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Abstract—Over the past few years, Global Positioning not be available.
Systems (GPS) have been increasingly used in passenger \Vjsion has recently been investigated as an effective tool
and commercial vehicles for navigation and vehicle tracking 1 correct for such erroneous sensor data. Much research
purposes. In practice, GPS systems are prone (o systematic has been done in robot localization [3], [12] to complement
errors and intermittent drop-outs that degrade the accuracy of . g ’
the sensor. In this work, we describe an approach to localizing GPS or sonar readings with another on-board sensor such as
vehicles with respect to the road given erroneous sensor a camera or laser range finder. This usually entails searching
measurements using only aerial images. Our method works on for artificial/natural landmarks in the vicinity of the GPS-
both urban and rural areas, while being robust to a number  agtimated position for increased accuracy. Information from
of occlusions and shadows. The spatial tracker incorporates
multiple measurement models with varying constraints, auto- on-board sensors are compared to a world model to_ det_er-
matically detecting and switching to the appropriate model. Mine the absolute pose of the robot. These state estimation
We demonstrate our technique by correcting in real-time problems are effectively solved by probabilistic approaches
highly inaccurate GPS readings collected while driving in J|ike Bayesian inference, which recursively estimates the
diverse areas. posterior probability density over the state space, condi-
tioned on the data collected so far. Implementations of the
. INTRODUCTION Bayes filter differ in the manner by which this density
A primary task involved in equipping intelligent vehiclesis represented. Kalman filters [13] are the most widely
with autonomous capabilities is that of robot localizationused variant due to their efficiency, but have restrictive
which is the problem of estimating a robot's positionassumptions such as unimodal Gaussian uncertainty and
relative to a map of its environment. Localization includesinear system dynamics.
both the ability to home in on the position without any A powerful means of representing the belief state is
prior information of initial state, as well as tracking theparticle filtering[15], also known as the CONDENSATION
position when the earlier state is known. The need for fi4] algorithm and Monte Carlo Localization (MCL) [9].
highly accurate localization process is crucial for tasks sudparticle filters fall under the general class of Monte Carlo
as map-building, path-planning and autonomous navigationethods which are based on representing a probability
[31, [9], [10]. distribution function by a set of random weighted samples.
Sensors like Global Positioning Systems (GPS) antlhe ‘particles’ represent the distribution of the state vector
odometry [11] have been widely used for this purposdn state space, and are iteratively updated after an observa-
In practice however, GPS accuracy is heavily dependetibn. The observation model describes the likelihood of an
on several factors such as the satellite configuration amthservation given the current state. Advantages of particle
multi-path errors. Line-of-sight (LOS) issues make GPS leddters include the ability to represent arbitrary probability
effective in urban canyons and densely forested regiondensities, and applicability to converge in non-Gaussian,
GPS errors can routinely range from 2- to 15 meteraon-linear dynamic systems.
depending on the sophistication of the unit [11]. This work describes methods to localize a vehicle travel-
To correct such noise in the GPS position, several majng along a road, given noisy GPS way-points, and an aerial
matching approaches [1], [17] have been employed. Thephotograph of the surrounding region. We frame vehicle
techniques use a digital road network and a combinatidoncalization as a Bayesian inference problem to integrate
of geometric and topological constraints to “snap” onto thand arbitrate between these multiple sources of information.
correct road. Digital road-maps can be problematic in deng&ter describing how particle filters are used to localize
urban environments as there may be several candidate roadsehicle on an aerial map of the region, we detail our
close to a particular location. Localization in off-road andneasurement likelihood function as used in the prediction
desert terrain is particularly challenging as these maps mawd update phases. Finally, we describe our results on varied



environments. (R, ©;) is computed. We now describe two schemes to
Our road extraction method is most similar to JetStrearnmtegrate GPS sensor information into the particle dynamics.
[2], a particle filtering approach to spatially track edge . .
contours including roads. In our case, GPS informatioﬁ‘" GPS-driven dynamics
places constraints on the tracking and eliminates the high The motion(Z;, ©.) is applied to all the particles along
level of user interaction required by JetStream. Monte Carlith white Gaussian random noise to predict the new
methods have been used to localize robots in constraine@sition of each particle. The particles are thus subjected to
environments [15], combining measurements from multipl@ drift and diffusion process with a relative movement of
sensors such as GPS, dead reckoning systems, and caméfas®©;) = (B + N(o;), ©: + N(oe)). On applying the
[12]. Frueh and Zakhor [8] have used particle filters tgnotion model, we predict state, = [2',y', 6, m] from
register laser scan data with Digital Surface Maps, to buildi ' = [z,y, 0, m] by applying the dynamics:
3D textured models of cities. We propose to localize the /

