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Abstract— Over the past few years, Global Positioning
Systems (GPS) have been increasingly used in passenger
and commercial vehicles for navigation and vehicle tracking
purposes. In practice, GPS systems are prone to systematic
errors and intermittent drop-outs that degrade the accuracy of
the sensor. In this work, we describe an approach to localizing
vehicles with respect to the road given erroneous sensor
measurements using only aerial images. Our method works on
both urban and rural areas, while being robust to a number
of occlusions and shadows. The spatial tracker incorporates
multiple measurement models with varying constraints, auto-
matically detecting and switching to the appropriate model.
We demonstrate our technique by correcting in real-time
highly inaccurate GPS readings collected while driving in
diverse areas.

I. INTRODUCTION

A primary task involved in equipping intelligent vehicles
with autonomous capabilities is that of robot localization,
which is the problem of estimating a robot’s position
relative to a map of its environment. Localization includes
both the ability to home in on the position without any
prior information of initial state, as well as tracking the
position when the earlier state is known. The need for a
highly accurate localization process is crucial for tasks such
as map-building, path-planning and autonomous navigation
[3], [9], [10].

Sensors like Global Positioning Systems (GPS) and
odometry [11] have been widely used for this purpose.
In practice however, GPS accuracy is heavily dependent
on several factors such as the satellite configuration and
multi-path errors. Line-of-sight (LOS) issues make GPS less
effective in urban canyons and densely forested regions.
GPS errors can routinely range from 2- to 15 meters
depending on the sophistication of the unit [11].

To correct such noise in the GPS position, several map-
matching approaches [1], [17] have been employed. These
techniques use a digital road network and a combination
of geometric and topological constraints to “snap” onto the
correct road. Digital road-maps can be problematic in dense
urban environments as there may be several candidate roads
close to a particular location. Localization in off-road and
desert terrain is particularly challenging as these maps may

not be available.
Vision has recently been investigated as an effective tool

to correct for such erroneous sensor data. Much research
has been done in robot localization [3], [12] to complement
GPS or sonar readings with another on-board sensor such as
a camera or laser range finder. This usually entails searching
for artificial/natural landmarks in the vicinity of the GPS-
estimated position for increased accuracy. Information from
on-board sensors are compared to a world model to deter-
mine the absolute pose of the robot. These state estimation
problems are effectively solved by probabilistic approaches
like Bayesian inference, which recursively estimates the
posterior probability density over the state space, condi-
tioned on the data collected so far. Implementations of the
Bayes filter differ in the manner by which this density
is represented. Kalman filters [13] are the most widely
used variant due to their efficiency, but have restrictive
assumptions such as unimodal Gaussian uncertainty and
linear system dynamics.

A powerful means of representing the belief state is
particle filtering [15], also known as the CONDENSATION
[14] algorithm and Monte Carlo Localization (MCL) [9].
Particle filters fall under the general class of Monte Carlo
methods which are based on representing a probability
distribution function by a set of random weighted samples.
The ‘particles’ represent the distribution of the state vector
in state space, and are iteratively updated after an observa-
tion. The observation model describes the likelihood of an
observation given the current state. Advantages of particle
filters include the ability to represent arbitrary probability
densities, and applicability to converge in non-Gaussian,
non-linear dynamic systems.

This work describes methods to localize a vehicle travel-
ing along a road, given noisy GPS way-points, and an aerial
photograph of the surrounding region. We frame vehicle
localization as a Bayesian inference problem to integrate
and arbitrate between these multiple sources of information.
After describing how particle filters are used to localize
a vehicle on an aerial map of the region, we detail our
measurement likelihood function as used in the prediction
and update phases. Finally, we describe our results on varied



environments.
Our road extraction method is most similar to JetStream

[2], a particle filtering approach to spatially track edge
contours including roads. In our case, GPS information
places constraints on the tracking and eliminates the high
level of user interaction required by JetStream. Monte Carlo
methods have been used to localize robots in constrained
environments [15], combining measurements from multiple
sensors such as GPS, dead reckoning systems, and cameras
[12]. Frueh and Zakhor [8] have used particle filters to
register laser scan data with Digital Surface Maps, to build
3D textured models of cities. We propose to localize the
vehicle using only 2D aerial photographs, which provide
higher spatial resolution and important color information.

