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Abstract

Many rural roads lack sharp, smoothly curving edges
and a homogeneous surface appearance, hampering tra-
ditional vision-based road-following methods. However,
they often have strong texture cues parallel to the road
direction in the form of ruts and tracks left by other ve-
hicles. In this paper, we describe an algorithm for fol-
lowing ill-structured roads in which dominant texture
orientations computed with multi-scale Gabor wavelet
filters vote for a consensus road vanishing point loca-
tion. In-plane road curvature and out-of-plane undula-
tion are estimated in each image by tracking the van-
ishing point indicated by a horizontal image strip as
it moves up toward the putative vanishing line. Par-
ticle filtering is also used to track the vanishing point
sequence induced by road curvature from image to im-
age. Results are shown for vanishing point localization
on a variety of road scenes ranging from gravel roads
to dirt trails to highways.

1 Introduction

Many complementary strategies for visual road follow-
ing have been developed based on certain assumptions
about the characteristics of the road scene. For ex-
ample, edge-based methods such as those described in
[1, 2, 3] are often used to identify lane lines or road
borders, which are fit to a model of the road curvature,
width, and so on. These algorithms typically work best
on well-engineered roads such as highways which are
paved and/or painted, resulting in a wealth of high-
contrast contours suited for edge detection. Another
popular set of methods for road tracking are region-
based [3, 4, 5, 6]. These approaches use characteristics
such as color or texture measured over local neighbor-
hoods in order to formulate and threshold on a likeli-
hood that pixels belong to the road area vs. the back-
ground. When there is a good contrast for the cue
chosen, there is no need for the presence of sharp or

(a)

(b)

Figure 1: (a) Desert road from DARPA Grand Chal-
lenge example set (with vanishing point computed as
in Section 2.2); (b) Canny edges of same scene

unbroken edges, which tends to make these methods
more appropriate for unpaved rural roads. Of course,
the contrast between, for example, the road color and
the background color tends to change over time, neces-
sitating adaptation of the discriminant function [7]

Most road images can be successfully interpreted
using a variant of one of the two above approaches.
Nonetheless, there are some scenes that possess neither
strong edges nor contrasting local characteristics. Fig-

1



ure 1(a) shows one such road (the cross has been added
by our algorithm and is explained in Section 2.2). This
image is from a set of “course examples” made avail-
able to entrants in the 2004 DARPA Grand Challenge,
an autonomous cross-country driving competition [8]
[DARPA air-brushed part of the image near the hori-
zon to obscure location-identifying features]. There is
no color difference between the road surface and off-
road areas and no strong edges delimiting it, as the out-
put of Matlab’s Canny function shows in Figure 1(b).
The one characteristic that seems to define the road
is texture, but not in a locally measurable sense, be-
cause there are pebbles, shadows, and stripes every-
where. Rather, one seems to apprehend the road easily
because of its overall banding pattern. This banding,
presumably due to ruts and tire tracks left by previ-
ous vehicles driven by humans who knew the way, is
aligned with the road direction and thus most appar-
ent because of the strong grouping cue imposed by its
vanishing point.

A number of researchers have used vanishing points
as global constraints for road following or identification
of painted features on roads (such as so-called “zebra
crossings,” or crosswalks) [9, 10, 11, 12]. Broadly, the
key to the approach is to use a voting procedure like
a Hough transform on edge-detected line segments to
find points where many intersect. Peaks in the voting
function are good candidates for vanishing points. This
is sometimes called a “cascaded” Hough transform [13]
because the lines themselves may have first been iden-
tified via a Hough transform. Similar grouping strate-
gies have also been investigated outside the context of
roads, such as in urban and indoor environments rich in
straight lines, in conjunction with a more general anal-
ysis of repeated elements and patterns viewed under
perspective [14, 15].

