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Abstract— We present two key parts of an ongoing robotic,
vision-based architectural modeling project. The first component
is a randomized approach to view planning for a single ground
robot scanning a building perimeter to recover a series of texture
map mosaics. This algorithm generates paths that simultaneously
address coverage and quality (i.e., real-valued distance and fore-
shortening factors). The second part is a technique for “cleaning”
the captured texture maps in the presence of occlusions caused
by trees, signs, people, and other foreground objects. When such
occlusions comprise a minority of views a background feature
can be recovered via temporal median filtering, but when they
are in the majority, appearance information from other visible
portions of the facade provides a critical cue to correctly complete
the mosaic. We describe a novel spatiotemporal timeline-based
inpainting algorithm that identifies and corrects such areas.

I. INTRODUCTION

As part of a vision-based architectural modeling project
(see [1], [2] for related work by others), we seek to capture
the visual appearance of building exteriors via “scanning” by
a single camera-equipped ground robot. Given an a priori
polyhedral model of a building’s structure (with assumed
vertical, planar walls), a major subgoal of the task is to obtain
a visual texture map of each section of its facade. Two large
issues must be addressed to accomplish this:

• View planning: How best to move the robot in order to
rapidly achieve complete visual coverage

• Mosaicing: How to stitch together images taken from
different positions, including filtering out pedestrians,
trees, and other foreground objects which should not be
included in the building appearance model

View Planning Our algorithm for facade texture map acqui-
sition (see below) operates on a discrete set of overlapping
views. Planning a robot path around the outside of a building
that maximizes visual coverage (an aerial photo of an example
building and its polygonal outline is shown in Fig. 1) is related
to the “art gallery” problem from computational geometry [3].
Specifically, the task is to find a set of “guard” positions G in
a polygon P that collectively “see” the entire polygon. The
traditional criterion for visibility between two points p and q is
line of sight: the line segment joining them does not intersect
P . Paths along which the entire polygon is seen at least once
are called watchman routes.

Robotics researchers interested in view planning with real
sensors such as laser range-finders have recently extended the
notion of visibility in an art gallery framework to include
a range constraint and an incidence constraint [4], [5]. The
range constraint models a sensor’s inability to work when too
far from or too close to an object. Points p on P whose
distance from the sensor position q falls inside a specific
range dmin ≤ d(p,q) ≤ dmax are “range visible”. Similarly,
the incidence constraint enforces an angular range to model a
limited sensor field of view (or exclusion of poor quality range
returns at near-grazing angles). Letting v = q−p and n be the
surface normal at p, points for which the angle � (n,v) ≤ τ �
are considered “incidence visible.” Only polygon points which
are visible in all three of the above senses are considered
visible from a position q.

Binary line-of-sight and field of view constraints obviously
apply to camera view planning, but even within a single
image different pixels “see” more or less of the building
and with different levels of goodness. Horizontal and ver-
tical foreshortening and finite camera resolution influence
the overall goodness of a hypothetical view, and we believe
that a real-valued visibility function—i.e., how well, not just
whether, a particular point is seen—can better represent this.
One contribution of this paper is a formulation for such a
goodness function, which we demonstrate in an existing point
sampling framework. Moreover, overlap between adjacent
frames is important for mosaicing. To this end, we introduce
an online method derived from particle filtering for finding and
linking together guard points that allows dynamics and may be
suitable for situations in which a priori building maps are not
available (i.e., exploration). Finally, we offer some heuristics
for improving the roadmap approach to extracting a path from
the set of guard points described in [4] that are particular to
our task.
Mosaicing Given a sequence of overlapping images of a single
large plane of a building wall taken along the planned path,
we aim to reconstruct an accurate map of that section of the
facade. Creating a planar mosaic via homography estimation
has been thoroughly studied [6], [7]. The complicating factor
that motivates the second part of this paper is the possible
presence of other, unknown objects in the scene between the
camera and building plane—e.g., trees, people, signs, poles,
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Fig. 1. (a) Aerial view of example building to be mosaiced and its
surroundings; (b) Outline of building and neighbor, plus additional map
features (freespace here is of course the outside of the building polygons)

and other clutter of urban environments. Without explicitly
recognizing them, these objects may be erroneously included
in the building appearance model. Robust estimation of the
dominant motion of the building converts the problem of “oc-
cluder removal” to a foreground subtraction or layer extraction
problem [8], [9], [10], [11]. Many of these approaches either
assume that the moving objects are relatively small compared
to the background, facilitating temporal median filtering [12],
[8], or that the objects to be removed are manually identified
once [13], [9] in order to segment them later.

