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Abstract
We describe results on combining depth informa-

tion from a laser range-�nder and color and texture
image cuesto segment ill-structured dirt, gravel, and
asphalt roads as input to an autonomousroad follow-
ing system. A large number of registered laser and
cameraimageswere captured at frame-rate on a vari-
ety of rural roads, allowing laser features such as 3-D
height and smoothness to be correlated with image
features such as color histograms and Gabor �lter re-
sponses.A small set of road models wasgeneratedby
training separate neural networks on labeled feature
vectors clustered by road \t ype." By �rst classify-
ing the type of a novel road image, an appropriate
second-stageclassi�er was selected to segment indi-
vidual pixels, achieving a high degreeof accuracy on
arbitrary imagesfrom the dataset. Segmented images
combined with laser range information and the vehi-
cle's inertial navigation data were used to construct
3-D maps suitable for path planning.

1 In tro duction
An autonomousvehiclenavigating on- and o�-road

(e.g., military reconnaissance)must be aware of dif-
ferent kinds of terrain in order to make prudent steer-
ing decisions.To minimize terrain-based dangersand
maximize speed, it is often desirable to useany roads
present in an areaof operation for asmuch of a point-
to-point path as possible. This special caseof gen-
eral terrain traversal, road following, requires an abil-
it y to discriminate betweenthe road and surrounding
areasand is a well-studied visual task. Much work has
beendoneon driving along highways and other paved
or well-maintained roads [1, 2, 3], but marginal rural
and backcountry roads are lessamenableto standard
techniques for a variety of reasons.There may be no
lane lines or markings; the road/non-road border is of-
ten spatially fuzzy and has low intensity contrast; the
overall road shape may not follow smooth curvesand
the support surface may be highly non-planar; and
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the appearanceof the road itself can change drasti-
cally: mud, clay, sand, gravel, and asphalt may all be
encountered.

Algorithms that attempt to delineate the road via
region-basedsegmentation have beenfairly successful.
Color [4, 5] and texture [6] are two characteristics that
have beenusedto di�eren tiate the road from border-
ing vegetation or dirt. Somework has also beendone
on using 3-D information to constrain segmentation:
for example, [7] applied structure-from-motion tech-
niquesto automatically detectedand tracked features
in order to steer a vehicle along a dirt road in the
midst of densetrees. Visual and structural modalities
are clearly complementary: vision alone may be inad-
equateor unreliable in the presenceof strong shadows,
glare, or poor weather, while road boundaries do not
necessarilycoincide with 3-D structures|the height
border between a dirt road and short grass, for ex-
ample, is undetectable by most current methods and
sensors.

Classi�cation o�ers a straightforward way to com-
bine these two sourcesof information. In this paper,
we report work on road segmentation using a camera
and a laser range-�nder mounted on an autonomous
four wheel-drive vehicle. By framing the problem as
one of learning by labeled examples whether small
image patches (registered with laser range informa-
tion) belong to the road or background, we can easily
integrate disparate features such as 3-D height and
smoothness with image qualities like color and tex-
turedness. We have found that fusing these modali-
ties yields better performance than any one method
over a wide variety of individual road images. Clearly,
though, it is infeasible to learn a separatemodel for
every image. Learning a single model for the entire
image corpus is a simple solution, but it reducesclas-
si�cation accuracy becauseof the variety of road and
background types that must be handled. Therefore,
we proposea method to automatically learn and ap-
ply a small number of di�eren t road appearancemod-
els which boosts performanceconsiderably.

In the next three sections we will briey describe
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Figure 1: Sampleroad images

the background behind our approach, then detail our
experimental proceduresand training and testing data,
and �nally present results.

2 Road segmentation
Weframe road segmentation asa classi�cation prob-

lem in which wewish to identify small patchesover the
�eld of view aseither road or non-road on the basisof
a number of properties, or features, that we compute
from them. These features are non-geometric|that
is, image location is not consideredfor segmentation,
only local image properties. Patches are manually
labeled for a representativ e set of images (Figure 1
shows some examples from our data), and a neural
network [8] is trained to learn a decisionboundary in
feature space.This model can be usedto classify pix-
elsin novel images,from which wecaneither (1) derive
road shape parametersdirectly by recursively estimat-
ing curvature, width, etc. from the edgesof the road
region and control steering accordingly (analogousto
[3]); or (2) use the laser information to backproject
road and non-road regions into a 3-D map (seeSec-
tion 4 for an example)suitable for a more generalpath
planner [9].