All of the voting methods for localizing a road’s van-
ishing point that we have identified in the literature
appear to be based on a prior step of finding line seg-
ments via edge detection. Moreover, with the exception
of [12] (discussed below), vanishing-point-centric algo-
rithms appear not to deal explicitly with the issue of
road curvature and/or undulation, which remove the
possibility of a unique vanishing point associated with
the road direction. Both of these limitations are prob-
lematic if vanishing point methods are to be applied
to bumpy back-country roads like the desert scene dis-
cussed above.

In this paper we present a straightforward method
for locating the road’s vanishing point in such difficult
scenes through texture analysis. Specifically, we re-
place the edge-detection step, which does not work on
many such images because the road bands are too low-

frequency to be detected, with estimates of the domi-
nant orientation at each location in the image. These
suffice to conduct voting in a similar fashion and find
a vanishing point.

We also add a second important step to deal with
road curvature (both in- and out-of-plane), which is
the notion of tracking the vanishing points associated
with differential segments of the road as they are traced
from the viewer into the distance. By integrating this
sequence of directions, we can recover shape informa-
tion about the road ahead to aid in driving control.
The method is easily extended to temporal tracking of
the vanishing point over sequences of images.

A related idea was proposed for planar texture anal-
ysis using “spectral voting” in [16], but only tested on
synthetic images with no curvature. Another related
piece of work is the CMU RALPH road follower [17].
Their system also exploits texture within the road in-
cluding tracks, drips, and lane lines, but it works by
a different mechanism: for every frame, a small set of
in-plane curvatures are hypothesized and one is chosen
that best fits the image.

2 Methods

There are three significant components to the road
following algorithm, which we describe in the follow-
ing subsections. First, a dominant texture orientation
is computed at every image pixel. Second, assuming
a straight, planar road, all dominant orientations in
the image vote for a single best road vanishing point.
Third, if the road curves or undulates a series of van-
ishing points for each tangent direction along the road
must be estimated. For a sequence of road images we
must also estimate the deformation of this vanishing
point contour from image to image.

2.1 Dominant orientation estimation

The dominant orientation θ(p) at pixel p = (x, y) of an
image is the direction that describes the strongest local
parallel structure or texture flow. This is of course a
scale-dependent measure. As we will explain in more
detail in the next subsection, precise estimates of the
dominant orientations are crucial in order to obtain
sharp peaks in the voting objective function and hence
accurately localize the vanishing point. There is a con-
siderable body of work on estimating dominant orien-
tations. For example, we may apply a bank of multi-
scale, oriented filters such as steerable filters [18] and
analyze the maximum responses. Another approach
is to generate a Gaussian pyramid of the image, use
principal components analysis on the set of gradients
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within a small window to obtain a consensus direction
at each scale, and then interpolate [19].

We experimented with several approaches to local
orientation estimation, including that of [19], and ob-
served the most qualitatively accurate results on a wide
variety of road images with a bank of Gabor wavelet
filters [20]. Gabor wavelet filters essentially perform a
Gaussian-windowed Fourier analysis on the image via
convolution with a set of kernels parametrized by ori-
entation θ, wavelength λ, and odd or even phase. To
generate a k × k Gabor kernel (we use k = b 10λ

π c), we
calculate:

ĝodd(x, y, θ, λ) = exp[− 1
8σ2

(4a2 + b2)] sin(2πa/λ) (1)

where x = y = 0 is the kernel center, a = x cos θ +
y sin θ, b = −x sin θ + y cos θ, σ = k

9 , and the “sin”
changes to “cos” for ĝeven. The actual convolution ker-
nel g is then obtained by subtracting ĝ’s DC component
(i.e., mean value) from itself and normalizing the result
so that g’s L2 norm is 1.

To best characterize local texture properties includ-
ing step and roof edge elements at an image pixel
I(x, y), we examine the standard “complex response”
of the Gabor filter given by Icomplex(x, y) = (godd ∗
I)(x, y)2 +(geven ∗ I)(x, y)2 for a set of n evenly spaced
Gabor filter orientations. The dominant orientation
θ(x, y) is chosen as the filter orientation which elicits
the maximum complex response at that location.

