

selected and converted to a joint measurement ZJ . The
component measurements Z1; . . . ;ZT of ZJ are then

plugged into Kalman filters for their associated trackers.
An example of a joint sample comprising a textured

region and a snake is shown in Fig. 5a. The textured region

is tracking a chess pawn and the snake is tracking a knight.

Since there are two overlapping component samples in the

joint sample of the chess example referred to above, there

are two depth ordering hypotheses. Hypotheses corre-

sponding to the pawn being in front of the knight and the

knight being in front of the pawn are represented in Figs. 5b

and 5e, respectively.

5.2.2 Joint Image Likelihood

To evaluate the likelihood of a particular joint sample XJ

and its depth ordering DXJ , the probabilities of its
component samples are computed jointly. A key difference
between this operation and the independent approach of
the PDAF and JPDAF is our ability to predict occlusions
between objects. When one object is hypothesized to be in
front of another, expectations about the occluded object's
appearance change. Trackers of snakes will not expect
edges where they are blocked from view, homogeneous
region trackers will not expect occluded pixels to fit the
color model, and so on. Specifically, DXJ allows us to mask
[27], [28] occluded portions of objects such that the
occluding objects take precedence in the formation of a
jointly predicted image ��X1; . . . ;XT �. Pixels predicted to
be obstructed are ignored and those predicted to be visible
are matched normally.

A basic technique of the independent image likelihoods
in Section 3 is to compute a mean match value  over the
extent or around the perimeter of the object. Under the JLF,
the set of masks fMjg is used to modify this technique for
two reasons. First, some pixels are erroneously counted
more than once by the PDAF and JPDAF when tracked
objects overlap; each pixel should only be used as evidence
by one tracker. Second, the masks are used to try to ensure
that each pixel is counted by the correct tracker. An
approach that meets these criteria only counts target pixels
that are predicted to be visible in the calculation of that
target's mean match value. The masking procedure induced
by DXJ outputs a binary mask Mj the size of the image I for
each target tj. Mj�x; y� � 1 indicates that the image pixel
I�x; y� comes from target tj and Mj�x; y� � 0 indicates that
the pixel belongs to either another object or the background.
Mknight is shown for the two depth ordering hypotheses of
the chess example in Figs. 5c and 5f. Mpawn is shown for
those two hypotheses in Figs. 5d and 5g. Note the alteration
in shape of the mask when an object is partially occluded.

For a textured region tj, only those interior pixels �x; y�
for which Mj�x; y� � 1 contribute to the mean match value.
That is, portions of the region's interior that are not visible
do not have a match value computed and are subtracted
from the effective area. This method is illustrated for the
textured-region pawn of the chess example in Figs. 5h, 5i,
and 5j. Fig. 5h shows the reference image for the pawn.
Figs. 5i and 5j show the comparison images for the
hypotheses that the pawn is in front of and behind the
knight, respectively. In the latter case, the nearer knight
masks out the area of pixels shown in black. Homogeneous
regions are slightly more subtle. The central area is handled
in the same fashion as textured regions, but the inhibitory
frame is not in the mask Mj of the tracker. Rather, only
those pixels �x; y� in the inhibitory frame for which
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Mi�x; y� � 0 for all i 6� j are counted. The same method is
also used for snakes: Only edges found at locations �x; y�
such that Mi�x; y� � 0 for all i 6� j are considered. Finally,
any pixels in the interior, frame, or on the normals of an
object that are also outside of the image are treated as
masked out.

It is also important to guard against interpreting an

object as being completely occluded when there is image

evidence for its visibility. This problem can be avoided by

classifying visible pixels as either positive or negative

evidence for the hypothesis that the target is in a certain

state and putting masked pixels in a third, neutral category

rather than ignoring them. What makes a pixel a match or

positive evidence instead of negative, is fundamentally a

threshold � in  . To quantify this approach, matching

pixels are assigned a value of 1, nonmatching pixels a value

of ÿ1 and masked pixels get 0. Measurements with more

corroborative evidence are assigned higher likelihoods than

those with no or negative evidence by using the sigmoid

function on the sum of the pixel match values.
Specifically, we replace the independent image like-

lihoods p�I j X� for homogeneous regions, textured regions,

and snakes from Section 3 with component image like-

lihoods pJ�I j Xj�. For textured regions, we have:

pJtregion�I j Xj� � sig
X

x;y2IR

a�x; y� �  Jtregion�x; y�
 !