We have two sensorsavailable|a laserrange-�nder
which givesdensedepth valuesand a video camera|
with di�ering �elds of view and capture rates. By
registering the imagesobtained from each sensorboth
spatially and temporally (our procedure is explained
in the next section), we can formulate an image pair
that contains correlated information from both. We
have chosenfour basic kinds of featuresto distinguish
road patchesfrom plants, rocks, tree, grass,and other
o�-road zones|t wo from the laserhalf of the pair and
two from the image half. They are:

Heigh t How far a laserpoint is vertically from the ve-

hicle support surface1. This shouldallow bushes
and trees to be eliminated regardlessof their vi-
sual appearance.

Smo othness The height variance in the neighbor-
hood of a laser point. Roads should be locally
at, while tall grassand looserocks are bumpier.

Color A color histogram [10] is computed over each
imagepatch. Roadsare expectedto be more-or-
lessconsistent in their mix of colors |generally
brown or gray|while the background is expected
to exhibit more green and blue colors to allow
discrimination.

Texture Gabor �lters [11] are computed over each
image patch to characterize the magnitude and
dominant direction of texturedness at di�eren t
scales.The road shouldbemorehomogeneousor
anisotropic (e.g., tracks, ruts) than bordering
plants.

3 Metho ds
Real-time video, laser rangedata, and inertial nav-

igation information wererecordedfrom a robotic vehi-
cle tele-operated on a variety of dirt and asphalt roads
at Fort Indiantown Gap, PA in July, 2001. Approxi-
mately 73minutesof late-morning driving at 5-15mph
werecaptured in 14distinct sequencestotaling 131,471
video frames.

The analogoutput of the camera,a Sony DXC-390,
wasconverted to DV beforecapture and then subsam-
pled, resulting in a �nal resolution of 360 � 240 for
image processing. The laser range-�nder, a Schwartz
SEO LAD AR, acquiresa 180� 32 array of range val-
ues � 20 times a secondcovering a �eld of view of 90
degreeshorizontally and 15 degreesvertically.

For training, 120 video frames were randomly cho-
sen and the most-nearly synchronous laser range im-
agewas paired with each. Of these, nine image pairs
wereeliminated due to missingdata in the laser image
(a hardware artifact) and four becausethe vehiclewas
not on a road. This left 107 image pairs for training
and testing. Onecontiguous road regionwasmanually
marked in each camera image with a single polygon
(some\t wo-track" roads with grassgrowing down the
middle necessitatedsomewhat contorted boundaries
to exclude theseareas).

1A vehicle-centric coordinate system is chosen so that + Z
is forward with respect to the direction the vehicle is pointing,
+ X is righ t, and + Y is up. The height h and tilt angle � of the
camera/laser are known and accounted for.



3.1 Features
Feature vectors were computed for each image at

10-pixel intervals vertically and horizontally , with
roughly a 20-pixel margin to ensurethat �lter kernels
remained entirely within the image. This resulted in
640 feature vectors per image. Centered on each fea-
ture location, three di�eren t sizesof subimage were
examinedfor feature computation: 7� 7, 15� 15, and
31� 31. A total of fourteen feature sets, or segments of
the full feature vector, were used for learning. These
consistedof:

Six color feature sets Two kinds of color features
werecomputedover the abovethree scales:a standard
4-bins-per-RGB-channel joint color histogram (43 to-
tal bins), and an \indep endent" color histogram con-
sisting of 8 bins per channel (8 � 3 total bins).

Tw o texture feature sets Texture features con-
sisted of the odd- and even-phaseresponsesof a bank
of Gabor �lters histogrammedover the 7� 7 and 15� 15
scales(8 bins per phasewith limits de�ned by the max
and min �lter responseon each particular image). For
each phase, the Gabor �lter bank consisted of three
wavelengths (2, 4, and 8|resulting in kernel sizesof
6 � 6, 12 � 12, and 25 � 25, respectively) and eight
equally-spacedorientations.