With a priori knowledge of the distribution of actual
(3-D) road texture wavelengths λroad, the camera focal
length, and the pitch or tilt angle of the camera with re-
spect to the ground plane, the distribution of perceived
road texture wavelengths in the image λimage could be
established. This information would allow a principled
choice of a range of filter wavelengths to run at each
image location and weights for combining them, with
larger-scale filters being applied toward the bottom of
the image and finer filters used closer to the horizon
line.

However, in this work the testing images were cap-
tured by a variety of uncalibrated cameras mounted
with unknown height and tilt. Furthermore, the data
contain a number of significant departures from the
planar ground assumption. Based on empirical obser-
vation of performance using 4 octave-separated wave-
lengths both independently and in combination, we
found that a single wavelength related to the image di-
mensions by an ad hoc scaling factor gave good results
at a significant computational savings vs. multi-scale
schemes. Thus for all of the results in this paper we use
a Gabor filter wavelength of λ = 2blog2(w)c−5, where w
is the width of the input image. For 720 × 480 and

Figure 2: Dominant orientations (subsampled) for
desert image

640 × 480 images, for example, this results in λ = 16
and a kernel size of 50× 50.

A large number of orientations (e.g., n = 72) were
necessary to achieve superior angular resolution for
θ(p) given the voting method described in the next sub-
section. Performing this many convolutions per image
with such large kernels is obviously computationally
expensive. Nonetheless, we found that using the con-
volution theorem and the FFTW Fourier transform li-
brary [21] allows dominant orientations to be obtained
with adequate speed. For example, calculating θ(p)
for every pixel in a 160× 120 image with n = 72 takes
∼130 ms on a 3.0 GHz Pentium IV (the same machine
is used for all speed figures in this paper).

An example of the dominant orientations computed
over a sparse grid of locations is shown in Figure 2 for
the desert road image.

2.2 Vanishing Point Voting

For a straight road segment on planar ground, there is
a unique vanishing point associated with the dominant
orientations of the pixels belonging to the road. Curved
segments induce a set of vanishing points (discussed
below). Though road vanishing points may lie outside
the field of view (FOV) of the road-following camera,
it is reasonable to limit our search to the area of the
image itself if the following conditions are met: (1)
The camera’s optical axis heading and tilt are aligned
with the vehicle’s direction of travel and approximately
level, respectively; (2) Its FOV is sufficiently wide to
accomodate the maximum curvature of the road; and
(3) The vehicle is roughly aligned with the road (i.e.,
road following is proceeding successfully).

Furthermore, we assert that for most road scenes, es-
pecially rural ones, the vanishing point due to the road
is the only one in the image. In rural scenes, there is
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very little other coherent parallel structure besides that
due to the road. The dominant orientations of much
off-road texture such as vegetation, rocks, etc. are ran-
domly and uniformly distributed with no strong points
of convergence. Even in urban scenes with non-road
parallel structure, such texture is predominantly hori-
zontal and vertical, and hence the associated vanishing
points are located well outside the image.

In the following subsections we describe methods
for formulating an objective function votes(v) to eval-
uate the support of road vanishing point candidates
v = (x, y) over a search region C roughly the size of
the image itself, and how to efficiently find the global
maximum of votes.

2.2.1 Objective function

The possible vanishing points for an image pixel p with
dominant orientation θ(p) are all of the points (x, y)
along the line defined by (p, θ(p)). Because our method
of computing the dominant orientations has a finite
angular resolution of n

π , uncertainty about the “true”
θ(p) should spread this support over an angular inter-
val. Thus, if the angle of the line joining an image pixel
p and a vanishing point candidate v is α(p,v), we say
that p votes for v if the difference between α(p,v) and
θ(p) is within the dominant orientation estimator’s an-
gular resolution. Formally, this defines a voting func-
tion as follows:

vote(p,v) =
{

1 if |α(p,v)− θ(p)| ≤ n
2π

0 otherwise (2)

This leads to a straightforward objective function
for a given vanishing point candidate v:

votes(v) =
∑

p∈R(v)

vote(p,v) (3)

where R(v) defines a voting region. For straight, flat
roads, we set R(v) to be the entire image, minus edge
pixels excluded from convolution by the kernel size, and
minus pixels above the current candidate v.