All the above methods employ only a single cue to mea-
sure the strength of their belief. Common cues employed in
tracking such as color, edges, or feature templates generally
do not work well alone in a wide range of environments.
A good measurement likelihood function must be able to
determine the most appropriate model at any given time
and adaptively switch to the dominant one. Isard and Blake
[6] have described a mixed-state CONDENSATION tracker
that can handle multiple motion models. While we have
a well-defined motion model, we adapt their technique to
handle variable modes of perception.

II. PARTICLE FILTERING AND VEHICLE LOCALIZATION

Particle filtering has proven to be adept at tracking in
the presence of complicated likelihood functions and non-
linear dynamics. Tracking here refers to followingthe state
of a set of variablesx as they evolve over time. We wish
to estimatext at time-stept, given knowledge about all
the sensor measurementsZt = {z1, z2, .., zt} up to t. If
we construct the posterior densityp(xt|Zt) to represent our
belief of the current state, we can inferxt by taking either
the MAP (maximum a posteriori) or mean estimate.

In particle filters, this belief or posterior density is
approximated by a setSt of N particlesst

i = {< xt
i, w

t
i >

|i = 1, .., N}, wherexi is a state (position on the map) and
wi is the importance weight. The importance weights give
a measure of how reliable the corresponding state estimate
is. The set of samples thus define a discrete approximation
of the continuous probability density function. In every
iteration, N new particles are sampled fromSt with the
probability of survival of a particlest

i being proportional to
its weight wt

i . Each particle is then modified according to
the dynamicsand the weight is updated according to the
measurement model.

Initially, a set of equally weighted particles are uniformly
distributed around the starting position estimated by the
GPS reading(u1, v1). The state vectorx = [x, y, θ,m]
includes a variable for the road widthm, where(x, y) is the
mid-point of the road oriented at an angle ofθ degrees. At
every iteration of the particle filter algorithm, a new set of
GPS coordinates(ut, vt) is obtained and the relative motion

(Rt,Θt) is computed. We now describe two schemes to
integrate GPS sensor information into the particle dynamics.

A. GPS-driven dynamics

The motion(Rt,Θt) is applied to all the particles along
with white Gaussian random noise to predict the new
position of each particle. The particles are thus subjected to
a drift and diffusion process with a relative movement of
(R

′

t,Θ
′

t) = (Rt + N(σr),Θt + N(σΘ)). On applying the
motion model, we predict statext

i = [x′, y′, θ′,m′] from
xt−1

i = [x, y, θ,m] by applying the dynamics:

xt
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Θ
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t
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 (1)

where N(σ) denotes Gaussian noise with varianceσ2.
The standard deviations are a function of the step size with
σΘ varying from0.05

√
R to 0.1

√
R andσr is set to0.2R.

When the GPS estimates are fairly reliable, this scheme
forces particles to follow the GPS point and look for a
possible road within the error ellipsoid.

B. Measurement Likelihood-driven dynamics

If the GPS positions are not reliable, the above method
overly restricts the particles from following the road. Set-
ting a larger variance with the previous method does not
eliminate the problem, as a majority of particles would
still follow the incorrect GPS track. This is especially true
in cluttered urban regions since there might possibly be
many road-like features such as house tops or shadows of
buildings. A more flexible approach in such situations is
based on the strength of the measurement likelihood - i.e.
allow particles to follow all possible roads and then use GPS
to narrow down on the most plausible one in the update
phase. Details of the likelihood function are elucidated in
the next section.

The formula forxt
i is the same as (1) except that the

orientationΘ
′

t = (Θ
′

t−1 + N(σΘ)) is distributed around
the direction the particle was traveling in the previous time
step. This allows a much wider angular distribution as well
as giving particles a certain momentum to get past erroneous
GPS measurements. The formula forR

′

t remains the same
as before, in order to retain information about the velocity
of the vehicle.

C. Update phase

A preliminary weight wi is computed for each new
particle based on the measurement model. This weight
could be a measure of our confidence that the estimated
position of the particle on the aerial photo lies on the road or
how well on-board camera images correlate with the aerial
view of the corresponding region. The weighting serves
to concentrate the histogram over state space of all the
particles around the most likely position that the vehicle
could be in. Only the “fittest” particles survive from one



iteration to the next, resulting in an evolutionary process.
Given this representation of the density function, the current
estimate for the position of the vehicle is chosen to be the
weighted mean of all the particles.

