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Abstract

This paper presents an approach to visually classifying
the high-level geometry of the road ahead of a vehicle
as a section with continuous curvature parallel edges or
an intersection containing right-angled legs. The de-
fault behavior of the system is snake-based tracking of
parallel road edges for curvature estimation. A separate
process segments the road surface from the background
using color appearance characteristics, then classifies
the segmented road shape in a rectified view as either
a standard section or one of several intersection types
(“four-way,” “T,” “right angle,” etc.). Recognition of
the proper shape class of the approaching road is a pre-
requisite for switching between shape templates in order
to successfully track road edges as the vehicle travels
through intersections.

1. Introduction

Most work on road following for autonomous driving
and driver assistance (e.g., lane departure warning) as-
sumes the the vehicle is traveling on a highway-like
road defined by parallel edges with some curvature, al-
lowing the road shape to be estimated as a single, low-
dimensional state [1, 2, 3]. Urban driving is in many
ways more difficult than highway driving, but one fac-
tor preventing the direct application of techniques de-
veloped for highway driving is the many intersections
encountered in city driving which cause large, often bi-
lateral gaps in lane lines and road edges.

Detecting intersections robustly allows a steering
system to switch to a more appropriate geometric
model of the road edges in order to continue tracking
successfully. Driver assistance and navigation modules
may also use the knowledge that an intersection of a
particular type is approaching to register the visual
scene with GPS map data for more accurate localiza-
tion. Sign detection and recognition modules may be
invoked or given more cycles near intersections in or-
der to take advantage of the proliferation of semantic

information often found in their vicinity. Finally, al-
gorithms for detecting crossing pedestrians and cars
should be given greater weight due to the prevalence
of such hazards in these areas.

To date there has not been a large body of work
on intersection detection. In [4], the authors detect a
single fork in the road with virtual views aligned with
the predicted orientation of the branches. Though de-
tection works at low speeds, they have trouble nav-
igating through the intersection. They suggest that
active camera methods will help with this. There has
been some similar work on detecting forks in color-
segmented roads [5]. Both of these approaches seem
to favor detecting fork-type intersections on relatively
narrow paths, rather than grid-like urban street inter-
sections.

A paper with more similarities to the approach de-
scribed here is [6]. The objective of their work was
to guide a small robot around a table-top model of
an urban environment by following streets and turn-
ing appropriately at intersections. Color and edge cues
were both used to guide matching of rectified, live road
views with a library of road shape templates. Simplify-
ing the problem was the availability of an a priori map
of the toy world annotated with intersection types to
help with prediction, and minimization of typical vi-
sion difficulties by studio-type indoor lighting, uniform
surface characteristics, and identical intersection geom-
etry.

This paper presents a classification approach to in-
tersection detection that guides switching of the road
shape model to best reflect the current visual environ-
ment and ensure continuous tracking. We describe a
two-level method that efficiently and robustly combines
edge- and region-based road following algorithms with
higher level shape analysis using a multi-category clas-
sifier. In order to afford an unoccluded wide-angle view
for better intersection classification at closer distances
and to keep more road edges in view while cornering,
we use a wide-angle polycamera [7].
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Figure 1: Camera arrangement

The organization of the rest of the paper is as fol-
lows. First, we will discuss the default mode, a strongly
model-based, snake-type road edge tracker which op-
erates directly on the image. Second, we will review
an appearance-based method for road segmentation
(which can be used to initialize edge-based trackers).
Third, we will discuss details of the methods we have
tested to detect different types of intersections, and the
results we have obtained. Finally, we will talk about
some ongoing work we are carrying out.

2. Camera and Road Geometry

A 3-camera polycamera was mounted on the roof of a
vehicle at a height h of 1.9 m above the road surface and
a tilt angle of θ = 10◦ below level. Camera resolution
was 320 × 240 with 16 bits of color per pixel. The
horizontal field of view (FOV) obtained for each camera
after calibration [8] was 42◦ and the vertical FOV was
32◦, with very little radial distortion. The combined
horizontal FOV of the polycamera was about 93◦. The
camera configuration is shown in Figure 1.

The left and right camera centers were each sep-
arated from the middle camera center by about 0.1
m, yielding a small enough minimum working distance
[7] to construct good panoramic mosaics given the
typical distribution of object depths in road scenes.
The homographies HL→C and HR→C for the left-to-
center and right-to-center image transformations, re-
spectively, were computed with a linear algorithm from
manually chosen point correspondences [9]. The linear
blending technique for seam removal described in [10]
was used to composite the images. Three sample cam-
era images of an intersection and the mosaic made from
them are shown in Figure 2(a-d).