. : . : . R, sin(O,
vehicle using only 2D aerial photographs, which provide v xIR't bm&@)?;
higher spatial resolution and important color information. Xt = g, =Y t@C/Ob ¢ Q)
. _ t
All the above methods employ only a single cue to mea m' m+ N (o)

sure the strength of their belief. Common cues employed in
tracking such as color, edges, or feature templates generallywhere N (o) denotes Gaussian noise with variancg
do not work well alone in a wide range of environmentsThe standard deviations are a function of the step size with
A good measurement likelihood function must be able tg¢ varying from0.05v/R to 0.1v/R ando, is set to0.2R.
determine the most appropriate model at any given tim@/hen the GPS estimates are fairly reliable, this scheme
and adaptively switch to the dominant one. Isard and Blakierces particles to follow the GPS point and look for a
[6] have described a mixed-state CONDENSATION trackepossible road within the error ellipsoid.
that can handle multiple motion models. While we have o ] i
a well-defined motion model, we adapt their technique & Measurement Likelihood-driven dynamics
handle variable modes of perception. If the GPS positions are not reliable, the above method
overly restricts the particles from following the road. Set-
Il. PARTICLE FILTERING AND VEHICLE LOCALIZATION  ting a larger variance with the previous method does not
eliminate the problem, as a majority of particles would
Particle filtering has proven to be adept at tracking il follow the incorrect GPS track. This is especially true
the presence of complicated likelihood functions and nonp c|uttered urban regions since there might possibly be
linear dynamics. Tracking here refers to followitige state  many road-like features such as house tops or shadows of
of a set of variablex as they evolve over time. We wish pyjidings. A more flexible approach in such situations is
to estimatex’ at time-stept, given knowledge about all pased on the strength of the measurement likelihood - i.e.
the sensor measuremers = {z',2>,...z'} up to t. If  gjlow particles to follow all possible roads and then use GPS
we construct the posterior densjtyx‘|Z") to represent our g narrow down on the most plausible one in the update
belief of the current state, we can infef by taking either phase. Details of the likelihood function are elucidated in
the MAP (maximum a posteriori) or mean estimate. the next section.
In particle filters, this belief or posterior density is The formula forx! is the same as (1) except that the
approximated by a sef’ of V particless; = {< xj,w; >  orientation®, = (O, , + N(oe)) is distributed around
li =1,.., N}, wherex; is a state (position on the map) andthe direction the particle was traveling in the previous time
w; is the importance weight. The importance weights givetep. This allows a much wider angular distribution as well
a measure of how reliable the corresponding state estimafg giving particles a certain momentum to get past erroneous
is. The set of samples thus define a discrete approximatiggPs measurements. The formula @} remains the same

of the continuous probability density function. In everyas before, in order to retain information about the velocity
iteration, N new particles are sampled frost with the of the vehicle.

probability of survival of a particle! being proportional to
its weightw!. Each particle is then modified according toC:- Update phase
the dynamicsand the weight is updated according to the A preliminary weight w; is computed for each new
measurement model particle based on the measurement model. This weight
Initially, a set of equally weighted particles are uniformlycould be a measure of our confidence that the estimated
distributed around the starting position estimated by thposition of the particle on the aerial photo lies on the road or
GPS reading(ui,v1). The state vectox = [z,y,0,m] how well on-board camera images correlate with the aerial
includes a variable for the road width, where(z, y) is the view of the corresponding region. The weighting serves
mid-point of the road oriented at an angletbflegrees. At to concentrate the histogram over state space of all the
every iteration of the particle filter algorithm, a new set ofparticles around the most likely position that the vehicle
GPS coordinategu;, v;) is obtained and the relative motion could be in. Only the “fittest” particles survive from one



iteration to the next, resulting in an evolutionary process. The real part of the Gabor filteRG,,) has even symme-
Given this representation of the density function, the curreiity and is a proven blob detector while the imaginary part
estimate for the position of the vehicle is chosen to be thgG,,) can be used to detect step edges. Since roads appear

weighted mean of all the particles. as banded segments oriented at some angle, we attenuate
RG,, along its width, to give an elliptical pattern that retains
I1l. M EASUREMENTLIKELIHOOD only the central 40 percent of the estimated width. While