In recent work [14], we detailed a comprehensive approach
to automatically identifying foreground regions and removing
them via image/video inpainting [15], [16]. Pure inpainting is
strictly necessary only where the background is never seen
for the entire sequence, but our chief innovation is using
regions visible in at least one view to constrain what should be
painted there. By combining spatial information from pixels in
a partially-completed mosaic with the temporal cues provided
by images in the timeline, or sequence of images captured,
sequences that present significant difficulties for temporal
median filtering can be well-handled.

In the sections that follow, we will detail our randomized
technique for camera view planning, estimation of foreground
likelihoods over the sequence of images captured along the
path, and integration of this information into a spatiotemporal
inpainting algorithm built upon the non-parametric method
described by Criminisi et al. in [16].

II. VIEW PLANNING

Suppose we wish to mosaic or cover the exterior of a
building B with camera views. B has a known perimeter and
facade height hB , and is one of a set of neighboring buildings
B = {B1, . . . , Bn}. Let the robot be equipped with a panning
camera that has a vertical field of view of φ, a horizontal
field of view of θ, and an image resolution of w × h. We
assume that the camera is mounted near ground level with its
optical axis fixed parallel to the ground plane (i.e., it does
not tilt). Image pixels discretize viewing directions, so for a

cylindrical projection B’s visibility is sampled by w equally-
spaced viewing rays.

A. Goodness Function

We replace the binary visibility criterion above with a real-
valued “goodness” function. Consider a candidate viewing
position q in the plane. A particular viewing ray is defined
by q and a unit direction vector r. The goodness of the ray
Γ(q, r) is defined as the product of the {0, 1}-valued line-
of-sight, range, and incidence constraints (τ � = θ/2) defined
above and two real-valued terms (only calculated if the first
three are all non-zero). These are:

• Foreshortening If the normal at the wall point p on B
which the ray strikes is n, the dot product −r · n is 1
when the ray hits the building orthogonally and 0 at the
extreme grazing angle of 90 degrees. This measures the
effective resolution of the pixel.

• Vertical Framing An additional measure of pixel utiliza-
tion is how well the building fills the image vertically.
We penalize for being too far away, resulting in sky
visible above the building, as well as being too close,
cutting off the top of the building. If p is on the ground,
another point p′ that is hp′ = d(p,q) tan φ meters
above the ground would be in the top row of the image.
Thus, min(hp′ , hB)/ max(hp′ , hB) measures the vertical
fraction of the image that is either sky or cut-off building.

The goodness of a viewing position Γ(q) is evaluated by
casting one ray per sensor pixel and taking their average
goodness. In this work we ignore vertical foreshortening by
only casting rays in the plane—i.e., horizontally. A sample
synthetic omnidirectional image (only 270 degrees are shown)
is given in Fig. 2(a). It represents the information available to
the planner regarding visibility, foreshortening, and vertical
framing via the intensity of each image pixel. Fig. 2(b) shows
a building surrounded by sampled viewing positions (more on
this in the next subsection) and a particular position at which Γ
is being calculated. The intensities of the rays are proportional
to their individual goodnesses. A high-resolution depiction of
the components of the goodness objective function is shown
in Fig. 2(c-e).

B. Next Best View

Using the binary visibility criteria of distance and angle
defined above, the first algorithm in [5] based on the GREEDY

algorithm for finding near-optimal set covers could be directly
used to obtain a set of guards G1, G2, . . . that covers the
building polygon B with views. Briefly, one would randomly
and uniformly sample viewing positions outside any building
polygon and within dmax of B, compute what sections of B’s
perimeter are visible from each sample, and pick the guard
position that sees the longest overall section of B (summed
over visible fragments). These “already seen” sections are
marked as invisible to subsequent viewing position candidates,
and the process is repeated until all of B (up to some
threshold) has been seen once.
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Fig. 2. (a) Sample synthetic omnidirectional image (partial) of building with
diffuse shading showing foreshortening (red lines are 90 degree intervals);
(b) Building polygon, uniform samples, and viewing position with cast
rays (ray saturation proportional to goodness); (c) Goodness function with
foreshortening term only discretized at 1 m resolution; (d) Goodness function
with vertical framing term only; (e) Combined (via product) goodness function