Only pixels below the vanishing line l implied by
v are allowed to vote because support is only sought
from features in the plane of the road (though in urban
scenes out-of-plane building features, etc. may corrob-
orate this decision [11]). This reduces ambiguity in the
voting objective function and speeds the voting com-
putation somewhat. A possible effect of this choice is a
bias of votes toward higher image locations (since lower
ones have fewer voters “eligible” to support them), but
we have not found this to be an issue in practice.

Figure 3: Votes for vanishing point candidates (top 3/4
of image in Figure 1(a))

In this work, we assume that l is approximately
horizontal. Other researchers have inferred l for road
and urban scenes by computing a second vanishing
point obtained with either another set of parallel lines
[13, 10, 16] or the cross ratio of equally spaced lines
[10]. The road scenes we are considering have insuffi-
cient structure to carry out such computations.

We did not find that variations on the voting func-
tion vote such as weighting p’s vote by the strength of
the filter response at θ(p) or the anisotropy of the fil-
ter response over all angles at p improved the accuracy
of vanishing point localization. An obvious alternative
criterion, the point-to-line distance between a candi-
date v and the ray defined by θ(p), was considered,
but it performed poorly when there were few voters
near the candidate. This occurred, for example, when
the vanishing point was occluded by a vehicle further
along the road.

An example of votes computed at a 1-pixel resolu-
tion over C = the top three-fourths of the image in
Figure 1(a) (where the maximum vote-getter vmax is
indicated with a cross) is shown in Figure 3.

2.2.2 Computational considerations

An efficient alternative to arithmetic computation of
Equation 2 results from noting that the voting proce-
dure is equivalent to rasterizing one thin isosceles “tri-
angle of votes” per voter defined by p, θ(p), and n in an
additive accumulation buffer A in which each pixel is a
vanishing point candidate v. After drawing every vote
triangle, the pixel in A (which represents C at a fixed
resolution) with the maximum value is vmax . This kind
of raster voting can be conducted very quickly (espe-
cially on graphics hardware) vs. the slower dot product
voting method described above. For example, voting
can be carried out (given the dominant orientations)
with every pixel in a 160×120 image as a voter in ∼35
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ms even with no graphics card acceleration1.
For dot product voting, an exhaustive search over C

for the global maximum of votes of the type necessary
to generate Figure 3 is costly and unnecessary. Rather,
a hierarchical scheme is indicated in order to limit the
number of evaluations of votes and control the preci-
sion with which vmax is localized. Because it integrates
easily with the tracking methods described in the next
subsection, we perform a randomized search by carry-
ing out a few iterations of a particle filter [22] initialized
to a uniform, grid-like distribution over C (with spac-
ing ∆x = ∆y = 10). Exhaustive search adds little to
the cost of raster voting, however. Overall, the van-
ishing point can be robustly estimated for 160 × 120
images with raster voting at roughly 6 fps, making ve-
hicle control at the moderate speeds appropriate on ill-
structured roads viable. For a slight accuracy penalty
the frame rate can be pushed up to real-time with voter
subsampling, smaller n, etc.

2.3 Tracking the Vanishing Point

Road curvature and/or non-planarity result in a set
of different apparent vanishing points associated with
different tangents along the section of road seen by
the camera. Therefore the procedure of the preceding
subsection, which assumes a unique vanishing point,
must be modified to estimate the sequence of vanish-
ing points which correspond to differential segments of
road at increasing distances from the camera. Further-
more, over a sequence of images gathered as the cam-
era moves along the road, the vanishing point contour
thus traced for a single image must itself be tracked
from frame to frame.

