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Abstract

In an outdoor, off-road mobile robotics environ-
ment, it is important to identify objects that can affect
the vehicle’s ability to traverse its planned path, and
to determine their three-dimensional characteristics.
In this paper, a combination of three elements is used
to accomplish this task. An imaging ladar collects
range images of the scene. A color camera, whose po-
sition relative to the ladar is known, is used to gather
color images. Information extracted from these sen-
sors is used to build a world model, a representation
of the current state of the world. The world model is
used actively in the sensing to predict what should be
visible in each of the sensors during the next imaging
cycle. The paper explains how the combined use of
these three types of information leads to a robust un-
derstanding of the local environment surrounding the
robotic vehicle for two important tasks: puddle/pond
avoidance and road sign detection. Applications of
this approach to road detection are also discussed.

1 Introduction

An autonomous vehicle driving across unknown ter-
rain must be able to detect potential obstacles and
identify them well enough to determine if they can be
traversed. This must be accomplished fast enough to
ensure that the vehicle has enough time and space to
avoid obstacles. The work described in this paper is
part of the Army’s Demo III project [1]. The require-
ments for the Experimental Unmanned Vehicle (XUV)
developed for Demo III include the ability to drive au-
tonomously at speeds of up to 60 kilometers per hour
(km/h) on-road, 35 km/h off-road in daylight, and 15
km/h off-road at night or under bad weather condi-
tions. The control system for the vehicle is designed
in accordance with the 4D-Real-time Control System
(RCS) architecture [2], which divides the system into
perception, world modeling, and behavior generation
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Figure 1: The Demo III XUV

subsystems.

The XUV has two principal sets of sensors for nav-
igation, as shown in Figure 1. On the left, outlined
in white, is a ladar system that produces range im-
ages at about 20 Hz. Mounted above the ladar is a
color camera (not pictured) that produces images at
up to 30 Hz. On the right are a pair of stereo color
cameras, and a set of stereo FLIR cameras. The work
described in this paper concerns the use of the ladar
sensor and its associated color camera. The way each
is used in conjunction with the other and with infor-
mation stored in the vehicle’s internal world model is
the focus of the paper.

Given the need for relatively high speed driving, the
sensory processing subsystem must be able to update
the world model with current information as quickly
as possible. It is not practical to process all images
completely in the time available, so focusing atten-
tion on important regions is required. This is done
by trying to predict which regions of future images
will contain the most useful information based on the
current images and the current world model. Predic-
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tion is carried out between images, across images, and
between the world model and each type of image.

Prediction and focus of attention are of special in-
terest to robotic systems because they frequently have
the capability to actively control their sensors [3]. The
goal of focusing attention is to reduce the amount of
processing necessary to understand an image in the
context of a task. Usually, large regions either contain
information of no interest for the task, or contain in-
formation that is unchanged from a previous view. If
regions of interest can be isolated, special and perhaps
expensive processing can be applied to them without
exceeding the available computing resources.

Most focus of attention systems work by looking for
features usually defined by some explicit or implicit
model. The search may take many forms, from multi-
resolution approaches that emulate human vision’s pe-
ripheral and foveal vision, to target-recognition meth-
ods that use explicit templates for matching [4, 5, 6, 7].
Once a set of attention regions has been detected, a
second stage of processing is often used to further pro-
cess them, or to rank them. This processing may re-
quire more complex algorithms, but they are applied
only to small regions of the image.

In this paper, we describe an approach to feature
detection and tracking that falls within the above gen-
eral description, but differs from previous approaches
in using multiple sensor types that interact to locate
and identify features. A world model containing the
system’s current best guess about the state of the
world is used to predict where features should appear
and how they should look to each of the sensors. The
world model serves as a common coordinate system for
comparing and integrating ladar and camera observa-
tions, as well as a framework for doing simple tracking
of detected features. Judicious choice of which sensor
to run initial perception routines on often significantly
reduces computational burden, while combining the
ladar and camera information tends to boost perfor-
mance over either used singly.

2 Methods
2.1 The World Model

The World Model (WM) contains a 3-D, annotated
representation of the current state of the terrain sur-
rounding the vehicle and is updated continually by the
sensors. We use a modified occupancy grid represen-
tation [8], with the vehicle centered on the grid, and
the grid tied to the world. The WM thus scrolls under
the vehicle as the vehicle moves about in the world.
The world model is the system’s internal representa-
tion of the external world. It acts as a bridge between
sensory processing and behavior generation by pro-

Figure 2: Camera-ladar registration. Darker laser pix-
els are more distant.

viding a central repository for storing sensory data in
a unified representation, and decouples the real-time
sensory updates from the rest of the system. The WM
process has two primary functions:

Create a knowledge database (map) and keep
it current and consistent by updating existing data in
accordance with inputs from the sensors and deleting
information no longer believed to be representative of
the world. The WM also assigns confidence factors
to all map data and adjusts them as new data are
sensed. Types of information in the map include state
variables (e.g., time, position, orientation), system pa-
rameters (e.g., coordinate transforms, sensor to vehicle
offsets, etc.), and lists or classes of sensed objects. The
world model process also provides functions to update
and fuse data and to manage the map (e.g. scrolling
and grouping objects.)