Assuming that the road surface is planar, we can
compute a rectifying homography HC→T that maps
the center camera image to a “bird’s-eye” point of view.
By first transforming the lateral camera images to the
center coordinate frame and then applying HC→T , we
obtain a rectified mosaic of the road scene. An ex-
ample is given in Figure 2(e); the scale is 0.5 m per

(a) (b)
(c)

(d)

(e)

Figure 2: Sample polycamera road images, mosaic, and
rectified mosaic

pixel. Some departures from the planarity assumption
are visible in Figure 2(d): straight across the intersec-
tion the road ascends slightly, and the intersecting road
descends to the left. These altitude changes introduce
distortions into the rectified mosaic, as do passing cars
that occlude road edges.

3. Edge-based Road Tracking

We can use the mosaic image described in the previous
section to perform traditional snake-based road edge
tracking [1, 2, 3]. The advantage of the polycamera’s
wide-angle view in this domain is an enhanced ability
to “see” the left and right road edges, both for wider
roads in general and in situations where road curvature
is great enough that one edge tends to leave the field
of view.

Formally, a vehicle-centric coordinate system is cho-
sen so that +Z is forward with respect to the di-
rection the vehicle is pointing, +X is right, and +Y
is up. The X position of the center of the road is
modeled as a quadratic in the ground plane such that
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XC(Z) = aZ2 + bZ + c. Given the width of the road w
and the inverse rectifying homography HT→C , we can
immediately derive the image locations x, y of the left
and right road edges for any Z.

For urban/suburban driving environments, it is typ-
ical to assume that there is a sharp intensity contrast
distinguishing the road surface from the background, or
a painted line between road lanes. Initial values for the
road shape model may be derived from region segmen-
tation methods such as those described in a later sec-
tion. In subsequent iterations, the tracker predicts left
and right image intensity boundaries by projecting the
current estimate of the road shape into the image, and
measures the discrepancy to update its model. A set of
N depth values {Zi} in the range [Znear, Zfar] are cho-
sen such that their image projections L = {(xLi

, yLi
)}

and R = {(xRi , yRi)} are roughly equally spaced verti-
cally when a = b = c = 0. For each i in L and R, Sobel
edge detection is performed along a line of length l bi-
sected by and orthogonal to the curve at that point.
The strongest edge location whose edge strength in
the direction of the search line exceeds a threshold t
is taken to indicate the actual road boundary at that
point. The sign of the apparent intensity difference
between the road surface and the abutting non-road
surface affects this calculation, so that light-to-dark or
dark-to-light edges are preferred consistently.

The edge-based, planar road state model X =
(a, b, c) is updated via a Kalman filter [11]. Each mea-
surement Z consists of a vector of the found left and
right edge locations {(x̂Li , ŷLi)} and {(x̂Ri , ŷRi)}, re-
spectively. w may also be estimated online as a slowly-
varying term constrained by some upper and lower
bound.

A missing data problem arises when an edge search
line is outside of the image or no edge exceeding the
threshold t is found. Rather than applying a full
Expectation-Maximization-style algorithm [12] when
this occurs, we simply fill in missing values in Z from
the filter’s predicted measurement Ẑ.

This road tracking method is efficient and robust
as long as most of its assumptions are satisfied. Dis-
turbances such as passing cars or short breaks in the
road edge due to driveways are generally overcome by
the least-squares power of many combined edge ob-
servations from both sides of the road and along its
length. An example of the edge tracker working de-
spite a parked car occluding the road edge is shown in
Figure 3(a). The edge tracker fails, however, when a
preponderance of its edge measurements are bad, and
this occurs regularly in urban environment at intersec-
tions (Figure 3(b)). In these situations, the road shape
estimate is free to wander. For autonomous driving

(a)

(b)

Figure 3: Edge-based road tracker

applications this is unacceptable, and for driver mon-
itoring applications false alarms may result, with no
guarantee that the road shape estimate will return to
normal even after the vehicle completes the turn or
clears the intersection.

4. Road Segmentation

Region-based method for road segmentation are often
more robust than edge-based approaches [5, 13]. They
are somewhat less sensitive to occlusions and work even
without sharp edges (such as may occur on dirt roads).

Following [14], we frame road segmentation as a clas-
sification problem in which we wish to identify small
patches in the field of view as either road or non-road
on the basis of a number of appearance properties, or
features, that we compute from them. Patches are
manually labeled for a representative set of images,
and a support vector machine (SVM) [15] is trained
to learn a decision boundary in feature space. This
model is used to classify pixels in novel images, from
which we can derive road shape parameters directly by
recursively estimating curvature, width, etc. from the
edges of the road region and control steering accord-
ingly (analogous to [3]). Due the relative expense of
segmentation, however, it is more desirable to use the
edge-based method whenever possible.