We employ vision-based techniques to assign relatiiis particu_lar pattern effectﬁvely detects bright roads in a
weights for each particle. These weights reflect the strengfl2Tker region, a negated filteti(s;,) can detect darker
of our belief that a particle lies on the road based on thE?2ds. The width of the roads in the image dictate the
aerial photo. Most particle filters, including JetStream, ar€hoice of various scale), and for each scale 10 equally
flexible and have very few restrictions on the measuremeffParated orientations are selected fiomr]. We then use
model used. However, a single measurement model a|OHQrmaI|zed cross-correlation rather than conyolunon tp pre-
might not be sufficient to characterize the observation def°MPute the response for each of these filters. Doing so
sity. Multiple observation models are important for robustcomMPensates for intensity changes, while enabling seamless
ness and applicability, with automatic switching betweefSion of multiple scale filter responses.
them. We first define the different road models used and in 1€ measurement models are a function of the features

the next section describe a technique to arbitrate betwedfiected by one or more filters in the pre-processing stage.
Other features such as color or shape can also be used when

them.
available. We currently use only, = 2 different models
A. Measurement Models defined analytically as:
. M1=
RGn(IL'+, y+a )‘1)+RG7L($_) y_v )\1)+RG; (1’, Y, )\2)
° Mgz

RGn(era y+a )‘1)+RGn(xiay77 )\1)+RGn(x,y7 )\2)

The superscripts over and y indicate the road edges
on both sides of the particle computed from and 6.
Model M; looks for a dark (with respect to the surrounding
region) road with thin parallel lines running along the road.
This model is very effective for urban roads as well as
certain shadowed or occluded regions. Modé} is used
to detect brighter roads, typical of rural or country roads. A
weighting scheme may also be used in the above models to
emphasize certain features more than others. For example,
the sidewalk is very prominent in suburban areas and so a
Fig. 1. Example aerial images of urban and desert regions from which Wf(\elgher weight f.aCtor can be mUItI.pIIEd \.Nlth the road edge
wish to spatially track the road traveled by the vehicle. Roads might appeE\?Sponse' Adding more models is straightforward and the
bright or dark and may have very little contrast in off-road environmentsmethod to switch between them is described in the next
The road is marked in blue for the lower desert image. section. The weight of a particlX = [m,y76’7m] using
modelo is the output ofM, at orientation closest t8 for
Figure 1 shows example aerial images of off-road anthe point(x,y).
urban environments on which we run our technique. JeE Fusing GPS Inf .
Stream [2] uses the norm of the luminance gradient as & 9 nformation
cue to track high contrast contours. The aerial images thatWhile JetStream follows contours along the largest gra-
we employ are low contrast, noisy and characterized bg,ient, we wish to constrain the dynamics of the tracking
excessive clutter in urban regions, making simple edge- & follow the road in the vicinity of the GPS reading at
color-based methods impractical. We have therefore chosHift instant. Although the dynamics is governed completely
Gabor filters [5], widely used in texture analysis, to give ay the GPS in the GPS-driven scheme, this alone could
initial confidence estimate for each pixel being road or norstill cause particles to drift away and track the wrong
road. The general functional for the two-dimensional Gabd©ad. Depending on the accuracy of the GPS and the
filter family can be represented as a Gaussian functigdmount of ambiguity in the aerial maps, we can usexan

modulated by an oriented complex sinusoidal signal. IRarameter that weights a particle based on its proximity to
polar form it is written as the corresponding GPS coordinate. However this will “pull”

e oo particles off the road in places where GPS estimations are
Gn(z,y, \) = e o /e Fy /b gi2nlreos(0=¢)/Al  (2)  inaccurate. We therefore define a radial distancel,of,




from the GPS position, outside of which all particles are 1) Sampling: Construct thent® of N new samples

given a weight of 0. according to the following two steps:

When particles are governed by the measurement « Sample transition probabilities: Sample from
likelihood-driven dynamics, we must use an additional P(O! = ¢|O!™! = p) = T, to find O! for each
angular constraint as well. Given the GPS segnfentv;)— 8.