; �8�

where

 Jtregion�x; y� �
1 if Mj�x; y� � 1 ^ IR�x; y� ÿ IC�x; y�� �2� �tregion

ÿ1 if Mj�x; y� � 1 ^ �IR�x; y� ÿ IC�x; y��2 > �tregion

0 otherwise:

8><>:
�9�
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Fig. 5. Joint likelihood filter: Depth orderings. (a) Joint measurement, (b) first depth ordering, (c) first knight mask, (d) first pawn mask, (e) second

depth ordering, (f) second knight mask, (g) second pawn mask, (h) pawn reference image, (i) first pawn comparison image, and (j) second pawn

comparison image.



The form of the component image likelihood is analo-
gous for homogeneous regions and snakes; we omit them
due to space limitations. More details can be found in [11].

Let the joint tracker, which has T component trackers,
consist of a setH of homogeneous region trackers, a set T of
textured region trackers, and a set S of snake trackers such
that T � jHj � jT j � jSj. With the component image like-
lihoods defined as above, the image likelihood of the joint
sample XJ is simply their product:

pJ�I j XJ� �Y
tj2H

pJhregion�I j Xj�
Y
tj2T

pJtregion�I j Xj�
Y
tj2S

pJsnake�I j Xj�: �10�

It is straightforward to perform gradient ascent on the
joint image likelihood to improve the component samples.
Note that gradient ascent does not change the depth
ordering of the component samples, however.

6 TRACKING LINKED OBJECTS WITH CONSTRAINTS

An important assumption of the preceding algorithms is
that occlusions and distractions are caused by other tracked
objects or visual phenomena reasonably approximated by
noise. When this expectation is violated, as when such
occurrences are actually due to persistent features of the
visual environment, these tracking filters can yield biased
results or mistrack. In this case, the selection of what area of
the target to focus on and what tracking modality to use
becomes paramount in determining tracking accuracy.

With regard to making this selection, it is useful to
distinguish between an object attribute, as defined in
Section 4, and what we call a part. A part is a spatially
distinct image feature physically linked to the larger object.
Fundamentally, a part is what a tracker tracks, while an
attribute is how the tracker identifies its target. We have
observed that the more an object is occluded or the better a
distracting background feature matches an attribute used
for tracking, the more severe the deterioration of accuracy
and the greater the chance of outright failure of a PDAF/
JPDAF tracker. The approach of this section to the problem
of persistent distractors is to try to reduce their incidence
and, hence, their influence, by defining a target as a
conjunction of parts and/or attributes. An atomic tracker
with temporarily weak discriminatory power can overcome
difficult image conditions because of the constraints im-
posed by its linkage to other trackers. These force con-
sideration of the entire ensemble of parts and attributes
simultaneously when interpreting the image, helping to
rule out incorrect alternatives. Constraints are only applic-
able, of course, when we are tracking a target complex
enough that it has multiple resolvable parts and/or
attributes.

A linkage between targets means that they are parts of
some larger object and that their states are therefore not
independent. This disallows the decomposition of the joint
state prior p�X1; . . . ;XT � � p�X1� � � � p�XT � that is a vital
step in both the JPDAF and JLF multiple-object tracking
algorithms. As with the joint image likelihood pJ�I j XJ� in
the previous section, we need a more complex formulation
of p�X1; . . . ;XT � that takes into account the interactions

between objects by describing how multiple linked objects
influence one another's states, even at a distance.

In the next part of this section, we introduce an extension
to the JLF called the Constrained Joint Likelihood Filter, or
CJLF, that implements interpart constraints efficiently and
simply. We then present results demonstrating how the
CJLF improves tracking performance in many visual
situations over the previously described algorithms and
enables certain tracking tasks to be carried out for which
those algorithms are not suited.

6.1 Constrained Joint Likelihood Filter

The expectation that parts or attributes of a complex tracked
object will be in a particular configuration is extra
information that may help distinguish the object from the
background or other objects. The key idea behind the CJLF
is an elaboration of one of the most basic kinds of
constraints: limitation of the number of parameters in an
object's state, which in turn, reduces the size of its
measurement space. We already use this form of constraint
for atomic trackers when we analyze the object, the tracking
task and the visual environment in order to decide what
geometric parameters to estimate. If the object to be tracked
only slides back and forth horizontally, for example, or
rotates in place, then there is no reason to give the tracker
more than the minimal degrees of freedom required to
follow that class of movement. To do otherwise only
provides the tracker with an opportunity to mistrack along
an extraneous state dimension.