The features we use are an “independent” color his-
togram consisting of 8 bins per channel (8 × 3 total
bins) computed over 31×31 subimages. We have found
this histogram technique to be more feasible for small
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subimages than a standard joint color histogram over
all three channels, while achieving comparable perfor-
mance. 31 × 31 subimages also outperformed smaller
sizes such as 15× 15 and 7× 7, though they do tend to
smooth the segmented road edges somewhat. Integrat-
ing other segmentation cues such as texture and struc-
ture is possible, but [14] found that color histograms
alone are very strong cues and most likely sufficient for
the purposes of this paper.

For training, 31 video frames were chosen at equal
intervals from a sequence of 6,150 frames collected at
15 fps over about 7 minutes of driving in a residential
neighborhood of Newark, DE. This sampling percent-
age of about 0.5% was selected based on the good re-
sults achieved in [14] with a smaller fraction for a much
more diverse set of road types than the asphalt surface
variants encountered here. The sequence was collected
within a few minutes of noon on a partly cloudy mid-
March day.

Road regions were manually marked in each cam-
era image with polygons. Feature vectors were com-
puted for each image at 10-pixel intervals vertically
and horizontally (∆x = ∆y = 10), with enough margin
to ensure that histogram subimages remained entirely
within the image. This resulted in 29 × 21 = 609 fea-
ture vectors per camera image. The SVMlight pack-
age [16] was used for SVM classification of the feature
vectors with a radial basis function (RBF) kernel. A
separate road color model was created for each of the
polycamera’s three cameras in order to avoid photo-
metric calibration issues. With a value of 10 for the
RBF spread parameter γ, 98.8% of the 18,879 training
samples from each of the center and left cameras im-
ages were correctly classified, and 97.5% of the samples
from the right camera were.

For efficiency, image neighborhoods are classified
at intervals of ∆x = ∆y = 5, resulting in a dec-
imated “road likelihood” image for each camera in
which brightness is proportional to the strength of the
SVM’s road classification. Thresholding the road like-
lihood image appropriately results in a binary segmen-
tation image for each camera. These are combined via
the mosaicing method previously described to obtain a
single segmentation mosaic. It should be stressed that
in this work we do not carry out segmentation on the
mosaic image, though this could also be done.

An example of road segmentation on the images
from Figure 2 is shown in Figure 4 (the constituent
camera images were not in the training set), along with
rectified versions of the various mosaic types.

Mosaic of road likelihood images

Segmentation mosaic

(a) (b)

Figure 4: Segmented road scene: (a) Rectified road
likelihood mosaic; (b) Rectified segmentation mosaic

5. Shape Classification

When intersections are encountered, the performance
of the edge tracker may degrade or completely fail due
to the lack of edge information where adjoining roads
enter the one the vehicle is travelling on. If these inter-
sections can be anticipated, the assumption of quadrat-
ically curved, parallel edges may be changed to a differ-
ent template in order for tracking to continue success-
fully. Thus, we attempt to detect intersections beyond
and slightly overlapping the most distant locations on
the edge snakes.

A natural precursor to analyzing the high-level
shape of the road ahead when it is unknown a priori
is to use strictly appearance-based information to seg-
ment it from the background. We do this by running
the color histogram classifier described in the previous
section on the current polycamera image and examin-
ing the results. It is unnecessary to look at the en-
tire image, as the ground plane assumption and knowl-
edge of h, θ, and the internal camera calibration tell
us where the horizon line is, above which there is no
road. Moreover, our current estimate of the road width
and the lookahead distance at which we hope to detect
intersections place constraints on the left, right, and
bottom portions of the image that we need to examine.
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Figure 5: Mask used to learn rectified intersection
shapes

In order to exactly specify these metric quantities, it
is convenient to work with a rectified view of the road
rather than the raw camera image. This also allows
us to change the camera geometry relative to the road
without relearning any shape classification, because we
have moved to a common coordinate system.

Let the vehicle be on a road that intersects at most
one other road at a time at roughly a 90-degree angle.
This leads to the following four road shape types: a sin-
gle, possibly curved section, schematically represented
by the | symbol (a bird’s-eye-view of the road with
the vehicle traveling up the page); and three intersec-
tions: the “four-way,” “T,” and “right angle,” denoted
by the symbols +, >, and e, respectively. The first gen-
eral road shape, a section, is the geometric assumption
made by the default edge tracker described in the first
part of the paper. Rotations of T intersections result
in three viewpoint-dependent subtypes corresponding
to >, a, and `, and right-angle intersections have left
(d) and right (e) subtypes.

