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ABSTRACT

This paper studies the problem of aligning images from mul-
tiple cameras with minimally- or non-overlapping fields of
view using frame-to-frame transformations calculated for
sequences from each camera. We examine implementation
issues for the algorithm of Caspi and Irani that performs
the alignment for two cameras which are fixed relative to
each other and have approximately the same center of pro-
jection. Furthermore, we extend it to compute the camera-
to-camera homographies for anN ≥ 2 multi-camera net-
work by simultaneously solving for all parameters of the
unknown transformations. This enforces tighter constraints
on the solution than performing the alignment for each pair
independently. We show the efficacy of the approach on
both synthetic as well as real sequences captured using a
polycamera built in our lab. The aligned images can be mo-
saiced together to obtain a wider field of view virtual camera
for subsequent processing.

1. INTRODUCTION

Many vision applications today such as robotics, navigation,
and surveillance may benefit from cameras with larger fields
of view (FOV). One popular approach is catadioptric sen-
sors, which combine lenses and curved mirrors [1]. How-
ever, the catadioptric approach to omnidirectional vision re-
sults in variable resolution images and can be expensive for
small robots. Another promising means of obtaining omni-
directional vision is to tightly cluster together multiple cam-
eras to build a polycamera [2] with increased FOV. Rather
than process images from each camera individually, regis-
tration is carried out to mosaic temporally corresponding
images to one common reference frame. Several approaches
to do this can be found, usually relying on either feature
matching [3] or directly minimizing the intensity disparities
[4]. However, such appearance based matching will not suc-
ceed with non-overlapping FOV cameras or multiple sensor
types.

While automatically registering two still images with no
spatial overlap is impossible, Caspi and Irani showed in [5]

that with image sequences captured from both cameras si-
multaneously, such alignment can be carried out by making
use of the additional cues encoded within each sequence.
When cameras with an unknown but fixed orientation are
moved together, “similar” changes over time are induced
within each sequence. The “coherent appearance” model
for image alignment can be replaced by “coherent temporal
behavior” for sequence alignment, a less stringent require-
ment when building polycameras. From a signal processing
standpoint, this is akin to localizing multiple visual signals
and aligning them in a common coordinate system. Other
approaches have also used correlated temporal behavior for
spatial and temporal alignment of sequences [6], but require
the cameras to be viewing the same scene.

In this work, we generalize the method in [5] to align
images from multiple (N ≥ 2) cameras. Such a camera
has been used for road following applications to increase
the field of view. The camera-to-camera transformation can
be described by a homographyH if the optical centers are
approximately the same. Due to the minimal overlap be-
tween the images, classical image registration methods fail
to recoverH accurately and tend to cause distortion in the
peripheral regions without overlap. By formulating a rela-
tionship between the induced changes in each camera when
subject to motion,H can be recovered without placing con-
straints on the degree of overlap. The sequence alignment is
carried out for all cameras simultaneously with respect to a
reference camera. Crucial to the alignment is the selection
of accurate frame-to-frame transformations and appropriate
camera motion, and we detail the measures that can be used
to guide this process.

2. RECOVERING INTER-CAMERA
HOMOGRAPHY HQR

Let Ci|i = 1..N be the camera network with coincident
camera centers, so that a homographyH fully describes the
inter-camera transformation.Hqr is a linear transformation
of the projective plane and is represented by a 3x3 matrix
such thatxr = Hqrx

q, wherexr andxq are the homoge-
neous image coordinates in camerasCr andCq respectively



of the 3D pointX. Note thatX need not be in the FOV of
either camera. Given a reference camerar, the goal is to
find Hir for all Ci.

Let Sk = Ik
1..m+1 be the sequence ofm+1 frames cap-

tured by the cameraCk. We assume for now that the frames
are synchronized, but the method can be easily adapted for
unsynchronized sequences as well. Since classical image
alignment techniques will not work well with non overlap-
ping FOV, we wish to recover the inter-sequence transfor-
mations from the induced frame-to-frame transformations
within each sequence. LetT k

1 , .., T k
m be the sequence of

intra-sequence transformations withinSk such thatT k
i is

the homography that relates framesIk
i andIk

i+1. The as-
sumption of frame-to-frame transformations being homo-
graphies holds true for distant or planar scenes.