Generate predictions of expected sensory in-
put based on the current state of the world and es-
timated future states of the world. For the Demo III
off-road autonomous driving application, very little a
priori information is available to support path plan-
ning between the vehicle’s position and a final goal
position. The world model therefore constructs and
maintains all the information necessary for intelligent
path planning [9].

Prediction is used to focus attention on regions that
have previously been identified as interesting. It facil-
itates tracking, enables confidences in features to be



updated, and allows information found in one sensor
to influence processing in another. Prediction is medi-
ated in our system by the world model. Since we use a
grid representation fixed to the world, it is straightfor-
ward to project regions in the world model into each
of the sensor coordinate systems. Currently, we only
predict where a feature is expected to occur, not what
it may look like.

2.2 Coordinate System Transformations

Since the sensors are mounted on a mobile plat-
form, and the sensors themselves move, projections
are not fixed, but must be computed each time they
are needed. There are two kinds of projections: The
ladar data are projected into the world model, and
features identified in the ladar data are projected into
the color image space.

Each sensor is at a known base position on the ve-
hicle, and has a known sensor coordinate system. The
vehicle is moving, however, and the WM maintains
its representation in world coordinates, fixed on the
ground. Thus, all coordinates must be converted from
sensor to vehicle, and from vehicle to world. Some of
the sensors also move relative to their base position.
The ladar, for instance, may rotate about its horizon-
tal axis (tilt). Finally, the sensors sample at different
times, so a correction must be made for their relative
positions in space when mapping between images.

The ladar-to-WM coordinate transformation includes
the ladar-to-vehicle and vehicle-to-world-model trans-
formations. The projection from the WM to the color
camera image includes WM-to-ladar and ladar-to-image
transformations. The ladar-to-image transformation
is particularly important in order to achieve an ac-
curate registration between ladar features and image
features. This transformation is not invertible because
of the lack of depth information in the camera image.
In order to register the ladar and camera images, we
first calibrated the camera’s internal parameters using
J. Bouguet’s Matlab toolbox [10]. The external ori-
entation between the camera and ladar was obtained
by correlating corresponding points imaged by each
device over a number of scenes and then computing
a least-squares fit to the transformation according to
the procedure described in [11]. Results are shown for
a sample scene in Figure 2.

3 Feature Types

In this section we will discuss two examples of fea-
ture types that our system detects and tracks: puddles
and road signs—specifically, signs marking an endan-
gered butterfly sanctuary. Puddles, ponds, and mud
are a serious problem for off-road mobile vehicles be-

Figure 3: Butterfly signs

cause of the danger they pose of the vehicle getting
stuck in them, as well the possibility of water damage
to the engine and/or critical electrical components.
For our purposes, butterfly signs indicate the borders
of an ecologically protected zone where we do testing
that the vehicle must not enter, but human-readable
signs might also mark minefields or contain other im-
portant information [12], making the ability to find
them a critical one.

A third task that is ongoing work, road finding, is
also briefly discussed. There has been some work on
following marginal rural roads using color cues [13],
but road detection, which is a vital skill for back-
country navigation, has been less studied.

3.1 Butterfly signs

Butterfly signs are rectangular yellow placards
mounted on six-foot wooden posts (painted orange on
top) that delimit a “no driving zone,” thus affecting
the path-planning module of the XUV system. Two
such signs are shown in Figure 3.

In the ladar domain, signs can be distinguished
from the background because they frequently jut above
surrounding foliage, with good depth contrast and noth-
ing above them. When fixed, the limited vertical field
of view of the ladar (15 degrees) tends to cut off the
tops of the signs, so we use a sign-finding operator
that simply searches for a vertical bar (i.e., not end-
stopped) in the ladar range image at a scale corre-
sponding to 5-10 meters distance to the sign.

The steps of the method are illustrated for a sample
range image in Figure 4: first, two odd-phase Gabor
filters [14] are run over the range image in Figure 4(a)
to find left and right vertical edges, respectively, and
the output of the filter in Figure 4(b) is thresholded



to isolate strong edges. Second, we search for range
image locations where left and right edges co-occur—
that is, all (x, y) such that there is a left edge at (x −

δ, y) and a right edge at (x+δ, y) for δ ≤ 2. This yields
ladar-based hypotheses for sign locations, as shown in
Figure 4(c).