The real-valued goodness function above necessitates mod-
ifications to this approach since each section of wall is
not just “viewed” or “not viewed”, but rather “viewed with
a certain goodness.” Therefore, we set a threshold on the
total goodness with which every segment of wall must be
viewed. The bookkeeping for such a requirement makes the
exact ray-sweeping methods used in GREEDY inapplicable.
Therefore, we discretize the perimeter of the building into
initially empty buckets and every new guard chosen deposits
its ray goodnesses into the buckets until their thresholds are
exceeded, after which subsequent rays hitting such areas have
goodness 0. This mechanism ensures as before that new guard
positions are chosen rather than the same one repeatedly, and
updating this data structure is extremely simple and fast. We
call this variant GOODNESSGREEDY .

C. Path Building

The set of guards obtained with the GOODNESSGREEDY

method above is unordered and not immediately useable as a
path for robot motion. We have developed two approaches to

making this step.
1) Uniform Sampling: Previous work [4] demonstrated how

post-processing could generate an ordering of the guard points
using an approximate approach to the traveling salesman
problem. A graph R called a “roadmap” is created which
contains all guard points and building vertices, with edges
joining mutually visible nodes. The shortest path between
every pair of guards in R is then computed to yield a fully
connected graph R∗. A traversal of R∗’s minimum spanning
tree R∗

MST yields an “inspection tour” with length less than or
equal to twice that of the shortest possible tour.

We have implemented a variant of this approach using
several heuristics in the traversal of R∗

MST to shorten the
extracted path. Rather than [4]’s method of simply performing
a pre-order traversal, we initially choose a path start point that
maximizes tree height, and then at each node with multiple
children we visit the children in order from shortest to tallest
subtree height. These heuristics tend to work well for circum-
navigating a building with concavities because exploring such
indentations are just small detours off of the mainline circuit
around the building. Typically, we smooth the final path to
eliminate sharp corners for better suitability to robot motor
control using an interpolating spline such as Catmull-Rom
[17].

2) Particle Filter: An alternative, online approach to build-
ing a robot inspection path is derived from the idea of reactive
path planning via a “tracking quality” function in [18]. Here
the idea is to define a “map quality” function on robot positions
that is just the real-valued goodness function above.

Given an initial robot position in the area near a building,
we sample positions in its neighborhood with a Gaussian in
a manner similar to a particle filter [19]. The local sample
with the best positional goodness is chosen as the next guard,
and the area around it is sampled. Through segments of the
building bucket data structure filling up, the path planner is
“forced” to move in order to find novel views. This effectively
builds a path online for the robot through randomized gradient
ascent that constitutes coverage behavior without explicitly
building and searching a roadmap graph. Because the sampling
is local, of course, the planner can become temporarily stuck in
local minima until it random-walks to a new view. In practice
we have found that this approach works quite well even on
buildings or sets of buildings with many concavities.

III. TEXTURE MAP ACQUISITION

Given a set of overlapping images captured from the view-
ing positions planned in the previous section, we wish to build
a mosaic of each planar wall section. Assuming the captured
images have been grouped into sets corresponding to planar
wall sections, we work on each group separately.

A. Image registration

We begin by computing the dominant planar motion (as-
sumed to belong to one side of the building) between succes-
sive pairs of images It, It+1 in a sequence of N frames. These
initial frame-to-frame homographies H∗

t,t+1 are computed by



matching KLT features [20] in both frames followed by
RANSAC for outlier rejection [21] . Taking frame number
ref = �N

2 � of the sequence as the mosaic reference frame,
the homographies are then concatenated together to align
each frame with the mosaic—i.e., H∗

ref ,ref is the identity;
for t < ref , H∗

t,ref = H∗
ref−1,ref · · ·H∗

t+1,t+2H
∗
t,t+1; and

similarly for t > ref . Warping each frame It by H∗
t,ref with

bilinear interpolation results in a mosaic-aligned frame W∗
t .

Computing frame-to-mosaic homographies this way wors-
ens misalignment errors for frames distant from the reference.
With additional constraints on frame alignments (e.g., that
the first and last or other temporally distant image pairs
overlap), global consistency methods [22] or other forms of
bundle adjustment may mitigate such errors. With a 1-D
scanning motion around the building perimeter we cannot take
advantage of these methods. Thus, we minimize alignment
errors by refining the initial feature-based homographies with
a robust direct method that iteratively minimizes the sum of
squared differences (SSD) between frames [23], [24]. This
procedure operates sequentially on adjacent pairs of warped
images W∗

i ,W∗
j starting from W∗

ref and working outward.
After concatenating these refined pairwise homographies, we
obtain a final set of refined frame-to-mosaic homographies
Ht,ref and stabilized images Wt.

