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Abstract— We present two components of a vision-based approach
to autonomous driving on and near rural and desert roads. The first
component comprises fast processing of live vehicle camera video to
robustly extract linear direction and midline estimates of marginal
roads. The second uses satellite imagery immediately surrounding the
vehicle’s GPS position to trace the road ahead for curve and corner
anticipation, and to inform the vehicle planner of a nearby road when
traveling cross-country. The algorithms are built upon Gabor wavelet
filters for texture analysis: on-board, they are employed to find ruts and
tracks from which the road vanishing point can be inferred via Hough-
style voting, and aerially, they localize the edges of low-contrast road
contours. Mechanisms for both modules to determine whether the vehicle
is currently on- or off-road are also explained. Our system’s efficacy is
illustrated for several difficult datasets, including a log from one vehicle’s
run during the 2004 DARPA Grand Challenge.

I. I NTRODUCTION

With the running of the first DARPA Grand Challenge (DGC) robot
race in 2004 and a second iteration scheduled for the fall of 2005,
there is heightened interest in algorithms for autonomously following
“difficult” unpaved paths and roads. Although the DGC race course
may cross any kind of traversable terrain, requiring sensors and
methods for general obstacle avoidance and slope analysis as studied
in [1], [2], roads by design offer benign channels through otherwise
more difficult areas. Nearly all of the 2004 course was narrowly
constrained to a series of flat or hilly desert roads, but in a more
realistic scenario path-planning algorithms will have the freedom
(and responsibility) to decide whether to chain together segments
of sketchy roads or set out on cross-country routes which are more
direct but likely riskier.

In this paper, we are concerned with two aspects of this problem.
First, at the low level we examine how to use on-board visual sensing
to guide a vehicle along an unpaved road that often lacks the high-
contrast edge and/or color features typically used for road following
on highways, streets, or dirt roads bordered by vegetation [3], [4],
[5], [6], [7], [8]. Instead, our approach [9] relies on oriented texture
associated with the road such as thebanding pattern of ruts and
tire tracks left by previous vehicles, as well as road border edges or
painted lines if they are present. All such oriented features, provided
they are parallel to the road direction, share a common vanishing
point (see [10], [11], [12], [13] for other work on vanishing point
finding). This vanishing point indicates the road direction, giving an
angular error suitable for input to a low-level steering control and
acceleration module.

In addition to road direction, information about the vehicle’s lateral
displacement that allows centering is also needed. Vanishing point
information provides a powerful constraint on the possible road
region geometry by defining a 1-D family of possible edge lines (for
straight roads) radiating below the horizon. Under the assumption of
oriented texture in the road, there are often also linear features inside
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the road region that also “support” the vanishing point hypothesis.
Grouping such texture features gives a rough idea of the extent of
the road region and hence its midline.

There are other cues such as color which are powerful aids for
segmentation [14], [6], [7], [8], but in this paper we focus on what
can be done with oriented texture alone. One virtue of our approach
is relative insensitivity to the road surface material and lighting
conditions–there is no need to tune, learn, or adapt parameters as
the algorithm runs on a variety of roads.

The second problem that we address here is the mid-level one of
finding nearby roads to travel on. This helps the on-board module
to know when the vehicle is off-road and therefore should stop
running, or when it is near a road again and should resume.
Digitized/vectorized roads are not common in the rural and desert
areas we want to operate in, so we use static aerial imagery to detect
the roads directly with image processing. In this work we assume a
reliable estimate of the vehicle’s current position and the goal is to
direct it along or towards the road using on-board and aerial road-
following algorithms. Given the current position, the aerial view of
the environment is used to plan a path of a couple of hundred meters
towards the final destination. This local plan in the vicinity of the
robot is used to guide the on-board road following.

A critical system state is whether the vehicle is currently on a road
or not. This is simple for highways and urban streets which have been
digitized in vector form, but the unnamed access roads and desert
paths we are interested in exploiting are mostly unmapped. This infor-
mation is important in order to “gate” the on-board module’s output
to the vehicle controller to prevent spurious steering commands from
being issued when there is no road to follow. It is also useful for
annotating the aerial module’s planned paths so that the high-level
vehicle controller knows how cautious to be.

In the next two sections, we will describe the on-board module



and aerial module, as well as the on/off road decision methods for
each, after which we will show results demonstrating the system’s
capabilities and discuss extensions we are currently working on.