(ut+1,ve+1), only particles within a distance af,;,., and « Sample process density:Sample from St~!
an angular disparity withi survive through to the next based onv'~! by generating a random numbgr
iteration. In our case, only particles within 60 degrees to with probability proportional tm,;fl and setting
either side of the GPS segment were retained. §=D g1
J
IV. INTEGRATING MULTIPLE MODELS 2) Prediction: We apply our dynamics to each sampled

Having defined various models that determine the road  particle as governed by equation (1).

likelihood, there is the issue of choosing the appropriate 3) Update: The likelihood for this particle is computed

model. We adapt mixed-state tracking techniques [6] to  according to the measurement model specified@hy

probabilistically detect and switch to the most dominant Weights are updated in terms of the latest image data

measurement model at any given time. We define an ex-  Z'.

tended state for each particle to be In order to estimate a single most probable position that
X; = (xi, 01) 3) the vehicle could be in after every time-step, a two-pronged

strategy is adopted of first computing the dominant model
where x; is as defined earlier and € {1..N,} is @ (O inforce, and then calculating the weighted mean of only

discrete variable labeling one d¥, observation models. those particles in that observation stat®. is computed
ThusO; determines which observation model to use in thgccording to

measurement phase for particle We also define a state
transition probability matrix” which is an adjacency matrix O' = arg max Z w! where
representation of the possible state transitions fg. is
the probability for a particle to change state frgnto gq.
In order to integrate mixed-state models into the particle T; = {ilXi = (xi,5)} 4)
filtering framework, it is sufficient to split the sampling

process of every iteration into two separate phases. In the
first phase, the state transition probabilities are sampleg .
from to generate a new observation model density for tHmt S

i€

V. RESULTS

Fig. 3. Comparison of single-mode and mixed-mode tracking using
models M (dark roads) andV/> (bright roads). Solid yellow indicates
that the tracker is in modé/, and dashed blue denotdd,. Notice how
tracking only with M2 causes mistracking on the darker roads.

Fi 2. GPS lot (dotied red) and tracked oath (<alid blue throudh 1 We show the result of localization on both urban and off-

dlegs.ert'. The dal[)kgr (gucr)vg sr:gw)s?f?e orui?)ui ofpgonv(:r?tilonalu.]e(gtSt:gggw us@gds e(:jnvwonments, ('."urrer.]tly using .Oh!y .ae”al images and
the luminance gradient. ata. The particle filter was initialized to use 1000
particles - though it is very robust with less than half that

The formal steps used in the particle filter are describedumber - and first distributed around the starting point.

below. We begin withS‘~! of N particles sf‘l = {< The choice of Gabor filter scales depend on the resolution
xt7H O wi™t > i = 1,..N} in every iteration fol- of the aerial imagery, and for the publicly available 1-

lowed by: meter resolution photos that we used, = 10 was a fair



approximation for the width of most roads. To detect the
road edges and sidewalks, we usgd= 1.

To compare our spatial tracker with the pure JetStream
approach, we ran the particle filter on a 1.2 mile track
obtained during a drive through the southern California
desert. After verifying that the Navcom SF-2050G DGPS
receiver was accurate to a couple of meters, the particle filter
was run similar to JetStream without integrating any of the
sensor data. This also enabled us to quantify deviation from
ground truth. Shown in figure 2 is a plot of the GPS track
(dotted red) on one segment and the estimated path (blue) of
our tracker. The dark wayward curve shows the output of the
conventional edge tracking method as used by JetStream.