For a multipart or multiattribute object, there are multi-
ple trackers for which this kind of decision must be made.
The CJLF simply formalizes the common sense notion that a
minimal state description of the entire object implies certain
correlations between and limitations on the states of its
constituent parts and attributes. Ordinarily, a special-
purpose tracker with a customized image likelihood
function p�I j X� is created for tracking a complicated
object. The CJLF avoids this by providing a small set of
rules for composing atomic trackers such that the joint
image likelihood is a product of component likelihoods. The
rationale for this decision is twofold: 1) to reduce the
amount of time spent on analysis and code writing for novel
tracking tasks by permitting code reuse and 2) to provide a
standard interface for new methods to easily be integrated
with existing ones.

The compositional primitives used by the CJLF are based
on intuitive physical relationships such as rigid links,
hinges, and fixed depth orderings. Given a set of parts or
attributes with unconstrained state spaces X1; . . . ;XT , these
rules serve as a guide for paring them down to their
minimal, constrained forms: X01; . . . ;X0T . When the paring
removes all degrees of freedom of a tracker, its state space
becomes empty. It is still desirable to perform image
processing for that tracker, so as a matter of bookkeeping,
the notion of the tracker is retained. This process is the
primary method by which constraints are introduced into
the joint state prior. In addition to reducing the degrees of
freedom available to some of the trackers, the CJLF's
compositional rules also indicate how to derive the image
processing variables of linked parts from one another. The
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details of this derivation are explicated for each of the rules
in the next section.

For purposes of implementation, the CJLF approach
alters the method of obtaining geometric image processing
parameters from the state referred to in Section 4. Let each
target tj have a measurement key Kj. Previously, the domain
of each function in Kj was implicitlyX j; we now extend it
to the joint state space XJ . This allows us to refer to the
component measurement geometric parameters of any
target ti to define tj's component measurement geometric
parameters. The effect of this reduction in the joint state
space is to alter the JLF so that it considers only those joint
state samples which satisfy the constraints exactly, allow-
ing their joint probabilities to be computed normally.
Sampling and hill-climbing can then be used as in the
previous section, while still meeting the conditions on the
interrelationship of the parts.

6.1.1 Constraint Types

Rigid link constraints. The simplest kind of constraint

between measurements is a rigid link. A rigid link between

two objects t1; t2 implies that t2's current geometric para-

meters are completely determined by their initial values and

t1's current valuesÐit has no state or measurement space of

its own. Its only function is to contribute to the calculation of

the joint image likelihood p�I j X1;X2�. Therefore, t2 does not

use a Kalman filter to estimate its own state; its purpose is as

an adjunct that makes t1 a more complex visual object. As an

example, suppose that two rigidly linked objects are allowed

to translate, scale, and rotate, and that the initial offset

between them scales as they do. This joint object configura-

tion is diagrammed in Fig. 6a. The details of the mathematics

are trivial but tedious, so we omit them here [11]. As

shorthand, we represent the rigid link transformation that

takes the geometric parameters of object i to those of object jas

a function Ri;j. Thus, K2 � R1;2�K1�.
It is straightforward to generalize a two-part, rigidly

constrained joint object to a T-target system. T rigidly linked

parts can be modeled by treating them as T ÿ 1 linked pairs,

every one of which includes target t1, such that Ki � R1;i�K1�.
Hinge constraints. A more complex constraint is a hinge,

which is likearigid linkbut withanangular degreeof freedom

granted to the second object; the axis of rotation is determined

by the initial image location of the hinge: �xh; �yh (see the

diagram in Fig. 6b). The equations of the two-part joint object

from above, allowing the ensemble to translate, scale, and

rotate freely and the second part to rotate independently

about the hinge, are also covered in [11]. The hinge

transformation between objects i and j is denoted byHi;j.
We can also extend the mathematics of a single hinge