II. ON-VEHICLE ROAD FOLLOWING

There are three significant stages to the on-vehicle road following
pipeline, as shown in Fig. 1, which we describe in the following
subsections. First, dominant texture orientations are computed over
the current image. Second, a linear approximation to the road
direction is measured by having all dominant orientations in the image
vote for a single best road vanishing point. Finally, the road support
region, consisting of rays along which the dominant orientations agree
with the chosen vanishing point, is estimated and a putative road
midline extracted from it.

A. Dominant Orientations

The dominant orientationθ(p) of an image at pixelp = (x, y)
is the direction that describes the strongest local parallel structure or
texture flow. There is a considerable body of work on methods for
estimating dominant orientations [15], [16]; our approach is to use a
bank of Gabor wavelet filters [17]. Gabor wavelet filters essentially
perform a Gaussian-windowed Fourier analysis on the image via
convolution with a set of kernels parametrized by orientationθ,
wavelengthλ, and odd or even phase. To generate ak × k Gabor
kernel (we usek = b 10λ

π
c), we calculate:

ĝodd(x, y, θ, λ) = exp[− 1

8σ2
(4a2 + b2)] sin(2πa/λ) (1)

wherex = y = 0 is the kernel center,a = x cos θ + y sin θ, b =
−x sin θ+y cos θ, σ = k

9
, and the “sin” changes to “cos” for ĝeven.

The actual convolution kernelg is then obtained by subtractinĝg’s
DC component (i.e., mean value) from itself and normalizing the
result so thatg’s L2 norm is 1.

To best characterize local texture properties including step and
roof edge elements at an image pixelI(x, y), we examine the
complex responseof the Gabor filter given byIcomplex(x, y) =
(godd ∗ I)(x, y)2 + (geven ∗ I)(x, y)2 for a set ofn evenly spaced
Gabor filter orientations. The dominant orientationθ(x, y) is chosen
as the filter orientation which elicits the maximum complex response
at that location.

Based on empirical observation of performance on diverse road
scenes and cameras with varying internal calibrations, we have found
that a single wavelength related to the image dimensions by anad hoc
scaling factor gives very good results at a significant computational
savings vs. multi-scale schemes. This scaling factor, which works
well for image scales ranging from320× 240 to 80× 60, results in
λ = 4 and a kernel size of12× 12.

A fairly large number of orientations (e.g.,n = 36 for all of
the results in this paper) are necessary to achieve superior angular
resolution forθ(p) given the voting method described in the next
subsection. Performing this many convolutions per image with such
large kernels is obviously computationally expensive, consuming
about4/5 of the running time of the on-board module. Using the
convolution theorem and the FFTW Fourier transform library [18] at
single precision, however, allows dominant orientations to be obtained
with adequate speed. For example, calculatingθ(p) for every pixel
in a 160 × 120 image withn = 36 takes∼ 55 ms on a 3.0 GHz
Pentium IV (note that this is independent ofλ).

Fig. 2(b) shows the calculated dominant orientations for the image
in Fig. 2(a). Gray level intensities proportional to an estimated angle
from 0 to 180 (in 36 discrete steps) are shown. Observe that most
parallel structure is in the dirt road on the right.

B. Linear Vanishing Point Detection

For a straight road segment on planar ground, there is a unique
vanishing point associated with the dominant orientations of the
pixels belonging to the road. Curved segments induce a set of
vanishing points (discussed in [9]), but we will satisfy ourselves with
an approximation to the tangent here.

The possible vanishing points for an image pixelp with dominant
orientationθ(p) are all of the points(x, y) along the ray defined
by rp = (p, θ(p)). Intuitively, the best estimate for the vanishing
point vmax is that point lying on or near the most such dominant
orientation rays. In [9], we formulated an objective functionvotes(v)
to evaluate the support of road vanishing point candidatesv over a
search regionC roughly the size of the image itself. An efficient and
relatively accurate (given enough orientations) voting scheme, which
we call raster voting, is to draw a “ray of votes”rp per voter in an
additive accumulation bufferA in which each pixel is a vanishing
point candidatev. After rendering every vote ray, the pixel inA
(which representsC at a fixed resolution) with the maximum value
is vmax .