2.3.1 Road curvature in one image

Suppose the spine of the approaching road section that
is visible to the camera is parametrically defined by a
nonlinear space curve x(u), with increasing u indicat-
ing greater distance along the road. If x(u) lies entirely
in one plane then the image of these vanishing points
v(u) is a 1-D curve on the vanishing line l. If x(u) is
not in the plane, then the vanishing line varies with dis-
tance according to l(u) (still assumed to be horizontal)
and v(u) is a 2-D curve.

We cannot directly recover v(u) since x(u) is un-
known. However, u is a monotonically increasing func-
tion of the image scanline s, where s = 0 is the bottom
row of pixels, so we can attempt to estimate the closely

1For the raster voting results in this paper, the vote triangles
are approximated by lines, and A has a bit-depth of 8, both of
which can lead to some artifacts

related curve v(s). This implies modifying Equation 3
to

votes(v(s)) =
∑

p∈R(v,s±∆)

vote(p,v) (4)

where R(v, s±∆) is now a differential horizontal strip
of voting pixels centered on scanline s. Smaller values
of the height of the strip 2∆ yield a more accurate but
less precise approximation of the road tangent (∆ ≈
0.1h, where h is the image height, for the results in this
paper). s is iterated from 0 until vmax (s) ∈ R(v, s±∆)
(roughly the point where the strip crosses the vanishing
line).

A strip-based approach to vanishing point detection
for curvature estimation was also used in [12] for edge-
detected road boundaries and lane lines, but with only
a few non-overlapping strips. The resolution of their
approach would be improved with overlapping strips,
as we use.

Furthermore, we do not simply estimate a best van-
ishing point fit vmax (s) for every s independently by
rerunning the full randomized search over C as de-
scribed in the previous subsection. Rather, we track
the vanishing point by continuing to run the particle
filter with weak dynamics p(v(s) |v(s−1)) (e.g., a low-
variance, circular Gaussian). This allows a more accu-
rate estimate of vmax (s) because of the concentration
of particles already in the solution area, and reduces
the chance of misidentification of the vanishing point
due to a false peak somewhere else in the image.

The vanishing point of each strip s implies a tangent
to the image of the road curve at s. By hypothesiz-
ing an arbitrary point on the road, we can integrate
this tangent function over s (i.e., with Euler steps) and
thereby trace a curve or “flow line” followed by the
road point. This procedure is illustrated in the next
section.

2.3.2 Image sequences

As the vehicle travels down the road, the perceived
road shape changes over time t according to x(u, t). A
simplification that nonetheless works fairly well is to
ignore road curvature within a single image and just
track the global vanishing point vmax of the entire im-
age from frame to frame.

However, following the analysis from the preceding
subsection, we are interested how the vanishing point
contour v(s, t) depends on its shape v(s, t − 1) at the
previous time step. A straightforward approach is to
carry forward the start of the curve v(0, t−1) with some
temporal dynamics to “seed” the tracker in the next
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Computed vanishing points using the entire
image as the voting region (dot product voting)

frame at v(0, t) and then track points along the van-
ishing point contour as described above. It is much less
efficient and effective to track the state of the vanish-
ing point contour as a whole by sampling entire curves
because of the high dimensionality of the state space.

3 Results

Straight roads Vanishing point localization by
dominant texture orientation voting worked robustly
on predominantly straight roads with a wide variety
of surface characteristics. Results on 720 × 480 DV
camera images captured on a variety of roads at Ft.
Indiantown Gap, PA (the “FITG” data) are shown
in Figure 4. Here dot product voting was used, the
voters were decimated by half vertically and horizon-
tally within R, and the particle filter-based search used
∼600 particles. None of the dirt road examples in Fig-
ures 4(a)-(d) are truly straight or level, so some appar-
ent discrepancies are due to these departures from the
assumption. Although the algorithm was formulated
especially for heavily banded roads, as Figures 4(e) and
(f) show, it also works with mostly homogeneous as-
phalt roads by utilizing the few edges that are present

in a manner similar to the edge-based methods de-
scribed in the introduction.