constraint to a system of multiple hinges.T parts connected in

sequence by T ÿ 1 hinges form a chain [29]. Let C be a chain

consisting of T hinge-connected parts: C � �t1; . . . ; tT �. We

can specify the constraint on each part alongC inductively: If

the first and second links t1; t2 are defined by the two-part

system introduced above, then the state of the ith part for

i > 1 is Xi � ��i� and its measurement space isZi � �. Given

the measurement key K1 of the first part t1, the measurement

key of the ith part ti is given by

Ki � Hiÿ1;i�Hiÿ2;iÿ1�. . .H1;2�K1� . . .��:
By writing Hiÿ1;i�Kiÿ1�, the calculations that lead to Kiÿ1

are assumed.
Depth constraints. Another useful kind of constraint is

related to depth. When there is an expectation that some

subset of the objects being tracked will not occlude one

another, we can collect them into a depth group. Objects in

the same depth group are not masked against one another

during computation of the joint image likelihood. When

justified, grouping objects in this way is more efficient

because there are fewer depth orderings to consider for

each joint measurement.
An obvious situation to which depth groups apply

occurs when tracking an object with multiple attributes.

Since attributes represent qualities of a physical object

rather than the object itself, multiple instances can be

ªlayeredº onto a single object without affecting the visibility

of any of them. When a person's face, for example, is

tracked by both a textured region tracker (to capture

appearance) and a homogeneous region tracker (for skin

color), the two trackers are members of the same depth

group. Depth groups are also appropriate for parts linked

by constraints under certain viewing and motion condi-

tions. Though these parts are spatially distinct, if they are

physically prevented from overlapping, they can also be

placed in the same depth group.
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Fig. 6. Constraint types. (a) Initial configuration of a rigid link. (b) Initial configuration of a hinge.



7 RESULTS

In the following sections, we present some results for our

probabilistic tracking algorithms. For purposes of exact

comparison between techniques, all input sequences are

MPEGs unless otherwise indicated.

7.1 Tracking Objects Independently

In Fig. 7, the use of multiple measurements by the PDAF to

increase the noise resistance of the tracker is illustrated. A

CG sequence was created in which a single red circle moves

counterclockwise at a rate of 0.02 radians per frame, while

50 distracting red circles are uniformly randomly placed in

each frame. The target state is X � �x; y� and the measure-

ment parameters are the same; it is tracked with a

homogeneous region tracker. N � 100 samples are chosen

with a sampling covariance of �X � diag �100; 100�. In one

series of experiments, only the best sample (n � 1) was used

as a measurement: The tracker was able to follow the circle

through a full orbit in five out of 20 trials. In another series

of experiments, n � 10 measurements were selected. This

tracker was much less vulnerable to distraction and

succeeded in tracking the circle in 17 out of 20 trials.
Fig. 8 shows how using random sampling for

measurement generation can yield more robust perfor-
mance than pure gradient ascent when there are agile

motions. A textured region tracker is attached to a mouse
embryo as the microscope slide is moved and the embryo
is poked with a probe. The state of the tracker is position
and orientation: X � �x; y; ��, and measurement space is
Z � X � Y � �. A tracker that uses gradient ascent
(Powell's method) alone to generate a single measurement
is thrown off when the embryo moves abruptly after
frame 60. A tracker that uses random sampling for
measurement generation, however, recovers from these
agile motions N � 250; n � 5;�X � diag �100; 100; 0:04�� �.

Fig. 9 shows a homogeneous region tracker following
the forearm of a person as he walks from left to right.
The state includes the forearm's image position,
orientation, and the velocities of these parameters:
X � �x; y; �; _x; _y; _�; �. Each measurement is a translation
and rotation of a fixed size rectangle, so Z � X � Y � �.
The rectangles overlaid on the figure indicate the measure-
ments N � 1; 000; n � 10;�X � diag �100; 100; 0:02�� �.

In Fig. 10, we track two human heads in infrared
(IR) imagery as they primarily translate and scale, one with
a closed contour and the other with an open curve. Thus,
the state of each tracker is expressed as X � �x; y; s� and
Z � X � Y � S N � 250; n � 5;�X � diag �100; 100; 0:01�� �.
7.2 Tracking Objects Jointly

Fig. 11 demonstrates the efficacy of the JPDAF vs. the PDAF
for tracking the faces of two people as they cross paths.
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Fig. 7. PDAF: Tracking a homogeneous region with uniform noise (CG). (a) Frame 0 with initial position and ground truth of path overlaid. (b) Frame

300 with history of estimates at 25 frame intervals.