Graphics hardware conveniently accelerates this voting operation,
but until recently only 8-bit accumulation buffers have been available,
limiting “elections” to a maximum of 256 votes per candidate. When
large numbers of votes are cast, such as at image resolutions of320×
240 and higher, this can lead to saturation artifacts preventing true
vote totals from being recorded. In this paper all results were obtained
on 160× 120 images with 8-bit accumulation buffers.1

The raw maximum ofvotes(v) is noisy, and since the vanishing
point shifts only slightly between frames as the vehicle moves, we
smooth the estimate using a particle filter [19], [4], [5]. Particles
are initially distributed uniformly in order to coarsely localize the
vanishing point. Weak dynamicsp(vt | vt−1) (e.g., a low-variance,
circular Gaussian) then limit the search region to track the vanishing
point closely, reducing the chance of misidentification due to a false
peak elsewhere in the image. Finally, the averaging effect of filtering
also mitigates saturation by returning the middle of a region of
saturated votes as the max, which generally correlates with where
the unsaturated maximum would be.

With internal and external calibration of the camera, a tangent to
the curvature of the road in the ground plane can be obtained from the
x coordinate of the vanishing point. This road direction measurement
is necessary for steering control, while the motion of they coordinate
or horizon line indicates out-of-plane undulation of the road and may
be useful for braking control.

Fig. 2(c) shows the vanishing point candidate function for the
image in Fig. 2(a). Its filtered maximum is indicated by the blue
square in Fig. 2(a).

The “sharpness” of the vanishing point peak is an indicator of the
reliability of the estimate. There are a number of ways to measure
this, but we have found that the Kullback-Leibler (KL) divergence
[20] between the vote function and a uniform distribution of the vote
totals (256 possible values for 8-bit accumulation buffers) correlates
well with this intuition. Low KL values are obtained when many
different vote totals are observed in the candidate region, while high
values are measured with bunching of vote totals at either the high
or low end. A similar approach using the likelihood ratio was used
to decide whether a scene had vanishing points or not in [13].

When the KL of votes(v) is over a threshold (we use0.2 in

1The Nvidia GeForce 6800 supports 16-bit floating point blending with
an 11-bit mantissa and thus boosts the maximum to 2048 votes, enough for
higher resolutions
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Fig. 2. (a) Captured road image with estimated vanishing point, horizon line, road midline, and image midline overlaid; (b) Dominant orientation at each
pixel ([0, π] radians→ [0, 255] intensity values); (c) Vote function for vanishing point (d) Road support based on thresholded mean disagreement between
dominant orientations and direction to vanishing point

this paper for160 × 120 images), the estimated vanishing point
is considered reliable. To smooth this decision, we store a history
of the last 10 seconds of results of this threshold comparison and
require2/3 of them be over threshold for the current vanishing point
information (as well as road midline computed below) to be passed
on to the vehicle controller.

C. Road Support Region Segmentation

One can think of a vanishing pointv’s support as the set of all
pixel positionsvsupp whose dominant orientations cause them to vote
for it. Given that for most rural road scenes the dominant orientations
of much off-road texture such as vegetation, rocks, etc. are randomly
and uniformly distributed with no strong points of convergence,
supporters often come from inside the road region. Therefore, the
road region may be roughly segmented as an angular range below
the vanishing point with a higher density of supporters than in the
flanking ranges.

One issue of generality is that although this model fits unpaved
roads fairly well, texture on paved and painted roads is usually
sparser. That is, most of the road region in the latter is homogeneous,
with the oriented texture just along the road border and lane lines. We
have found that explicitly trying to identify the left and right edges
of the road using texture support alone is less robust than estimating
its midline directly.

We do this by extending a set of imaginary “rays” down fromv
at regular intervals. If theith ray ri’s orientation isφri and length
(clipped to the image) is|ri|, the mean angular discrepancy between
the ray orientation and dominant orientations along it is calculated
as µ(ri) =

∑
(x,y)∈ri

|φri − θ(x, y)|/|ri|. Ray i is labeled as a
support ray if its discrepancy is less than a thresholdµ(ri) < τµ.
The support rays obtained with a threshold of0.75 for the vanishing
point of the image in Fig. 2(a) are drawn in green in Fig. 2(d) (red
lines are non-support rays).

Finally, an instantaneous measurementm̂t of the road midline at
time t is obtained as the mean road support ray (without weighting)
for that image. A smoothed midline estimate is calculated with a
simple filtermt = mt−1 + α(m̂t − mt−1) (we usedα = 0.1 for
the results in this paper). Them estimated from the support rays of
the example image is shown in magenta in Fig. 2(a).