(a) Ladar range image

(b) Gabor-filtered range image (right edges)

(c) Left and right ladar edge co-occurrences

(d) Color confirmation matches

Figure 4: Butterfly sign detection

We can accumulate these hypotheses in the world
model as the XUV drives; a representation of this part
of the WM after the XUV has followed a road with
∼15 signs along it for several hundred meters is given
in Figure 5(a). The WM is shown at a 1-meter grid
square resolution, with only squares that have had five
or more sign hypotheses projected to them shown in
red; the vehicle path calculated from its inertial nav-
igation system is shown as a blue line. Nearly all of
the signs are found, but at the cost of a number of
false positives from vegetation. The spots inside the
dotted rectangle, for example, are likely tree trunks.

To increase the accuracy of our sign-finder we add
color, which has been shown to be a useful cue for
sign detection [12]. A very simple method for mod-
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Figure 5: Butterfly sign maps. Numbered arrows
point to correctly-detected sign locations; the dotted
box in (a) is a group of trees. Units are in meters.

eling the sign color follows from sampling sign pixels
over multiple images and performing principal compo-
nents analysis on the pixel distribution to parametrize
an ellipsoid in RGB space. Color similarity of an ar-
bitrary pixel is then the Mahalanobis distance of the
pixel color to the model ellipsoid’s center. The ladar-
based method above is easily extended by projecting
ladar sign hypotheses (such as in Figure 4(c)) into
the camera image, and then measuring the “yellow-
ness/orangeness” of the local image neighborhood to
check them. Specifically, we project each ladar sign
hypothesis from the co-occurrence step to image coor-
dinates (x, y) and compute the minimum Mahalanobis
distance dx,y to the butterfly sign color over a 20x20
region about (x, y); if dx,y is less than a threshold then



the hypothesis is confirmed. Bounding boxes on two
clusters of confirmed ladar sign hypotheses from Fig-
ure 4(c) are shown in Figure 4(d). Color-confirmed
ladar hypotheses for the road sequence are projected
to the world model in Figure 5(b). This completely
eliminates false positives, although a few correct de-
tections are also deleted. A better color model would
likely prevent this. Some signs were missed by both
methods either because they were too far away to re-
solve or because foliage growing behind them elimi-
nated depth contrast.

Focus of attention serves here to minimize com-
putation: by searching first in the ladar domain, ex-
pensive image processing is limited to small neighbor-
hoods around good candidates. By integrating sign
detections over multiple frames, the world model throws
out spurious sensor responses and betters the precision
of the location estimates of the signs.

3.2 Puddles

In our standard ladar-based navigation system, we
have found that puddles and other standing water ap-
pear as smooth, level surfaces. These qualities make
such areas highly attractive to the motion planning
system and therefore dangerous. We would like to de-
tect puddles and flag them as “no go” or at least wor-
thy of extra caution. Fortunately, a simple test follows
from the optical properties of the ladar: laser beams
hitting a puddle at an oblique angle are reflected away
from the sensor, and result in no data being returned.
Such points show up as voids in the ladar images, but
are not the only source of missing data. Out-of-range
depths are also recorded in any sky or otherwise dis-
tant regions in the ladar’s field of view.

Our puddle detection algorithm thus looks for voids
in the data, and then scans a region surrounding them.
Puddle-derived voids are distinguished from sky by re-
quiring that there be non-void pixels above every col-
umn in a connected component. Assuming that there
are ground points somewhere adjacent to the puddle
in the ladar image (rather than all pathological cases
like overhanging limbs), we can obtain a reasonable
estimate of the height of the water surface from the
minimum height in the WM of over all points sur-
rounding the puddle in the image. This allows us to
solve for the missing range values in the puddle in-
terior and thus properly place it in the map. These
steps are illustrated in Figure 6. Without explicitly
detecting puddles in this manner, height maps used
for navigation have areas of missing data in them (see
Figure 7(a)) that are similar to laser “shadows” be-
hind obstacles and protruding objects. Puddle detec-
tion permits water hazards to be placed in the map

for higher-level reasoning, as shown in Figure 7(b).

(a)

(b)

(c)

(d)

Figure 6: Puddle detection. (a) Raw ladar image con-
taining puddles; (b) Smoothed sky and puddles after
segmenting voids, morphological closing; (c) Puddles
after sky removal, range calculation; (d) Simultaneous
color image with bounding boxes of projected puddles.