Fig. 8. PDAF measurement generation: Tracking a mouse embryo with a translating, rotating textured region. (a) Intitial state. (b) Gradient ascent

mistracks by frame 120 due to excessive speed. (c) Random sampling is successful through from 120. (Sequence courtesy of G. Danuser).



Using translating homogeneous regions with identical
dimensions and the same skin color model, the state of
each tracker is X � �x; y; _x; _y�, making measurement space
Z � X � Y . Both the PDAF and the JPDAF tracker select the
best 10 of 50 samples, where the state sampling covariance
is �X � diag �100; 100�. Each remaining sample is improved
with conjugate gradient ascent, and a minimum separation
is enforced Ðindependently for the PDAF but jointly for the
JPDAF. The JPDAF successfully tracked both heads through
the crossing in 10 out of 10 trials, whereas the PDAF failed
in 10 out of 10 trials. In every case, the tracker assigned to
the head of the person walking to the left was distracted by
the rightward-moving head.

The ability of the JLF to infer the depth ordering of

tracked objects is illustrated in Fig. 12. A white pawn chess

piece is tracked by a textured region as it briefly moves

behind a white knight, which is tracked by a snake; both

have state X � �x; y; _x; _y�, making each component's mea-

surement space Z � X � Y . Measurement generation is

done using pure gradient ascent with Powell's method. The

tracker's outline, normally white, is drawn in gray when the

most likely depth ordering indicates that it is partially

occluded. The fact that the pawn is behind the knight

during the middle section of the tracking sequence is

correctly deduced.

7.3 Tracking Objects with Constraints

Now suppose we want to track the pawn from the previous

example without knowing about the knight. Using a

JLF tracker consisting solely of a homogeneous region

initialized as shown in frame 0 of Fig. 13a1, the state is

X � �x; y�, making measurement space Z � X � Y . The

single most likely of 50 samples from a state sampling

covariance of �X � diag �50; 50� is selected and improved

with Powell's method. This approach fails because the

untracked white knight fits the color model well and attracts

the pawn strongly. The fundamental problem is the presence

of a strong, persistent peak due to the knight in the

homogeneous region's image likelihood that is not expected

by the JLF tracker.
Tracking the pawn in a similar fashion with a snake

alone yields better results because psnake�I j X� has only one

prominent extremum rather than two. This quantifies our

intuition that shape is a better cue for this task than color.

Without knowing ahead of time which modality, if any, is

sufficiently distinctive for successful tracking, a prudent

strategy is to use multiple attributes simultaneously. The

conjunction of color and shape results in a joint image

likelihood pJ�I j XJ�with peaks only where both likelihoods

phregion�I j X� and psnake�I j X� have peaks, reducing dis-

tractions. Formally, we utilize the pawn's color and shape

simultaneously by modeling it with two rigidly linked

attributes: A homogeneous region and a snake with

coincident centers. The pawn's joint region-snake tracker

follows the same regime of hill-climbing on the single best

of 50 samples as the single-attribute trackers above. As
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Fig. 10. PDAF: Tracking two faces with translating, scaling snakes (Infrared imagery, Canny).

1. A single-object JLF is not the same as a standard PDAF tracker because
of the way match values are computed in the joint image likelihood
pJ �I j XJ �, but we use the JLF here to make comparisons with the CJLF
clearer.

Fig. 9. PDAF: Tracking a swining arm with a translating, rotating homogeneous region. Measurements �n � 10� generated by random sampling are

shown. (Sequence courtesy of J. MacCormick).



Fig. 13b shows, this constrained formulation permits the

pawn to be successfully tracked when the homogeneous

region alone fails.
Another example of tracking with the CJLF is given in

Fig. 14. In the input sequence, a person walks from the left

side of the frame slightly toward the camera and then in

profile to the right. Suppose we want to track the person's

face as a homogeneous region with a single-part JLF tracker.