Six laser feature sets As Figure 2 shows, not
every image location has laser information associated
with it. Only thosefeature vectorswith adequatelaser
information (> 1 point projecting into its subimage)
were included in training with any feature subsetthat
was not exclusively image-based. For eligible loca-
tions, the mean and covariance were computed of the
X ; Y; Z coordinates of the n laser points projecting to
the local 15 � 15 or 31 � 31 image neighborhood. As
featureswe usedthe meanY value, the varianceof Y ,
and the Y meanand varianceover the two scales.The
Y meanallows discrimination basedon height relative
to the baseof the vehicle's tires, while the Y variance
was included as a simple measureof smoothness.

3.2 Calibration and classi�cation
The camera's internal parameters were calibrated

using J. Bouguet's Matlab toolbox [12]. The external
orientation betweenthe cameraand LAD AR was ob-
tained by correlating corresponding points imaged by
each deviceover a number of scenesand then comput-
ing a least-squares�t to the transformation according
to the proceduredescribed in [13].

The Matlab Neural Network Toolbox [14] wasused
to train the neural networks in this paper. Each neural
network had one hidden layer consisting of 20 hidden
units; weights were updated using conjugate-gradient
back-propagation with the \tansig" activation func-

Figure 2: Laser-cameraregistration. Darker laserpix-
els are more distant.

tion. During training, the classi�cation accuracy of a
particular neural network was estimated using cross-
validation, where 3

4 of any givendata set wasusedasa
training fold and the remaining 1

4 for testing, rotating
the testing fraction four times. The quoted accuracy
is the median of the four testing accuracies.

4 Results
We experimented with a number of di�eren t train-

ing regimesto assessthe utilit y of the various modali-
ties (laser, color, and texture) both independently and
in combination, on individual imagesand on the sam-
ple corpus as a whole.

4.1 One mo del per image
A separateneural network was trained on each of

the 107random camera-laserpairs f I i g for each of the
feature setsdescribed in the previous section. Taking
the mean accuracyof each feature subsetover all im-
ages,the best performersby modalit y werethe 31� 31
independent color histogram, the 15 � 15 Gabor his-
togram, and the 31 � 31 laser Y mean and variance.
The percentage mean accuraciesover all images for
thesebest individual performers,aswell as for feature
setscomprising combinations of them (color and tex-
ture, texture and laser, etc.) trained in the sameway
are shown in the S column of Table 1.

Color wasclearly the most informativ eof the modal-
ities, though texture and laser alone did fairly well2.

2As a baseline for performance assessment, the mean pro-



Features S Min Std DD DS SD k = 4
C 97.0 81.3 3.2 93.7 93.6 75.4 94.8
T 88.6 78.4 3.9 77.8 78.8 52.3 81.3
L 84.8 70.1 5.0 78.1 78.1 69.6 |

C + T 97.3 75.0 2.7 94.7 95.5 62.6 96.1
C + L 96.1 88.0 2.0 89.5 90.2 71.3 91.6
T + L 91.2 81.0 3.7 81.3 81.5 54.2 84.1

C+T+L 96.6 91.2 1.8 91.0 92.8 59.6 93.3

Table 1: Mean feature subset performance for vari-
ous training and testing regimes. Features: C=color,
T=texture, L=laser. Data sets: S=107 individual
images;D =25% all-image digest (1st letter=training,
2nd=testing).

Combining texture and laser features with color did
not appreciably changethe mean accuracy, but it in-
creasedconsistencyof performance. The standard de-
viation of the accuracy Std was cut almost in half
going from color alone to color, texture, and laser to-
gether (C+T+L), and the minimum accuracy Min
(i.e., on the image eliciting the worst performancefor
that feature set) went up nearly 10%. This pattern
was repeated for the other modalities, indicating that
adding features often served to resolve sceneambigu-
ities.