Due to the absence of strong edge cues, JetStream does r]ot5 Usi  likelihood-driven d ) 4 model
. 1g. o. Sing measurement likelinood-driven dynamics ana moadel-
track CorreCtIy beyond a few meters. By extracting the IC’Cd;lmitching (not shown) with highly inaccurate GPS (red) positions. Solid

texture information using Gabor filters, our algorithm doesiue curve shows corrected path
significantly better. The mean distance error with the GPS
curve on this run was 3.24 meters and standard deviation
was 3.1m. On another similarly curvy segment, the meathe GPS (red) tracks have been corrected by our contour
was 1.4m and standard deviation was 1m. Estimating thextraction method. Figure 5 shows a short GPS run in dotted
road width to be about 10m from the aerial image and theed. This is difficult both in terms of highly inaccurate
GPS data itself to be accurate only to a couple of meters, WePS readings at the corners, as well as the presence of
claim that our image processing alone is robust to handihadows and trees that mask the road in some places. While
significant drop-outs on the GPS due to LOS issues. GPS-driven dynamics simply do not work correctly in this
Figure 3 shows a suburban neighborhood comparirgcenario, likelihood-driven dynamics (blue) is able to trace
single- and mixed-mode tracking. The roads are either datke road for the entire length of the segment. The particles
or bright, with abrupt transitions between them. To trackave enough momentum to keep following the strongest
all possible roads without GPS is not practical as thermad likelihood without changing direction at every wiggle
is a lot of clutter. The comparatively low cost Garminin the GPS data.
GPS 16 used for this example was especially unreliable Illustrated in figure 6 is a typical scenario of what
in such environments with accuracy as bad as 25 metenappens when a GPS receiver loses signal due to over-
in some places. In addition to correcting the GPS patipasses or tunnels. There is a sudden glitch in the GPS
our tracker automatically switches to the appropriate modebutputs, as points veer off to the sides before homing in on
The yellow sections indicate when the tracker is in modahe actual position again. Likelihood-driven dynamics can
M looking for dark roads, while blue denotes thaf, easily handle such situations as shown in the figure. This
is dominant at that point. The transition matrix used wasituation might also call for some image processing hacks
T 0.7 0.3 ) with a slightly higher probability that Qetept fe_atures orthogo.nal to the rqad_, but that was not
required in this case as particles were distributed far enough

0.3 0.7

enforced for each particle to remain in the current modgyong the road to overcome negative filter responses under
The value ofd,,.. was set to 20. Single-mode trackingthe over-pass.

using only M, causes mistracking to occur on the darker
roads. VI. CONCLUSION

In this work, we have demonstrated techniques to correct
erroneous GPS information for the purpose of vehicle
localization. In contrast to map-matching approaches that
use digital road-maps, we demonstrate our algorithm on
aerial images of diverse environments. We use a combi-
nation of image processing and probabilistic methods to
make an inference about the most likely road that the
vehicle is traveling on, based on explicitly defined road
models. Detecting and switching to the correct model is
done automatically by the mixed-state tracker. Results are
Fig. 4. Corrected GPS positions (solid blue) at intersections. GPSNOWN on a range of images by correcting inaccurate GPS
estimates (dotted red) were especially inaccurate at intersections. position estimates. We claim that this kind of localization

maybe a useful precursor to any on-the-road path-planning

Figure 4 shows zoomed in regions of corners wheralgorithm for intelligent vehicles.
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Fig. 6. Using measurement likelihood-driven dynamics to handle chafl0]
acteristic glitches in GPS data caused by over-passes and bridges
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One short-coming of the weighted mean estimate o[f ]
particle locations is that it does not take into account th
distribution - which could possibly be clustered over sever:ﬁz]
different roads. This happens most noticeably at intersec-
tions where GPS data seemed most unreliable. ClusteriHg!
algorithms could be used to track multiple peaks in such
situations. Using GPS-driven or likelihood-driven dynamic$14]
in isolation does not seem robust for long runs. It would
be interesting to see the effects of adding the dynamics f9r5]
each particle as another mode in the mixed-state tracker.
This would allow some particles to follow the GPS curve[16]
while other particles would follow the most likely road.
Intuitively this seems more robust.

Future work includes integrating information from on-[17]
board sensors such as a camera and laser. With aerial images
and GPS alone, our algorithm can identify the possible rodas]
that the vehicle is on. The use of additional sensors would
allow us to correlate the on-board view with the aerial one,
giving information about the position and orientation of
the vehicle within the road. This can be useful in multiple
lane roads or intersections. In off-road environments shown
in figure 2, it would be very useful to complement aerial
imagery with elevation data sets also.
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