The camera’s vertical and horizontal fields of viewθV and θH,
height H off the ground plane, and pitch angleρ establish the
distanceD to the nearest ground point visible—along the bottom
row of the imagey = h. The x coordinate of the intersection of
the midline m and the bottom row can thus be converted to an
approximation of the vehicle’s lateral displacement∆ via the formula

∆ = D tan[θH(x/w − 0.5)], wherew is the width of the image in
pixels.

III. A ERIAL ROAD FOLLOWING

There are three key components in the aerial module diagrammed
in Fig. 1: texture analysis, road tracing, and planning. First, texture
analysis is performed on static satellite imagery2 in order to measure
the likelihood that a road is present over the position and orientation
space. The area examined is masked by RDDF corridor boundaries,
if any. Second, a temporal filter is used to find a maximally likely
road contour in the search region and trace along it. Road tracer
performance often benefits from biasing its dynamics by the angle
of the major axis of the current RDDF corridor, even for very wide
segments. Finally, the aerial planner works by re-initializing the tracer
at the current vehicle positionxt and building a fixed-length waypoint
sequence along the road in front of it. As with the on-board module,
the base aerial module assumes that the vehicle is on the road, seeking
only to keep it there.

A. Texture Analysis

The unpaved and desert road contours in the grayscale aerial
imagery used in this work are low contrast and noisy, making simple
edge- or color-based methods impractical. In common with the on-
board road follower, we use a bank of Gabor wavelet filters [17] to
measure the likelihood that a hypothetical vehicle statex consisting
of its position (x, y) (i.e., UTM coordinates) and directionθ (i.e.,
compass heading) are both on and tangent to a road. The expected
range of roads widths dictates the choice of scale for the filter;
once again just a single wavelength is used. Vehicle orientations
are discretized toK = 9 equally separated angles in[0, π]. The
measurement likelihoodp(I | x) of a hypothetical statex being on
the road is given by the closest-orientation Gabor filter’s complex
response (explained in the dominant orientation section above) at
that position of the aerial imageI.

B. Road Tracing

Our method of predicting the road ahead from aerial images is most
similar to JetStream [21], a particle filtering approach to spatially
track edge contours that has been applied to roads. Tracking generally
refers to following the state of a target over time, but for still aerial
images “time” is associated only with the progressive extension of
the estimated contour as in [21], [22]. In previous work [23], we
showed that our formulation of the measurement likelihood seemed
to work better on desert road images than JetStream’s more general

2All aerial images in this paper were obtained from Microsoft’s Terraserver
with a resolution of 1 m / pixel
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Fig. 3. Incorporating RDDF into the dynamics prior for the particles. (a) 2004 DGC corridors at a sharp turn early in the race; (b) Corridor width increased
10× to test our road tracer; (c) Road trace using texture-driven dynamics only; (d) Bimodal distribution of particles at the same intersection for texture-driven
dynamics; (e) Road trace using RDDF-based dynamics; (f) Unimodal distribution of particles at the intersection for (e)

approach. Moreover, in that work we introduced the idea of biasing
the dynamicsp(xt |xt−1) of the road tracer with the GPS waypoints
of a manually-driven vehicle, which tightly corresponded to the road
shape (the objective was to post-process a noisy GPS track under the
assumption that the vehicle was driven on roads the whole way).

For efficiency, image processing is done only within a small
floating tile (61×61 here) around the particles, allowing convolutions
to be cached until a minimum fraction of the particle set leaves
its confines. This allows real-time performance on large images (a
second-level system of loading and unloading adjacent raw aerial
image files has not yet been implemented, as all of our runs have
thus far been limited to2.5× 2.5 km square areas).

If the vehicle is being driven in a race situation akin to the
DARPA Grand Challenge, analogous information may be available
from a route descriptionconsisting of a series of waypoints and
maximum lateral boundary offsets (LBOs) from the line segments
connecting them. The term used by DARPA for the 2004 DGC for
this was theRDDF, which we will use here. In an RDDF, two
successive waypoints along with the LBO define aroute segment.
The boundaries at the ends of each segment are demarcated by a
semi-circle of radius equal to the LBO, providing a transition zone
from one segment to the other.