For example, each row of Figure 3 shows the most
di�cult images to classify using laser alone and tex-
ture alone. The left column shows the segmentation
obtained by the best-performing neural network of the
training folds for that individual modalit y. The right
column shows the results of segmenting the sameim-
agewith the C+T+L classi�er's best training fold neu-
ral network. The laserclassi�er's defect in Figure 3(a)
is most obvious: the asphalt road and grassystrip to
the right are in the sameplane and both quite smooth,
which is why the segmentation erroneouslyextendsto
the treeline on the right. The color and texture discon-
tinuit y betweenthe two regionsis much clearer in (b).
The texture classi�er presumably has trouble with its
image in (c) becauseof the similar patterns of light
and shadow in the treesand on the road; adding color
and laser information virtually eliminates theseprob-
lems.

4.2 One mo del for all images
To test learning a single road model for the entire

corpus as well as the generality of the individual im-
agemodels,a digest D wascreatedfrom the set of 107

portion of feature vectors labeled \road" over all 107 images
was 47:7%. Considering only those feature vectors containing
adequate laser information (for the 31 � 31 subimage size), this
fraction was 55:7%.

(a) Laser (b) C+T+L

(c) Texture (d) C+T+L

Figure 3: Segmentation of hardest road images for
independent modalities vs. joint classi�er

imagesby randomly selecting25%of each image'sfea-
ture vectors and concatenating them. Of D 's 17,120
feature vectors,8,168or 47:7%werelabeledas\road."

Training was performed on D for the seven feature
sets from Table 1 exactly as if it were a larger ver-
sion of an image I i . Results are shown in the DD
column of the table. The power of the digest to faith-
fully represent the images themselves can be seenin
the similarit y of the accuraciesobtained by training
and testing on the digest alone (DD ) to training on
the digest and computing the mean accuracy over all
of the individual images (DS). Performance with a
single model for the entire digest declines somewhat
acrossall of the feature sets from the mean accuracy
of separatemodels for every image (S). This e�ect is
most pronouncedfor texture, indicating that on-road
and o�-road textures are more similar for the entire
image corpus than, say, on-road and o�-road colors.

The poor generality of the single-image models
learned in the previous subsectionis demonstratedby
testing them on D ; the mean performance over the
107 images is given in column SD of the table. Ac-
curacy drops dramatically becauseof the presentation
of road and background types not seenin the single
image training.

As an exampleof the utilit y of the laserinformation
beyond segmentation, a road map constructed from
one manually-driv en sequenceover roughly 300 me-
ters (1825frames) is shown in Figure 4. As the vehicle
traveled from the lower-right to the upper-left corner
of the map, the image was segmented at 10 frame in-
tervals using the single-model, color-only classi�er C.
The labels of feature locations with associated laser-
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Figure 4: Road map constructed with single-model
feature set C classi�er, with greenindicating road and
red non-road. Units are meters.

derived depths were projected into a 1-meter resolu-
tion grid square world map using position informa-
tion from the vehicle'sinertial navigation system. Ne-
glecting height for clarit y, the map shows the degree
of roadness/non-roadnessof each grid squarealong a
green/red continuum, with color saturation indicating
con�dence (proportional to the number of labels pro-
jected to the square,up to 5). White grid squareswere
not mapped.

Overall, the road is mapped quite clearly despite
shadows and changesin road composition. Three dif-
�cult views along the route at map positions a; b, and
c (blue dot=p osition, purple dot=viewing direction)
are shown in Figures 4(a)-(c). The left road edge is
not assharp asthe right at position a becausethe road
dirt extends into the trees. Road is found in a large
forward area at position b becausethe vehicle is at an
intersection before turning right. Finally, the trans-
verse road boundary is easily found on the opposite
side of the T-in tersection at position c.

4.3 One mo del per road t yp e
The lesserperformance of a single neural network

trained on a digest of all of the images versus that
of individual networks for each image is presumably
due in large part to the greater overlap of road and
non-road feature vector distributions in the former

method's training set. Partitioning a digest D into
piecesd1; d2; : : : such that the road and non-road fea-
ture vector distributions are more widely separated
within each d i than in D , then training on each d i ,
would likely reduce the di�cult y of the classi�cation
problem. Observing that the within-image contrast
betweenroad and non-roadwasstrong acrossthe sam-
ple images,we made the following important assump-
tion: that similar road typesare correlated with simi-
lar background typesin each image. This implies that
clustering road types is roughly equivalent to cluster-
ing background types,and that all of the background
typeswithin such a cluster would on averagebe more
dissimilar to the road types in the cluster than those
of the digest as a whole.