III. M EASUREMENTL IKELIHOOD

We employ vision-based techniques to assign relative
weights for each particle. These weights reflect the strength
of our belief that a particle lies on the road based on the
aerial photo. Most particle filters, including JetStream, are
flexible and have very few restrictions on the measurement
model used. However, a single measurement model alone
might not be sufficient to characterize the observation den-
sity. Multiple observation models are important for robust-
ness and applicability, with automatic switching between
them. We first define the different road models used and in
the next section describe a technique to arbitrate between
them.

A. Measurement Models

Fig. 1. Example aerial images of urban and desert regions from which we
wish to spatially track the road traveled by the vehicle. Roads might appear
bright or dark and may have very little contrast in off-road environments.
The road is marked in blue for the lower desert image.

Figure 1 shows example aerial images of off-road and
urban environments on which we run our technique. Jet-
Stream [2] uses the norm of the luminance gradient as a
cue to track high contrast contours. The aerial images that
we employ are low contrast, noisy and characterized by
excessive clutter in urban regions, making simple edge- or
color-based methods impractical. We have therefore chosen
Gabor filters [5], widely used in texture analysis, to give an
initial confidence estimate for each pixel being road or non-
road. The general functional for the two-dimensional Gabor
filter family can be represented as a Gaussian function
modulated by an oriented complex sinusoidal signal. In
polar form it is written as

Gn(x, y, λ) = e−π[x2/a2+y2/b2]ej2π[r cos(θ−φ)/λ]. (2)

The real part of the Gabor filter (RGn) has even symme-
try and is a proven blob detector while the imaginary part
(IGn) can be used to detect step edges. Since roads appear
as banded segments oriented at some angle, we attenuate
RGn along its width, to give an elliptical pattern that retains
only the central 40 percent of the estimated width. While
this particular pattern effectively detects bright roads in a
darker region, a negated filter (RG−

n ) can detect darker
roads. The width of the roads in the image dictate the
choice of various scales(λ), and for each scale 10 equally
separated orientations are selected from[0..π]. We then use
normalized cross-correlation rather than convolution to pre-
compute the response for each of these filters. Doing so
compensates for intensity changes, while enabling seamless
fusion of multiple scale filter responses.

The measurement models are a function of the features
detected by one or more filters in the pre-processing stage.
Other features such as color or shape can also be used when
available. We currently use onlyNo = 2 different models
defined analytically as:

• M1=

RGn(x+, y+, λ1)+RGn(x−, y−, λ1)+RG−
n (x, y, λ2)

• M2=

RGn(x+, y+, λ1)+RGn(x−, y−, λ1)+RGn(x, y, λ2)

The superscripts overx and y indicate the road edges
on both sides of the particle computed fromm and θ.
Model M1 looks for a dark (with respect to the surrounding
region) road with thin parallel lines running along the road.
This model is very effective for urban roads as well as
certain shadowed or occluded regions. ModelM2 is used
to detect brighter roads, typical of rural or country roads. A
weighting scheme may also be used in the above models to
emphasize certain features more than others. For example,
the sidewalk is very prominent in suburban areas and so a
higher weight factor can be multiplied with the road edge
response. Adding more models is straightforward and the
method to switch between them is described in the next
section. The weight of a particleX = [x, y, θ,m] using
modelo is the output ofMo at orientation closest toθ for
the point(x, y).

B. Fusing GPS Information

While JetStream follows contours along the largest gra-
dient, we wish to constrain the dynamics of the tracking
to follow the road in the vicinity of the GPS reading at
that instant. Although the dynamics is governed completely
by the GPS in the GPS-driven scheme, this alone could
still cause particles to drift away and track the wrong
road. Depending on the accuracy of the GPS and the
amount of ambiguity in the aerial maps, we can use anα
parameter that weights a particle based on its proximity to
the corresponding GPS coordinate. However this will “pull”
particles off the road in places where GPS estimations are
inaccurate. We therefore define a radial distance ofdmax



from the GPS position, outside of which all particles are
given a weight of 0.