B. Identifying Problem Pixels

Each location p = (x, y) in the mosaic reference frame has
a set of pixels from the warped images {Wt(p)} associated
with it which we call its timeline T (p). The size of each
timeline |T (p)| may vary from 0 to N depending whether
the pixel at p was imaged or not in each frame. Intuitively,
since all pixels on the building facade exhibit the dominant
motion, they should appear stationary in the mosaic whereas
foreground objects such as trees and signs move due to
parallax. Given that each T (p) contains an unknown mixture
of background and foreground object pixels, our goal is to
correctly pick or estimate each background pixel M(p) where
|T (p)| > 0, forming a building mosaic M. In this paper
we assume that the lateral and vertical limits of the building
associated with corners, the roofline, the ground, etc. are given,
and we do not rectify the mosaic to compensate for an oblique
viewing angle.

A robust estimator for M(p) un-

Fig. 3. Source region
Φ, target region Ω, tar-
get boundary dΩ, target
patch Ψp (from Crimin-
isi et al. [16])

der the assumption that foreground
pixels are in the minority (i.e., out-
liers) in T (p) is the temporal median
M(p) = median(T (p)). This is com-
puted separately for each color chan-
nel: Mred(p) = median(Tred(p)),
and so on, giving rise to the median
mosaic Mmed . This estimator fails,
however, when foreground pixels are
in the majority in a particular time-
line. We observe that except for large

homogeneous foreground regions or camouflaged foreground
objects with almost the same color as the background, the

likelihood that T (p) has a majority of foreground pixels is
proportional to the variability or “spread” of its color distribu-
tion. To robustly measure this variability, we use the median
absolute deviation (MAD) [25], defined as MAD(T (p)) =
median(|Wt(p)−median(T (p))|) over all t in the timeline.
A scalar MAD value is obtained at each pixel by computing
it separately for each color channel and summing. A high
MAD value at p indicates a higher likelihood that Mmed(p)
is unreliable, so unreliable median mosaic pixels are filtered
out by thresholding their MADs—these are so-called MAD
outlier pixels. Finally, the raw MAD outlier mask is spatially
smoothed with a morphological majority operation.

C. Timeline Inpainting

In this section we present an algorithm for filling the MAD
outliers in Mmed that is built upon the work in Crimin-
isi, Pérez, and Toyama [16], a patch-based copying method
combining ideas from non-parametric texture synthesis and
diffusion-based inpainting. We will refer to their method as
CPT inpainting (reviewed in detail in [14]) vs. ours of timeline
inpainting. As shown in Fig. 3, in CPT inpainting an empty
target region Ω’s pixels are filled from its border dΩ inward
by copying square image patches from a source region Φ to
target patches Ψp centered on p = (x, y) ∈ dΩ.

Let the MAD outlier pixels be the target region Ω and the
rest of the median mosaic Mmed be the source region Φ. Our
problem differs from pure spatial inpainting in that the timeline
T for each p ∈ Ω, provided it contains at least one background
pixel, should constrain the filling process. Thus, our major
goals are to determine which, if any, pixels in T (p) are from
the building background, and to integrate this information into
the inpainting process. Letting T (Ψp) = {Ψ1

p, . . . ,Ψ|T (p)|
p }

be the timeline of patches centered on p, we create a timeline
mosaic Mtime by modifying CPT inpainting in three major
ways:

1) In the first of two stages, each patch-wise pixel copy to Ω
comes from one timeline patch Ψ∗

p̂ ∈ T (Ψp̂) maximally
likely to have come from the building

2) During stage one, the updated confidences C(p) of
newly-filled pixels are set to the motion-based back-
ground likelihoods p∗back (p) of the pixels in Ψ∗

p̂

3) If the mean background likelihood p̄back (Ψt
p̂) for every

patch in T (Ψp̂) is below a threshold τback , Ψp̂ is not
filled at that time. Stage two begins when all remaining
areas of Ω meet this definition, and consists simply of
CPT inpainting

Each of these three modifications is explained in more detail
in [14].