In the case of puddles, prediction plays an impor-
tant role in ladar processing. As the vehicle approaches
a puddle, the angle at which a laser ray hits the water
gets steeper, and at a critical angle the sensor starts
to record a return from the puddle. Without knowing
that the region had already been identified as a pud-
dle, the sensor would start to indicate that the region
was traversable and smooth, which would make it a
preferred location for the planner. Marking a region
as already identified in the world model prevents this
behavior. Note that puddles are unusual in that the
confidence in most features increases through multiple
views whereas using the ladar sensor to view puddles
over time reduces their confidence. The behavior of
the ladar sensor in the neighborhood of other features
that produce voids, such as holes and occlusions, is
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Figure 7: Mapping puddles. (a) Height map made
from unprocessed ladar images; (b) Map of projected
puddle regions with five or more hits per 0.25 meter
grid square.

very different from that around puddles. This enables
a distinction to be made over time that might not be
made from a single view.

Before the critical angle is reached, using the ladar
alone is generally sufficient to correctly identify a pud-
dle. After the critical angle the world model location
of the puddle serves to guide the XUV away from wa-
ter, but as it is unsupported by sensory data the re-
liability of the map decays over time. To maintain
the reliability of the WM puddle locations even af-
ter the critical angle, we look in the color image for
supporting evidence to reduce false positives. When
a puddle is detected in the ladar data (with sufficient
confidence in the map), a window is placed about the
potential puddle region, and projected into the color
image as in Figure 6. In the color domain, the system

tries to determine if the region has a similar color to
what is above it. Often, this will be the sky, so a blue
color will mean a puddle. At other times, however, the
puddle may reflect trees, grass, or clouds. The algo-
rithm searches for a match, but may fail if the puddle
is reflecting something not in the image. When the
puddle is verified, color information from the puddle
points can then be placed into the world model. By
continually updating this color information while the
ladar still sees a void, the system can smoothly transi-
tion to relying on color alone to segment a puddle even
after the critical angle is reached. The confidence of
puddle in the map is increased by a predefined value
that depends on the robustness of the color classifica-
tion algorithms.

3.3 Roads

Color from captured camera images can be com-
bined with the 3-D information returned by the ladar
range-finder in the world model. We do this by sim-
ply projecting ladar points into the current image and
reading off the (R, G, B) values of the image pixels
they land on, and then carrying that color informa-
tion along when the ladar data is projected into the
world map, averaging color per grid square. Example
maps with fused height and color information created
from two driving sequences are shown in Figures 8(a)
and (b). The grid square size is 0.25 meters and ev-
ery ladar image from each sequence is mapped (the
sequence shown in (a) has 1072 ladar frames and (b)
has 572). Height maps are displayed with the mini-
mum height in the map as black and the maximum as
white (unmapped squares are also white).

Observing that roads’ structural and visual charac-
teristics often differ from those of bordering areas in
height (bushes, trees, and rocks tend to “stick up”),
smoothness (roads are locally flat, while grass, etc. are
bumpier), and color (asphalt, dirt, and gravel roads’
hues are separable from those of vegetation and sky
[13]), it is possible to formulate an objective func-
tion to distinguish roads in the ladar-color domain as
contiguous world model regions with small variance
in height and acceptable color distributions (brown,
black, etc.). In Figure 8(a), the ladar data alone is suf-
ficient to discriminate the road via height and smooth-
ness features. When, however, the road and non-road
are differentiated mainly by color as in Figure 8(b),
color image information becomes critical. The ladar
data remains useful, however, as a means of focus-
ing attention by permitting obstacle regions such as
trees and foliage to be masked out, reducing the map
area searched for possible roads. We are currently
investigating the use of GPS information from the



XUV’s navigational system and a priori map infor-
mation to selectively cue evaluation of the objective
function based on proximity.

4 Conclusion

By focusing on a few critical subtasks of the gen-
eral off-road autonomous navigation problem, we have
demonstrated the utility of combining information from
a ladar and color camera for feature detection and
tracking. The two sensors have strengths that are of-
ten complementary, and careful staging of algorithmic
modules results in increased task performance with-
out imposing the computational burden that simply
analyzing or filtering both modalities and fusing them
afterward would. Further, fusing data via a world
model has proven a flexible way to integrate synchro-
nized information from the two sensors while improv-
ing its quality over time, and being able to project
the combined information into the sensor domain en-
ables cheap prediction of what the sensors should see
in subsequent views. By using both individual sen-
sor characteristics and prediction, it is possible to fo-
cus attention on important features and to bring more
sensor resources to bear on identifying them.
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Figure 8: Road detection: (a) Field height and color map; (b) Trees height and color map.