When particles are governed by the measurement
likelihood-driven dynamics, we must use an additional
angular constraint as well. Given the GPS segment(ut, vt)−
(ut+1, vt+1), only particles within a distance ofdmax and
an angular disparity withinδ survive through to the next
iteration. In our case, only particles within 60 degrees to
either side of the GPS segment were retained.

IV. I NTEGRATING MULTIPLE MODELS

Having defined various models that determine the road
likelihood, there is the issue of choosing the appropriate
model. We adapt mixed-state tracking techniques [6] to
probabilistically detect and switch to the most dominant
measurement model at any given time. We define an ex-
tended state for each particle to be

Xi = (xi, Oi) (3)

where xi is as defined earlier andO ∈ {1..No} is a
discrete variable labeling one ofNo observation models.
ThusOi determines which observation model to use in the
measurement phase for particlesi. We also define a state
transition probability matrixT which is an adjacency matrix
representation of the possible state transitions i.e.Tpq is
the probability for a particle to change state fromp to q.
In order to integrate mixed-state models into the particle
filtering framework, it is sufficient to split the sampling
process of every iteration into two separate phases. In the
first phase, the state transition probabilities are sampled
from to generate a new observation model density for the
particles. The subsequent sampling phase is the same as
described previously where particles with higher weights
survive while the others are eliminated. In the update phase,
the observation model used to measure the reliability of
particlest

i depends on the value ofOt
i .

Fig. 2. GPS plot (dotted red) and tracked path (solid blue) through the
desert. The darker curve shows the output of conventional JetStream using
the luminance gradient.

The formal steps used in the particle filter are described
below. We begin withSt−1 of N particles st−1

i = {<
xt−1

i , Ot−1
i , wt−1

i > |i = 1, ...N} in every iteration fol-
lowed by:

1) Sampling: Construct thenth of N new samples
according to the following two steps:

• Sample transition probabilities: Sample from
P (Ot

i = q|Ot−1
i = p) = Tpq to find Ot

i for each
si.

• Sample process density:Sample from St−1

based onwt−1 by generating a random numberj
with probability proportional towt−1

j and setting

s
′(t−1)
n = st−1

j .

2) Prediction: We apply our dynamics to each sampled
particle as governed by equation (1).

3) Update: The likelihood for this particle is computed
according to the measurement model specified byOi.
Weights are updated in terms of the latest image data
Zt.

In order to estimate a single most probable position that
the vehicle could be in after every time-step, a two-pronged
strategy is adopted of first computing the dominant model
Ôt in force, and then calculating the weighted mean of only
those particles in that observation state.Ôt is computed
according to

Ôt = arg max
j

∑
i∈Υj

wt
i where

Υj = {i|Xt
i = (xt

i, j)} (4)

V. RESULTS

Fig. 3. Comparison of single-mode and mixed-mode tracking using
modelsM1 (dark roads) andM2 (bright roads). Solid yellow indicates
that the tracker is in modeM1 and dashed blue denotesM2. Notice how
tracking only withM2 causes mistracking on the darker roads.

We show the result of localization on both urban and off-
road environments, currently using only aerial images and
GPS data. The particle filter was initialized to use 1000
particles - though it is very robust with less than half that
number - and first distributed around the starting point.
The choice of Gabor filter scales depend on the resolution
of the aerial imagery, and for the publicly available 1-
meter resolution photos that we used,λ2 = 10 was a fair



approximation for the width of most roads. To detect the
road edges and sidewalks, we usedλ1 = 1.

To compare our spatial tracker with the pure JetStream
approach, we ran the particle filter on a 1.2 mile track
obtained during a drive through the southern California
desert. After verifying that the Navcom SF-2050G DGPS
receiver was accurate to a couple of meters, the particle filter
was run similar to JetStream without integrating any of the
sensor data. This also enabled us to quantify deviation from
ground truth. Shown in figure 2 is a plot of the GPS track
(dotted red) on one segment and the estimated path (blue) of
our tracker. The dark wayward curve shows the output of the
conventional edge tracking method as used by JetStream.
Due to the absence of strong edge cues, JetStream does not
track correctly beyond a few meters. By extracting the local
texture information using Gabor filters, our algorithm does
significantly better. The mean distance error with the GPS
curve on this run was 3.24 meters and standard deviation
was 3.1m. On another similarly curvy segment, the mean
was 1.4m and standard deviation was 1m. Estimating the
road width to be about 10m from the aerial image and the
GPS data itself to be accurate only to a couple of meters, we
claim that our image processing alone is robust to handle
significant drop-outs on the GPS due to LOS issues.