In the 2004 DGC the RDDF LBOs were quite narrow, with a mean
segment width of 3.2 m and median width of 2.4 m, and followed
roads for almost the entire route. This of course obviated any road
finding at all, but in general LBOs may be much wider. Even allowing
substantial increases in corridor widths that necessitate finding the
road within them, any vague hint of the road direction from the
corridor direction is a strong cue for the road tracer dynamics. We
implement this by augmenting the vehicle statex with a variable
for the current RDDF segmentm. For each particle, samples ofθ
are distributed around the orientation of route segmentm. In case
the current vehicle position is outside the corridor, the particles
are initialized at a point within the closest segment by dropping a
perpendicular to it.

The dynamics of each particle can further be influenced by the
RDDF. All particles are subjected to forward and rotational motion
(R+N(σr), Θ+N(σΘ)) whereN(σ) denotes Gaussian noise with
varianceσ2. A fixed step size is used forR, but Θ can take on
two different values. For a particle within a very narrow segment,Θ
can be set to the orientation of this segment. This is pure corridor
following, which might also be the recommended option on sections
where the road likelihood measure is very low. However, on a long
wide segment with curved roads, this is too restrictive. Instead, the
orientation for each particle is distributed around the angleθ it was
traveling in the previous time step. We term the latter astexture-driven
dynamics, which allow particles to follow the most likely road within

the segment in whatever direction it leads.
While pure texture-driven dynamics works well on smoothly

curving road segments, road forks or sharp turns can result in
a multi-modal posterior. Such situations are greatly mitigated by
RDDF-driven dynamics, in which we detect segment transitions and
distribute θ around the orientation of the next segment for one
iteration, reverting to texture-driven dynamics within segments.

Fig. 3 illustrates the difference between these two approaches to
road tracing dynamics by focusing on a particular turn from the
2004 DGC RDDF. Fig. 3(a) shows the narrowness of the original
race corridors, while Fig. 3(b) shows the effect of scaling all LBOs
by a factor of 10. The road traced in Fig. 3(c) using only texture-
driven dynamics overshoots the left turn, resulting in a multi-modal
distribution for the particles (Fig. 3(d)) with the weighted mean
(shown as a red dot) falling outside the road. The particles converge
onto the correct road only after several iterations. In contrast, with
RDDF-driven dynamics providing a strong hint that the road is
turning even if its location is unknown, the road tracer in Fig. 3(e)
makes the turn almost perfectly. The particles also form a tight cluster
oriented along the correct path as shown in Fig. 3(f).

As well as guiding the evolution of particles for road tracing,
the measurement likelihood function above can also be used as a
confidence measure for the vehicle being on the road. Given the GPS
coordinatesP and the orientationθ of the vehicle, we compute the
mean strength of theθ-filter responses in an11× 11 meter window
aroundP and threshold it.

C. Planning

The planner is a straightforward extension to the road tracer.
Every frame, the road tracer is re-initialized by distributing particles
uniformly around the vehicle’s current GPS position. The tracer
proceeds for a fixed number of iterations, generating a trajectory as
a dense series of waypoints (up to a few hundred meters ahead). The
plan inside corridors is a series of closely-spaced waypoints leading
to and along the nearest road from the vehicle. These are generated
by the state of the particle filter as it searches forward in the current
and succeeding route corridor segments a fixed distance. When the
vehicle is outside the corridor, a straight-line plan leading to the
nearest point on the midline of a segment is created, after which the
waypoints come from the road tracer.

This information is useful to the on-board road follower for
anticipating corners, which are failure modes for the vanishing point
finder. In addition to prediction, this plan also gives a sense of the
direction and distance to safety for impasses such as a vehicle that
is off-road with no trail visible to any on-board sensors.



Fig. 4. On-board system’s vanishing point and road midline estimates for
selected frames from a 2004 DGC vehicle training run

IV. RESULTS

Output of the on-board module for selected frames from a long
training sequence collected by Carnegie-Mellon’s 2004 DGC team
are shown in Fig. 4. Note that the system deals fairly well with non-
trivial road curvature even with its linear estimate, and is not thrown
off by the outlier textures generated by the shadow of the vehicle
cast on the road in front of it.