We tested this hypothesis by using k-means clus-
tering [15] to group the 107 sample images for the
best color feature set C, the best texture feature set
T, and the best color and texture feature set C + T 3.
Roads were not clustered with laser feature informa-
tion becausethe major variation in road typesfor this
data is visual: dirt, gravel, and asphalt have marked
di�erences in color and degree of texturedness, but
all roads were approximately smooth and at the same
height relative to the vehicle.

Ideally, every road-labeled feature vector in an im-
agewould de�ne a \road signature" and thus the space
in which clustering is done, but this fails because(a)
the number of feature dimensions would exceedthe
number of sample images, and (b) after training is
done and the system is in operation, feature vectors
will not be labeled (that being the point of segmen-
tation). First, to reduce the dimensionality principal
component analysis [15] was performed on the road-
labeled digest feature vectors R � D to obtain a
transformation that orthogonalized feature spaceand
removed those principal components that contributed
less than N % of the variation. A fairly large N was
chosenbecauseof the small number of samples(e.g.,
N = 15% for C, compressing24 features down to 2;
N = 4%for T, reducing384featuresto 3; and N = 3%
for C + T, taking 408 features to 5). Second,a small
subsetof feature vector locations waschosento repre-
sent the road signature of each image,asshown by the
points in Figure 5, with the goals of (a) maximizing
the a priori probabilit y of them being labeled road
basedon the sample images, and (b) an even distri-
bution to capture spatial variation of feature values
acrossthe road region.

3The algorithm was run 50 times with random seedsfor each
k = 2; 3; 4; 5 and feature set; the result exhibiting the lowest
within-cluster scatter to between-cluster scatter ratio was used.



Figure 5: Probabilit y of a feature location being la-
beled road over sampleimages,with \road signature"
locations overlaid.

After clustering for each k, D was divided into
piecesd1; : : : ; dk accordingto which imageeach block
of 160 feature vectors was taken from, and a sepa-
rate neural network was trained on each d i . For every
cluster i , the associated best neural network (i.e., from
the training fold with the highest accuracy) was then
tested on all of the sample imagesin that cluster. A
consistent performance increaseof up to several per-
centage points over the single-model classi�ers in the
DS column of Table 1 was obtained acrossall of the
feature setsand valuesof k, with k = 4 (performance
shown in the last column of Table1) yielding the great-
est average improvement. The quality of clustering
would likely be better with more sample images.

5 Conclusion
Wepresented a road segmentation systemthat inte-

grates information from a registeredlaserrange-�nder
and camera. Road height, smoothness,color, and tex-
ture were combined to yield higher performancethan
individual cuescould achieve. By clustering the roads
into a few di�eren t types and training a neural net-
work for each, accuracyon the entire imagecorpuswas
improved over a simple single-model approach while
still retaining good generality. Laser range informa-
tion was invaluable both asa feature for segmentation
and for fusing labeled imagesinto a 3-D map.

The segmentation proceduredescribedhereassumes
that the vehicle is on a road and is traveling along it.
For vehicleswhich may operate o�-road, road detec-
tion is a necessaryprecursor to road following. Using
visual and laser feature setssimilar to those exploited
here, an additional classi�er could be trained to rec-
ognizescenescontaining roads in order to turn on or
o� the road segmentation module. Our data set con-
tains GPS position information for the vehicle; com-
bined with an a priori map of roads in the vicinit y
this would provide a strong additional cue for training
a road detection classi�er.

For maximum generality, the data setusedfor train-
ing needsto be augmented to capture the visual and

structural e�ects of temporal variations such as time
of day, weather, and season. Di�eren t road models
could be learnedfor theseconditions; fewer such mod-
els might su�ce if parametrized by continuous vari-
ablessuch as sky brightnessor sun angle.
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