IV. RESULTS

A. View planning

We have performed extensive experiments on large, concave
building polygons, both individually and in sets, and ob-
served excellent performance for both the particle filter variant
described above and the modified version of the uniform
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Fig. 4. Sample planned coverage paths (subdivided). (a) Using global,
GOODNESSGREEDY method for guard point selection followed by a distinct
guard point linking phase; (b) Using local, particle filter-like algorithm to
incrementally add guard points from a random start point

Fig. 5. Raw frames from building sequence

sampling algorithm from [5]. In the limited space available
here, we show some generated paths for a building using each
method in Fig. 4. 360 rays (1 per degree) were cast per sample
position, the goodness bucket width along the building outline
was 2 m (the building perimeter is about 325 m), and the
vertical FOV φ was 30 degrees. For uniform sampling, one
sample was generated per 5 × 5 m square (dmin = 1 m,
dmax = 50 m), while for the particle filter-like approach 300
particles were used, generated from a normal distribution with
variance 150.

B. Mosaicing

We describe the operation of our algorithm on a prelim-
inary image sequence. 801 24-bit color frames, resampled
to 360 × 240 pixels each, were captured at 30 fps from
a manually-controlled camera moving parallel to a building
facade. Several objects at different depths occlude parts of
the building including trees, bushes, and a large sign. Our
algorithm was run on a subset of 17 frames from the sequence
taken at intervals of every 50 frames; the first and last of these
are shown in Fig. 5.

The median mosaic Mmed shown in Fig. 6(a) is mostly
quite good, recovering almost all of the facade cleanly. The
near tree (e.g., the last frame in Fig. 5) is almost entirely
removed (some artifacts near the mosaic edges are due to
an insufficient number of overlapping images there). This
is because its large parallax motion causes occlusions to be
brief and thus tree pixels are in the minority in the timeline
vs. building pixels. A significant problem area, however, is

created by the more distant tree, which exhibits relatively little
parallax motion. This object occludes many building pixels in
a majority of frames, confounding the median filter.

Areas where Mmed is poor correlate well with the MAD
outliers. The result of a conservative threshold which tags
about 20% of pixels as outliers is shown in Fig. 6(b). CPT
inpainting to fill Ω0 is insufficient, as too much structure is
hidden. The results after stage one of timeline inpainting are
shown in Fig. 6(c). For this stage, a shifting, circular search
region Φ(p) (radius = 150 pixels) around each 11×11 patch’s
center p was used. The results after CPT inpainting in stage
two are shown in Fig. 6(d). Spatial inpainting tends to intro-
duce some misalignment artifacts, but ongoing work indicates
that these will be lessened by correcting for radial distortion
and rectifying the image before applying our algorithm.

V. CONCLUSION

We have presented two parts of an autonomous architec-
tural modeling system involving view planning and mosaic
construction. The first is a randomized view planner that effi-
ciently builds incremental paths that maximize coverage and
quality. The second part is a novel approach to detecting and
removing occlusions of building facades in image sequences
using a combination of temporal and spatial inpainting. We
are currently investigating techniques for straight line analysis
and vanishing point detection [2] to automatically rectify the
texture map and segment planar facade regions from the
ground and each other at building corners.

It is important to note

Fig. 7. Architectural modeling robot

that the mosaicing se-
quence in the Results sec-
tion was manually cap-
tured along a path seg-
ment that is stereotypical
but not the result of our
planning algorithm. Our
current work focuses on
integrating and testing the
software components de-
scribed here on a recently-
built robot, shown in Fig. 7. Following a design concept pio-
neered by researchers at the University of Pennsylvania [26],
the University of Southern California [27], and elsewhere, our
robot platform is based on a stock 1/10 scale radio-controlled
(RC) truck chassis.

The prototype robot is equipped with a pan-tilt-zoom (PTZ)
color CCD camera with an analog video capture interface, a
global positioning system (GPS) receiver and antenna, and a
precision 3-axis orientation sensor and digital compass. The
PTZ camera allows the camera view to be set independently
of the robot heading, with the orientation sensor and the
GPS together giving a relatively accurate estimate of the
3-D position and 3-D orientation of the robot’s camera in
world coordinates. Motor and CPU battery life currently allow
autonomous operation for 45-60 minutes at a time.
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Fig. 6. (a) Median mosaic Mmed ; (b) MAD outliers in Mmed ; (c) Mtime

after stage one; (d) Mtime after stage two
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