There are many possible methods for classifying the
shape of the approaching road. An obvious one is a
simple nearest-neighbor criterion: road likelihood tem-
plates corresponding to the various intersection types
are scaled by the estimated current road width and
correlated with a rectified view of the segmented road,
and the best match is chosen to represent the current
shape of the road. However, this approach is vulner-
able to distortions in the apparent intersection shape
due to departures of the road surface from planarity.

Our method for road shape determination is
learning-based in order to quantify and compensate
for violations of the initial assumptions. A set of seg-
mented mosaics of road scenes are labeled by their sec-
tion or intersection type, and a multi-category classifier
is used to learn a model for them in order to catego-
rize future scenes. Specifically, we use all pixels in the
rectified road likelihood mosaic corresponding to scene
locations less than or equal to than 25 m away from
the camera radially, decimated by 2 both vertically and
horizontally, as a feature vector. The mask for this set
of pixels is shown in Figure 5; there are 604 per rectified
mosaic.

(a)

(b)

Figure 6: Intersection shape data: (a) Plot of vehi-
cle positions and true intersection locations (the start
point is in the upper right and the scale is in meters);
(b) Locations of frames classified as section vs. inter-
section by rectified shape (from testing data).

Vehicle speed and position were recorded at 1-second
intervals with a GPS unit. All GPS-derived quanti-
ties were estimated using only points with a position
dilution of precision (PDOP) of 8 or less. A total
of 394 data points (95.9% of those recorded over the
driving course) met this criterion. The total distance
driven was 3.18 km, with a mean speed of 27.9 km/h
(σ = 11.1). The course was fairly flat but not com-
pletely level: the range of altitudes was 8.7 m (σ = 2.0).
Nearly all streets were straight, with two short, moder-
ately curved sections. The path driven was planned to
be non-self-intersecting and to achieve a fairly even dis-
tribution on the number of intersection types encoun-
tered and directions turned. In all, 18 turns were made:
9 right and 9 left. 6 intersections were driven straight
through, for a total of 24 intersections traversed. Two
intersection types were present along the course: + and
>. Figure 6(a) plots the vehicle’s path with the true
intersection locations and subtypes overlaid.
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To label rectified mosaic frames for learning, we first
manually indicated the center of each intersection in
the GPS data set. Then we automatically labeled all
video frames captured both less than or equal to 25
m away from an intersection subtype and before it was
reached in the sequence (in order to ensure intersection
visibility). All remaining video frames were labeled as
sections. Of 6,148 rectified mosaics in the sequence,
the distribution of labels was as follows: | (5,184), +
(374), > (463), a (59), and ` (68).

Training a binary SVM classifier with an RBF kernel
(γ = 0.01) to simply distinguish between sections and
intersections yielded an accuracy rate of 89.0% (av-
eraged over 3 trials of training on 2

3 of the data and
testing on the remaining 1

3 ). The classifications match
ground truth fairly well, as can be seen in Figure 6(b).
Performing SVM regression (again with an RBF ker-
nel and γ = 0.01) to simulate a multi-category classifier
(each label was designated with a integer in the range
[1, 5]), and interpreting categorization in the nearest
neighbors sense, an accuracy of 97.1% was achieved on
the entire testing set. Of the 176 misclassified frames,
56 should have been labeled a and 65 should have been
`. There may have been too few examples of these
types in the training set, but they are also intuitively
the most difficult to distinguish.

Because our road shape classifier is keyed to a par-
ticular distance ahead along the road, it is properly a
detector, and thus we can easily initialize an edge-based
Kalman filter with a different shape profile at the cor-
rect location based on the current state of the parallel
edge tracker before turning off the latter, and vice versa
after the intersection has been passed. Because of the
variability of corner profiles at intersections (i.e., sharp
or rounded), region-based tracking methods may work
best over these transitions. Angle, scale, and shift in-
formation as the vehicle performs turns may be derived
from the rectified segmentation mosaics in a straight-
forward fashion. We are still experimenting with this
component of the system.

6. Conclusion

We have described a system for road intersection de-
tection via shape analysis of segmented polycamera
images. The road shape classifier interacts with an
efficient snake-type edge tracker to govern when it
is turned on and off. While the vehicle is traveling
through intersections, a region-based mechanism may
be used to estimate road shape. Preliminary results
are encouraging, but much work remains to be done.
In particular, online methods for estimating departures
of the ground from planarity would help reduce distor-
tions and disambiguate the shape of intersections. In-

creased variability in time of day, season, and weather
should also be included in the training data in order to
obtain a more robust model of the road appearance.

Many other cues can also be used to reinforce inter-
section classification. For example, signs, traffic lights,
and symbols painted on the road such as crosswalks
and arrows. Along these lines, we are currently study-
ing how changes in visual conditions affect the efficacy
of different cues for road following applications.
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