For the sake of completeness, we review the derivation
in [5] to recover the alignment for two sequences. For two
camerasCq andCr, we assume that temporally correspond-
ing frame-to-frame transformations are related by the fixed
inter-camera homographyHqr. Let xq

i andxr
i be the image

coordinates corresponding to world coordinateX at frame
i. In the next frame, these points are transformed toxq

i+1

andxr
i+1, such thatxq

i+1
∼= T q

i xq
i andxr

i+1
∼= T r

i xr
i , where

∼= denotes equality up to a scale factor. Because temporally
corresponding frames are related by the fixed homography,
xr

i
∼= Hqrx

q
i andxr

i+1
∼= Hqrx

q
i+1. Given these relations

we can conclude from Figure 1 that there are two equivalent
paths that transform any pointxq

i to xr
i+1. Hence

HqrT
q
i
∼= T r

i Hqr. (1)

Fig. 1. The two paths that transformxq
i to xr

i+1 should be
equivalent since they are true for allxi

Since the homographies are invertible we can writeT q
i =

siHqrT
r
i H−1

qr i.e the frame-to-frame transformations within
the sequences are similar up to a scale factor. From the the-
ory of matrices, the eigenvalues of similar matrices differ
only by the scale factorsi, which can be factored out by
setting the determinants of both matrices to unity. In the
relation

HqrT
q
i − T r

i Hqr = 0 (2)

we rewriteHqr ashqr, a column vector in row major order
to get a set of linear equations inhqr:

Mqr
i hqr = 0

whereMqr
i is a9× 9 matrix defined by

Mqr
i =

 T qT

i − T r
i11I −T r

i12I −T r
i13I

−T r
i21I T qT

i − T r
i22I −T r

i23I

−T r
i31I −T r

i32I T qT

i − T r
i33I


(3)

Although each pair of transformations gives 9 equations,
only 6 of them are linearly independent and at least two such
pairs are needed to determine the unique homography relat-
ing the two sequences.

3. ALIGNING MULTIPLE SEQUENCES

With N cameras, we would like to simultaneously solve for
the 9(N − 1) unknowns from each pair of homographies
with respect to the reference cameraCr. Compared with
the naive application of the method in [5] separately for all
pairs of cameras, we claim that solving for multiple cam-
eras simultaneously imposes tighter constraints on the final
solution. The linear relation in (2) now becomes a function
of all the pairwise homographies and can be expressed as∑

q 6=r

HqrT
q
i − T r

i Hqr = 0 (4)

This can be written as a system of linear equations inh:

Mih = 0 (5)

whereh is a column vector of the9(N − 1) unknowns and

Mi =
[

M1r
i M2r

i ..... MNr
i

]
(6)

a 9 × 9(N − 1) matrix. Mrr
i is excluded since it is the

identity. Since we have only 9 equations, and9(N − 1)
unknowns we stack upn reliable (with regard to the frame-
to-frame transformations)Mi matrices to form a9n×9(N−
1) matrixA and solve for

Ah = 0.

Each homography has 8 degrees of freedom, while a pair
of transformations provide only 6 linearly independent con-
straints on the homography relating them. Thus the mini-
mum value ofn required to solve for all elements inh is
4(N−1)

3 , but we use much more for greater stability. To
recover all the camera-to-camera homographies, singular
value decomposition is applied to computeA = UDV T ,
andh corresponds to the last column ofV .

We can also define a reliability measure that enforces
constraints on all frame-to-frame transformations across the
camera network. Because these transformations aresimilar,
the vector composed of the eigenvalues of temporally cor-
respondingTi’s should all be parallel to each other, which



implies that their dot products should be unity. This can be
expressed by the summation

RELi =
N∑

p=1

N∑
q=1

v̂p
i v̂q

i (7)

wherev̂p
i andv̂q

i are unit vectors composed of the 3 eigen-
values (in decreasing order) ofT p

i andT q
i respectively. The

higher this measure, the more parallel the vectors.

4. EXPERIMENTAL SETTING

Fig. 2. Polycamera consisting of 3 cameras

A reference sequence is synthesized by applying a series
of random rotations, translations and scaling to a set of 250
feature points. Three other sequences are generated by ap-
plying a known camera-to-camera homography to the refer-
ence sequence. Two of these were to either side of the refer-
ence sequence with minimal overlap, and the third sequence
had no overlap with any of the other sequences. Gaussian
noise was also added to the feature points to assess the sen-
sitivity of the algorithm.