The state is X � �x; y; _x; _y; s� and measurement space is

Z � X � Y � S; the best single sample of 50 is improved

using Powell's method, where �X � diag �50; 50; 0:001�.
Because of a somewhat skin-colored brick wall in the

background, the discriminatory power of the face tracker is

marginal. The face tracker is distracted by a column of tan

bricks in the center of the image; when the person emerges

on the other side of the bricks in frame 120 of Fig. 14a,

tracking has failed. This occurs for essentially the same

reason as with the pawn tracking example above: The bricks

are unmodeled, very similar to the target, and in close

proximity to it for too many frames.
A tracker with the same filter parameters can track the

red shirt through the same sequence without any problems,

however, because its color is much more distinctive the

face's color. Exploiting the physical connection of the face to

the shirt, we track the two as rigidly linked parts that scale

and translate together. Fig. 14b shows a successful run. The

CJLF tracker sometimes bobbles slightly in front of the brick

column as the tracker explores the possibility of not

translating anymore and instead simply expanding to

including the bricks, the face, and the shirt. Because of the

nonlocality of random sampling, however, this part of

measurement space is quickly discarded as the proportion

of nonmatches in the larger area dilutes its fitness compared

to the correct interpretation.
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Fig. 11. JPDAF vs. PDAF: Tracking crossing homogeneous regions. Frames 0, 12, and 24 are shown.

Fig. 12. JLF: Deducing the occlusion relationship between a textured region and snake.



A more complicated situation which shows the advantage

of the CJLF over the JLF is shown in Fig. 15. Here, we want to

track a person's hand and forearm as homogeneous regions

while they shake hands with another person, who is not

tracked. Each component (i � 1; 2) of the JLF tracker has a

state of the form Xi � �xi; yi; �i; _xi; _yi; _�i� with measurement

spaces Z1 � Z2 � X � Y � �. Accelerations during the

handshake are too large for pure gradient tracking, so each
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Fig. 13. Multiattribute CJLF (frames 0, 50, and 100). (a) One-attribute JFL tracker. JLF homogeneous region tracker is distracted by the white knight.

(b) Two-attribute CJLF tracker. CJLF homogeneous region and snake tracker overcomes the distraction.

Fig. 14. Multipart CJLF: Resisting a distracting background (frames 0, 60, and 120). (a) One-part JLF tracker on the face is distracted. (b) Two-part

CJLF tracker on the face and shirt succeeds.



component tracker selects the best 1 of 50 samples, where
�X � diag �50; 50; 0:002� and hill-climbs it using Powell's
method. Despite these measures, the hand tracker mistracks
when its target is in close proximity to the other person's
hands, and the forearm tracker erroneously slides along the
sleeve.

These shortcomings can be eliminated with a hinge
constraint joining the hand and forearm trackers to one
another at the midpoints of their abutting short sides. The
state of the forearm tracker remains the same, while the
hand tracker is reduced to one degree of angular freedom.
Adopting this approach prevents the hand and forearm
trackers from floating apart; relatively higher joint image
likelihoods keep the hinge at the sleeve-hand border. The
result is that during the period of ambiguity when the two
hands are clasped together, a realistic interpretation of the
situation is maintained and tracking proceeds correctly after
the hands separate.

8 RELATED WORK

Most of the previous work on tracking complex objects has
not explicitly tackled the data association issue. One line of
primarily motion-based tracking work has avoided the
association or correspondence problem entirely through a
differential approach. For example, Yamamoto and Koshi-
kawa [30], tracked in-plane articulated movements of a
human arm by relating arm motion to image change via the
Jacobian and solving the brightness equation using

least-squares. Basu et al. [31] used a similar technique to

recover 3D head motion parameters, and other assemblages

of body parts have been tracked in [28], [32], [33], [29].

Many of these efforts have more of a flavor of pure

estimation, rather than the simultaneous problem of

estimation and label assignment that we focus on.
The Condensation algorithm [23] tackles the problem of

clutter by maintaining a set of hypotheses about associa-

tions that are resolved over time. It also uses random

sampling, but lacks an explicit notion of state. Rather, the

samples must be queried to obtain one. The query

procedure provided does not work well when the image

likelihood is multimodal and the authors suggest that a

more sophisticated ªmode finderº is necessary. This is

essentially what our measurement generation algorithm of

Section 5.1.1 implements.
The difficulties arising from mutual occlusions among

tracked objects have been addressed by a number of

heuristic extensions to the Kalman filter. For example, Rehg

[28] tracked the fingers of a human hand as they bent and

blocked one another; and Koller et al. [27] tracked the

outlines of cars on a highway as they sometimes occluded

one another. The essential idea of both approaches was to

mask out the occluded part to prevent it from claiming the

measurement generated by the occluding part. In each case,

3D information was available to predict which part was

occluded, whereas the Joint Likelihood Filter we introduced

deduces occlusion relationships from the image directly.
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Fig. 15. CJLF: Using a hinge constraint at the wrist to prevent mistracking during a handshake. (a) Frame 0 of sequence of homogeneous region

trackers on hand and forearm. (b) Running a JLF tracker for both parts, the hand tracker is distracted by other person's hand (frame 260). (c) The