Figure 3 shows a suburban neighborhood comparing
single- and mixed-mode tracking. The roads are either dark
or bright, with abrupt transitions between them. To track
all possible roads without GPS is not practical as there
is a lot of clutter. The comparatively low cost Garmin
GPS 16 used for this example was especially unreliable
in such environments with accuracy as bad as 25 meters
in some places. In addition to correcting the GPS path,
our tracker automatically switches to the appropriate model.
The yellow sections indicate when the tracker is in model
M1 looking for dark roads, while blue denotes thatM2

is dominant at that point. The transition matrix used was

T =
(

0.7 0.3
0.3 0.7

)
with a slightly higher probability

enforced for each particle to remain in the current mode.
The value ofdmax was set to 20. Single-mode tracking
using onlyM2 causes mistracking to occur on the darker
roads.

Fig. 4. Corrected GPS positions (solid blue) at intersections. GPS
estimates (dotted red) were especially inaccurate at intersections.

Figure 4 shows zoomed in regions of corners where

Fig. 5. Using measurement likelihood-driven dynamics and model-
switching (not shown) with highly inaccurate GPS (red) positions. Solid
blue curve shows corrected path

the GPS (red) tracks have been corrected by our contour
extraction method. Figure 5 shows a short GPS run in dotted
red. This is difficult both in terms of highly inaccurate
GPS readings at the corners, as well as the presence of
shadows and trees that mask the road in some places. While
GPS-driven dynamics simply do not work correctly in this
scenario, likelihood-driven dynamics (blue) is able to trace
the road for the entire length of the segment. The particles
have enough momentum to keep following the strongest
road likelihood without changing direction at every wiggle
in the GPS data.

Illustrated in figure 6 is a typical scenario of what
happens when a GPS receiver loses signal due to over-
passes or tunnels. There is a sudden glitch in the GPS
outputs, as points veer off to the sides before homing in on
the actual position again. Likelihood-driven dynamics can
easily handle such situations as shown in the figure. This
situation might also call for some image processing hacks
that detect features orthogonal to the road, but that was not
required in this case as particles were distributed far enough
along the road to overcome negative filter responses under
the over-pass.

VI. CONCLUSION

In this work, we have demonstrated techniques to correct
erroneous GPS information for the purpose of vehicle
localization. In contrast to map-matching approaches that
use digital road-maps, we demonstrate our algorithm on
aerial images of diverse environments. We use a combi-
nation of image processing and probabilistic methods to
make an inference about the most likely road that the
vehicle is traveling on, based on explicitly defined road
models. Detecting and switching to the correct model is
done automatically by the mixed-state tracker. Results are
shown on a range of images by correcting inaccurate GPS
position estimates. We claim that this kind of localization
maybe a useful precursor to any on-the-road path-planning
algorithm for intelligent vehicles.



Fig. 6. Using measurement likelihood-driven dynamics to handle char-
acteristic glitches in GPS data caused by over-passes and bridges

One short-coming of the weighted mean estimate of
particle locations is that it does not take into account the
distribution - which could possibly be clustered over several
different roads. This happens most noticeably at intersec-
tions where GPS data seemed most unreliable. Clustering
algorithms could be used to track multiple peaks in such
situations. Using GPS-driven or likelihood-driven dynamics
in isolation does not seem robust for long runs. It would
be interesting to see the effects of adding the dynamics for
each particle as another mode in the mixed-state tracker.
This would allow some particles to follow the GPS curve,
while other particles would follow the most likely road.
Intuitively this seems more robust.

Future work includes integrating information from on-
board sensors such as a camera and laser. With aerial images
and GPS alone, our algorithm can identify the possible road
that the vehicle is on. The use of additional sensors would
allow us to correlate the on-board view with the aerial one,
giving information about the position and orientation of
the vehicle within the road. This can be useful in multiple
lane roads or intersections. In off-road environments shown
in figure 2, it would be very useful to complement aerial
imagery with elevation data sets also.
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