Shown in Figure 2 is a polycamera withN = 3 cameras.
Neither internal nor external calibration was done on the
cameras, although the parameters are assumed fixed while
in operation. We pointed the polycamera at a building (pla-
nar surface) and moved it around for about 5 seconds, cap-
turing frames at 30 fps. We now document our experiences
of various factors that could effect the accuracy of the final
solution.

The algorithm is particularly sensitive to the type of cam-
era motion, requiring both rotations and translations at a
minimum to allow solving for all parameters of the unknown
homographies. To guarantee significant motion and com-
pensate for registration errors, the frame to frame transfor-
mations were computed between every fifth frame.

We first employed a Harris corner detector combined
with RANSAC [3] to compute the homography between
frames. However, their accuracy was highly dependent on
the distribution of detected features, the result even chang-
ing slightly from run to run. The direct method in [4] used
by Caspi gives sub-pixel accuracy but assumes roughly affine
motion. Due to the non-negligible perspective effects in our

Fig. 3. The recovered alignment for 4 synthesized sequences
with the reference sequence shown in blue. Misalignment
errors are close to zero as shown in the table below.

building sequences, we used the slightly slower Levenberg-
Marquardt style registration described by Szeliski [7], ini-
tializing it with the result of feature matching and RANSAC.
The elements of the homography matrix that allow for per-
spective distortion are not as stable as the other elements in
H, and this could potentially effect the accuracy of the final
alignment between cameras.

We used both Sum of Squared Differences and the re-
projection error to prune out the bad frame-to-frame homo-
graphies. For the computation of the inter-camera align-
ment, the set of homographies are sorted according to the
REL measure, and the top 15-20 sets are chosen. A more
well-defined quality metric to choose the “best” sets of ho-
mographies remains the current area of focus. This is partic-
ularly important because a single set of bad homographies
could drastically alter the computed alignment across cam-
eras.

5. RESULTS

5.1. Synthesized sequences

Figure 3 shows the results of the algorithm on 25 frames
of the 4 synthesized sequences. The reference sequence is
shown in blue, and alignment of the 3 other sequences with
respect to the reference is shown in red. The average pixel
misalignment of the recovered homographies compared with
ground truth is very close to 0, as can be seen in the table be-
low. The error was raised to one pixel when all 250 feature
points were subject to random perturbations of up to10−3

pixels. Pure feature based matching cannot usually attain
such accuracy, making the case for direct methods. We em-
phasize that the set of frame-to-frame transformations must
include both rotations and translations, as either one alone
is degenerate.



Fig. 4. Alignment of images taken from 3 fixed cameras. For blending, pixels are weighted based on distance to centers

Sequence Average pixel misalignment (×10−7)
Left 2.76

Right 7.76
Top 4.97

5.2. Real sequences

For real sequences, the frame-to-frame homographies were
computed and the algorithm applied keeping the center cam-
era as the reference. Notice the resulting increased FOV that
could be especially beneficial for navigation and surveil-
lance. No prior calibration is required and the technique
is invariant to zoom or intensity differences across cam-
eras. Classical image registration methods would fail to ac-
curately recover the alignment due to insufficient overlap.
While the Left Camera is almost perfectly aligned, one can
notice artifacts caused at the edges of the Center and Right
cameras. This occured due to appreciable vibrations of the
right camera when moved. Experiments are currently being
done on a newly built polycamera with even less overlap.

6. CONCLUSION

Fig. 5. Polycamera mosaic obtained by manual correspon-
dence for road following.

We have described a new method to align images from
multiple cameras with minimal or no overlap, based on the
nature of the induced motion captured by the cameras. We
evaluated a previous technique that handled only two cam-
eras, discussing the various factors that can affect the accu-
racy of the technique. We extend that method to compute

the alignment for all cameras simultaneously, claiming that
it imposes tighter constraints. The resulting increased FOV
can be useful for road following applications (Figure 5).

Future work involves defining a quality metric to select
the best homographies that can recover the correct camera
alignment. Another extension would be to use the property
of temporal coherence for aligning 2D and 3D sensors.
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