CJLF formulation permits accurate tracking of the hand (frame 260).

Fig. 16. Tracking algorithm steps. N is the number of samples, n is the number of measurements, T is the number of targets. ��; �� indicates a

Gaussian with mean � and covariance �. X0 and X0 are minimal, constrained forms of a state and state space, respectively.



The JLF is similar to work described in [34]; a data
association approach to tracking is also taken in [35].

9 CONCLUSION

This paper's primary contribution is its demonstration of
the importance of reasoning about correspondences be-
tween trackers and image data in order to achieve robust
vision-based tracking. Though filters such as the PDAF and
JPDAF were originally developed for discrete radar and
sonar tracking applications, we were able to successfully
adapt them to visual tasks by defining measurements
suitably and devising a novel preprocessing step to extract
them. Run head-to-head on the same image sequences, the
vision-based tracking algorithms thus created exhibited
markedly better performance in the presence of clutter and
when tracking multiple identical objects than many current
commonly-used methods.

We have also explicated shortcomings in the JPDAF and
remedied them with a more efficient and sophisticated
method, the JLF. By relating the exclusion principle at the
heart of the JPDAF to the method of masking out image
data, the JLF handles occlusions between tracked objects.
Our extension of this method to collections of objects of
different modalities such as color, shape, and appearance is
original. The approach we take to color representation and
region geometry for homogeneous regions is our own.
Moreover, though others have used three-dimensional state
parameters to assist with occlusion reasoning, the JLF's
inference of the depth ordering of tracked objects from
image data alone is novel.

Finally, we augmented the JLF method to allow low-level
trackers to be composed via part and attribute constraints in
order to specify more complex targets. This algorithm, the
CJLF, reduces the vulnerability of a vision-based tracker to
unmodeled distractions and occlusions by effectively
defining its target more distinctively. Although geometric
constraints are a well-established method for increasing
robustness, exploiting multiple modalities simultaneously
to track a single objectÐespecially three, as we doÐis fairly
new, and the union of these two approaches is clearly an
advance. The way that the CJLF framework does so is made
more useful by its flexibility and extensibility: Target
models can be easily specified and new modalities can be
added straightforwardly.

In future work, we hope to rationalize the selection of
visual cues used for object tracking based on image
conditions, and to allow for persistent distractors to be
found automatically and tracked as objects in their own
right instead of being treated as noise.

APPENDIX

The Kalman filter [3] estimates a time-varying state X from
observable measurements Z of a system which at time t is
described by the dynamic equation Xt � FXtÿ1 � qt, where
qt is a sequence of zero-mean, white, Gaussian noise with
dynamic covariance Q. The state is related to Z by the
measurement equation Zt � HXt � rt, where rt is also
Gaussian noise with measurement covariance R. Using the
previous state estimate and the current data, a new estimate

for X is generated as follows (except for the identity matrix

I, every variable not subscripted by tÿ 1 is implicitly

subscripted by t):

X̂�FXtÿ1 Predicted state Ẑ�HX̂ Predicted measurement

P̂�FPtÿ1F
0�Q State prediction S�HP̂H0�R Measurement

covariance prediction covariance

���ZÿẐ Innovation W�P̂H0Sÿ1 Filter gain

X�X̂�W�� State estimate P��IÿWH�P̂ State covariance estimate:

The first-order Extended Kalman Filter [3] handles the

case of a nonlinear dynamic equation Xt � F �Xtÿ1� � qt
through linearization by assigning the first term of the

Taylor series expansion of F about Xtÿ1 at each filter

update to the matrix F. A nonlinear measurement equation

Zt � H�Xt� � rt is dealt with similarly by expanding H

about X̂ every filter update to obtain H.
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