Results on a more extensive group of scenes are
shown in Figure 5. 16 illustrative images (the “Mojave”
data) were chosen from a large set of high-resolution
digital photographs taken on a scouting trip along a
possible Grand Challenge route in the Southern Cal-
ifornia desert. The algorithm was run on resampled
320×240 versions of the images using raster voting and
particle-based search; the figure shows the computed
vmax for 12 of the 16 images with a green cross. To as-
sess the algorithm’s performance vs. human perception
of the vanishing point location, we invited ∼ 30 mem-
bers of the UD computer science department to partic-
ipate in a web-based study. Subjects were given a short
definition of road vanishing points, shown two different
example images with the vanishing point marked, and
asked to click where they thought the vanishing point
was in 640 × 480 versions of each of the 16 Mojave
images. 16 subjects completed the study; 11 of their
256 choices (4.3%) were manually removed as obvious
misclick outliers. The figure indicates the distribution
of human choices with red 3σ error ellipses, most of
which were fairly tight. The mean (median) positional
difference at the 320×240 scale between our algorithm’s
estimates and the human choices was 7.8 pixels hori-
zontally (5.3) and 8.0 pixels vertically (4.6).

Curved roads Examples of tracking the vanishing
point for curved, non-planar roads from the FITG data
are shown in Figures 6(a) and (b) (again using dot
product voting). The yellow contour indicates the trace
of the estimated vanishing point positions as the scan-
line s was incremented and the set of voters changed
to points farther along the road. Horizontal movement
of the vanishing point is of course proportional to left-
right road curvature, and vertical movement indicates
a rise or dip in the road. Thus we see that the road in
Figure 6(a) is relatively level with a slight dip in the
middle, which is correct. On the other hand, the van-
ishing point for the road in Figure 6(b) rises, indicating
an approaching hill.

A more intuitive interpretation of the vanishing
point motion can be obtained by simply integrating the
implied tangent to the image of the road curve (the line
joining any point on scanline s with its vanishing point
v(s)) for a few sample points. These are the green con-
tours, or “flow lines,” in the images in Figures 6. These
curves are not meant to indicate the width of the road,
for no segmentation has been carried out, but rather
only to illustrate the structure of the terrain that the
road ahead traverses.
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Figure 5: Computed vanishing points (raster voting) are shown as crosses, with Gaussian fits of a set of human
responses marked with ellipses

Image sequences Vanishing point samples from the
particle filter tracking a global vanishing point over a
difficult sequence of images from the FITG data are
shown in Figure 7 (the images were subsampled to
360× 240 and dot product voting was used for this se-
quence). Near the start of the sequence, in Figure 7(a),
the particles are coalescing around a consensus vanish-
ing point after starting in a uniform distribution over
the image. The cluster of particles tightly follows the
road vanishing point despite a number of turns and
bumps, and continues to track it even in the poorly
defined area of Figure 7(d).

4 Conclusion

We have presented an algorithm for road following that
at its most basic level relies on road texture to identify
a global road vanishing point for steering control. By
spatially partitioning the voting procedure into strips
parallel to the vanishing line and tracking the results,
we can estimate a sequence of vanishing points for
curved road and recover road structure through inte-
gration. With no training, the system is robust to a
variety of road surface materials and geometries, and
it runs quickly enough for real vehicle control.

One algorithmic component that we have not dis-
cussed here regards road segmentation. The estimated
road curvature alone does not provide information
about the vehicle’s lateral displacement that would al-
low centering–for this we need estimates of the left
and right road boundaries. The ”flow lines” described
above provide a powerful constraint by indicating the
shapes these edges might take at hypothetical image lo-
cations. This allows the road segmentation task to be
formulated as simply a 2-D search for a pair of flow lines
which maximize the difference of some visual discrimi-
nant function inside the road region vs. outside it. We
are currently experimenting with using this constraint
with discriminant functions based on color as well as
the local density of pixels that voted for vmax .
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(a)

(b)

Figure 6: Tracks of vanishing point (yellow) for curved
road and induced road “flow lines” (green)
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