The accuracy of our on-board method for discriminating road from
non-road images is shown in Fig. 5. A plot of the one vehicle’s GPS
trace as it negotiated an early 2004 DGC turn are shown are red
and green segments in the upper-left subfigure. Green indicates that
the smoothed KL divergence method described above considers the
image to contain a trackable road, while red implies the opposite.
Sample image captures from the numbered frames along the route
are shown below, with the left column consisting of inferred off-
road images and the right on-road images. In the on-road images the
system’s estimated vanishing point and road midline are shown.

To quantify the efficacy of the aerial road tracer, we can make
use of the original 2004 DGC RDDF. The route segments given by
DARPA fell almost entirely on roads and were usually narrower than
the actual road. Tracing the road with such a narrow corridor width
gives a dense track of locations guaranteed to be on the road. We
compared this trace with another obtained by running our technique
on an artificially widened (10×) corridor. This resulted in a median
distance error between the two traces over the first few miles of the
course of 1.3 m. It is important to note that certain segments provided
by DARPA such as that in Fig. 3 are outside the road, while our
technique correctly follows a road within the wide corridor if not
necessarily the midline of the narrow corridor.

Fig. 6 demonstrates how our algorithm can assist in localized
planning. The figures show in green the track of Caltech’s 2004
DGC vehicle’s GPS locations during the 2004 race. When initialized
with the vehicle’s current GPS position, the particle filter is run for

On-board Aerial
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19736 (off) 20712 (on)

22632 (off) 29951 (on)

Fig. 5. Detail of on/off road decisions made by each module. Green and red
segment colors indicate on and off road, respectively. Numbers stand for first
frame of segment (the gross direction of travel is up and then to the left).

t iterations returning a dense trackp0:t of waypoints that are very
likely to be on the road. Drawn in yellow, is this prediction of the
road immediately ahead or in the vicinity of the vehicle. Using such
a plan could have helped their robot avoid and recover from certain
off-road situations they encountered during the race.

The bottom two images in Fig. 6 are the result of road tracing in
later mountainous segments of the race course. While the dynamics
of our particle filter can effectively handle various types of roads
exhibiting sharp corners as well as high curvature, the likelihood
function is able to constrain the particles on the road purely by
analyzing the local texture in the aerial image. Even on such low
quality images with poor contrast, this is a powerful cue that can
assist the navigation modules, for both localization and planning.

As shown in the upper-right subfigure of Fig. 5, a simple on/off
road confidence measure based on thresholding the likelihood func-
tion and passed through a smoothing filter discriminates the positions
and orientations where the vehicle is clearly off or not pointing
down the road. There is remarkable agreement between the on-board
and aerial methods considering how different they are. Much of the



Fig. 6. Top: GPS plot of a 2004 DGC vehicle’s route (green) on raceday and
predicted path (yellow) from a fixed location (red dot) at different sections
of the course. The predicted distance is approximately 325 meters with the
particle filter run for 75 iterations. The original corridor width for each
segment is widened by a factor of 10. Bottom: Road tracing for 175 iterations
in a high altitude segment of the 2004 course with the corridor width (not
shown) widened by a factor of 10.

difference can be ascribed to the fact that the on-board decision
component assesses the ground ahead of the vehicle, while the aerial
mechanism decides on the basis of the image directly surrounding
the vehicle, causing a “lag” for the aerial decision.

V. CONCLUSION

We have presented a system for road following on desert and
unpaved road that relies on road texture, analyzed both from an on-
board camera and satellite imagery, to robustly identify and track the
road. The on-board component recovers the road vanishing point in
near real-time for many kinds of surface materials with no tuning, as
well as extracting the road midline using residual information from
the voting process. The aerial component finds and traces roads near
the current vehicle position, providing a medium-term plan and an
alternative to pure cross-country obstacle avoidance. Moreover, both
pieces of the system analyze their own performance and automatically
turn off when the vehicle is not near a road.

We are currently investigating two lines of extension to this work.
The on-board module’s road midline estimate can be somewhat biased
by shadows cast on one side of the road and other appearance
asymmetries. To validate and improve the segmentation, we have
begun incorporating information from a cab-mounted laser range-
finder that, when calibrated with the camera, can provide road width
estimates that are unaffected by lighting conditions. Secondly, the
aerial module currently only finds a single road near the vehicle. We
have begun promising preliminary work using skeletonization and
watershed image processing techniques to extract a road network in
the vicinity of the vehicle, offering more choices to the vehicle and
possibly graph-based path-planning.
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